A New Priority Rule for Solving Project Scheduling Problems

Abstract

Priority rule-based scheduling technique is a scheduling method for constructing minimum feasible schedules when solving project scheduling problems. This approach is made up of two parts: a priority rule for determining the activity list and a schedule generation scheme which constructs the feasible schedule of the constructed activity list. Quite a number of priority rules are available, selecting the best one for a particular input problem is extremely difficult. Hence, we present a new priority rule which assembles a set of priority rules and uses machine learning to form a hybrid strategy out of the assembled strategies. The hybrid strategy operates by choosing the strategy with the best performance at every point in time to construct an activity list of a project. The one with better performance is used most frequently. This removes the problem of manually searching for the best priority rule amongst the dozens of rules that are available. Experimentally, we solved a fictitious single-mode resource-constrained project scheduling problem (single-mode RCPSP) which was solved with 13 different priority rules in Pm Knowledge Center. Our result showed that the total completion time of the project obtained with our approach competes favorably with the completion times gotten with the 13 priority rules. Additionally, we computed initial population for Genetic Algorithm in solving some multi-mode RCPSP. We compared our results with the initial solutions the authors started with, and our results competes favorably with their initial solutions, making our algorithm a good entry point for metaheuristic procedures.
Keywords
Project scheduling Machine learning Motion planning Network analysis Metaheuristic procedures

This is a preview of subscription content, log in to check access.

Notes
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
Google Scholar
Google Scholar
Google Scholar
MathSciNetCrossRefzbMATHGoogle Scholar
5. 

MathSciNetCrossRefGoogle Scholar


CrossRefGoogle Scholar


Google Scholar


Google Scholar


Google Scholar


CrossRefzbMATHGoogle Scholar

12.

Google Scholar

13.

MathSciNetCrossRefzbMATHGoogle Scholar

14.

CrossRefzbMATHGoogle Scholar

15.

CrossRefzbMATHGoogle Scholar

16.

CrossRefzbMATHGoogle Scholar

17.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

About this article

CrossMark

Cite this article as: