2nd International Conference on Sustainable Materials Processing and Manufacturing

(SMPM 2019)

Effect of atmospheric aerosol on corrosion of metallic surfaces

Emetere M.E.*a,c, Okoro E.E. b, Akinlabi E.T. c and Sanni S.E. d

*aDepartment of Physics, Covenant University Canaan land, P.M.B 1023, Ota, Nigeria.
bDepartment of Petroleum Engineering, Covenant University Canaan land, P.M.B 1023, Ota, Nigeria
cDepartment of Mechanical Engineering Science, University of Johannesburg, South Africa.
dDepartment of Chemical Engineering, Covenant University Canaan land, P.M.B 1023, Ota, Nigeria

Abstract

This research investigates the impact of atmospheric aerosols to initiate atmospheric corrosion of metallic surfaces. Fifteen years’ primary (aerosol optical depth) dataset was obtained from the Multi-Angle Imaging Spectro-Radiometer (MISR). Aerosol loading were generated from the primary dataset. The component of the atmospheric aerosols was obtained from existing literature. A mathematical projection on the corrosion of metallic surfaces was done using spatial maps and secondary dataset. The yearly corrosion rate has doubled since 2004. Higher accuracy of the modified Faraday model can be achieved using ground dataset.

© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of SMPM 2019.

Keywords: aerosol, aerosol loading, corrosion, atmospheric corrosion

1. Introduction

The behavioral pattern of atmospheric aerosol particle in outdoor environments is largely known due to the knowledge of atmospheric forces that controls its transport and loading [1-3]. Aerosol loading concept describes the pattern which atmospheric aerosols are retained in the atmosphere for as long as their life time [4-5]. The classification of atmospheric aerosols can be via its sizes and composition. Atmospheric aerosols are considered as

*Corresponding Author
Email: emetere@yahoo.com
one of the main factor in atmospheric corrosion. This is because aerosols are composed of chemical compounds (e.g. SO2, CO, NO2, CO2) that initiates the corrosion processes in exposed metals (Figure 1).

Figure 1: Atmospheric corrosion that is initiated by atmospheric particles

There are research works on how meteorological variables and environmental pollutants affect corrosion of metallic surfaces [6-7]. The chemical reaction from pollutants – leading to corrosion is expressed in Figure 2. Most aerosols are deposited near shorelines due to dispersion patterns that is assisted with wind activities [2]. Hence, aside the humidity in shorelines, atmospheric aerosols play vital role in corrosion [8].

Figure 2: effects of environmental pollutants on corrosion

The primary data was obtained from Multi-angle Imaging Spectro-Radiometer (MISR). The secondary dataset was obtained using the West African regional scale dispersion model (WASDM) from the AOD dataset.
2. Materials and Methods

The research location is Dori in Burkina Faso. Dori is located on latitude 14.03°N and longitude 0.03°W. (Figure 1). The West African regional scale dispersion model (WASDM) was used to estimate the aerosol loading over a region. WASDM for aerosol loading is given as:

\[
\psi(\lambda) = a_1^2 \cos \left(\frac{n_1 \pi \tau(\lambda)}{2} x \right) \cos \left(\frac{n_1 \pi \tau(\lambda)}{2} y \right) + \cdots + a_n^2 \cos \left(\frac{n_n \pi \tau(\lambda)}{2} x \right) \cos \left(\frac{n_n \pi \tau(\lambda)}{2} y \right),
\]

where \(a \) is an atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, \(n \) is the tuning constant, \(\tau(\lambda) \) is the AOD of the area and \(\psi(\lambda) \) is the aerosol loading.

The digital voltage and Angstrom parameters of the study area can be obtained from equations (2) and (3) respectively.

\[
I(555) = \frac{I_o(555)}{R^2} \exp(m \cdot \tau(555)),
\]

where \(I_s \) is the solar radiance over the SPM detector at wavelength \(\lambda = 555 \) nm, \(I_o \) is the measure of solar radiation behind the atmosphere, \(R \) is the mean Earth-Sun distance in Astronomical Units, \(\tau \) is the total optical depth (in this case, the average of the each month is referred to as the total AOD, and \(m \) is the optical air mass).

\[
\alpha = -\frac{d \ln(\tau)}{d \ln(\lambda)},
\]

where \(\alpha \) is the Angstrom parameter, \(\tau \) is the aerosol optical depth, and \(\lambda \) is the wavelength. The radius of the particles for atmospheric aerosol and back-envelope was calculated using proposals by Kokhanovsky et al [9]. The analysis of equations (1) was done using the C++ codes.

The atmospheric corrosion rate of metals over the Dori was calculated using the Faraday equation [10]. It is given as:

\[
CR \left(\frac{\mu m}{yr} \right) = k \frac{i_{corr}}{d} EW
\]

where \(k \) is a conversion factor \((3.27 \times 10^6 \mu m \cdot g \cdot A^{-1} \cdot cm^{-1} \cdot yr^{-1})\), \(i_{corr} \) is the corrosion current density in \(\mu A/cm^2 \) (calculated from the measurements of \(R_p \)), \(EW \) is the equivalent weight, and \(d \) is the density of Alloy 22 \((8.69 g/cm^3)\).

Based on equation (4), the modification in the work is the inclusion of aerosol loading.

\[
CR \left(\frac{\mu m}{yr} \right) = k \frac{i_{corr}}{d} EW / \exp \left(\frac{EW \cdot \psi(\lambda)}{2.32} \right)
\]

In this study, the corrosion current density of iron was considered and it is given as \(3.2 \times 10^{-3} \mu A/cm^2\). The EW of iron is given as 27.9225.

3. Results and Discussion

The spatial distribution of the aerosol optical depth (AOD) was obtained from Multi-angle Imaging Spectro-Radiometer (MISR) is presented in Figure 3. It shows that the impact of the atmospheric corrosion on metallic surfaces would be at the center of the city. The aerosol loading that was derived from the West African
2. Materials and Methods

The research location is Dori in Burkina Faso. Dori is located on latitude 14.03°N and longitude 0.03°W. (Figure 1).

The West African regional scale dispersion model (WASDM) was used to estimate the aerosol loading over a region. WASDM for aerosol loading is given as:

\[a \text{ is atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, } n \text{ is the tuning constant, } \tau \text{ is the AOD of the area and } \text{ is the aerosol loading.} \]

The digital voltage and Angstrom parameters of the study area can be obtained from equations (2) and (3) respectively.

\[(2) \quad \text{where } I_s \text{ is the solar radiance over the SPM detector at wavelength } \lambda = 555 \text{ nm, } I_o \text{ is a measure of solar radiation behind the atmosphere, } R \text{ is the mean Earth-Sun distance in Astronomical Units, } \tau \text{ is the total optical depth (in this case, the average of the each month is referred to as the total AOD, and } m \text{ is the optical air mass.} \]

\[(3) \quad \text{where } \alpha \text{ is the Angstrom parameter, } \tau \text{ is the aerosol optical depth, and } \lambda \text{ is the wavelength.} \]

The radius of the particles for atmospheric aerosol and back-envelope was calculated using proposals by Kokhanovsky et al [9].

The analysis of equations (1) was done using the C++ codes.

The atmospheric corrosion rate of metals over the Dori was calculated using the Faraday equation [10]. It is given as:

\[(4) \quad \text{Where } k \text{ is a conversion factor (3.27 x 10^6 μm·g·A^-1·cm^-1·yr^-1), } i_{corr} \text{ is the corrosion current density in μA/cm² (calculated from the measurements of } R_p), EW \text{ is the equivalent weight, and } d \text{ is the density of Alloy 22 (8.69 g/cm³).} \]

Based on equation (4), the modification in the work is the inclusion of aerosol loading.

\[(5) \quad \text{In this study, the corrosion current density of iron was considered and it is given as 3.2 x 10^{-3} μA/cm². The EW of iron is given as 27.9225.} \]

3. Results and Discussion

The spatial distribution of the aerosol optical depth (AOD) was obtained from Multi-angle Imaging Spectro-Radiometer (MISR) is presented in Figure 3. It shows that the impact of the atmospheric corrosion on metallic surfaces would be at the center of the city. The aerosol loading that was derived from the West African regional scale dispersion model (WASDM) is presented in Figure 4. It can be shown that the wind activities over the region may shift the impact of atmospheric corrosion towards the north-east of the location. The angstrom exponent which describe the dependency of the AOD on wavelength is presented in Table 1. The radius of particle (back of envelope calculation) is presented in Table 2. Figure 5 presents the radius of particle (atmospheric aerosols). The sizes of aerosols determines the deposition rate of aerosols over an exposed metal surface. It can be inferred from the spatial distribution shown in Figure 5 that the sizes of aerosols follows same pattern as the AOD. The statistics of the AOD data presented in Table 3. The corrosion rate over Dori on iron metallic surfaces is presented in Figure 6.
Table 1: Angstrom parameter over Dori

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.144</td>
<td>0.169</td>
<td>0.250</td>
<td>0.216</td>
<td>0.085</td>
<td>0.181</td>
<td>0.240</td>
<td>0.225</td>
<td>0.232</td>
<td>0.300</td>
<td>0.229</td>
<td>0.244</td>
<td>0.309</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>0.128</td>
<td>0.193</td>
<td>0.173</td>
<td>0.113</td>
<td>0.144</td>
<td>0.194</td>
<td>0.204</td>
<td>0.258</td>
<td>0.053</td>
<td>0.251</td>
<td>0.206</td>
<td>0.100</td>
<td>0.316</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>0.075</td>
<td>0.135</td>
<td>0.073</td>
<td>0.061</td>
<td>0.024</td>
<td>0.037</td>
<td>0.097</td>
<td>0.089</td>
<td>0.140</td>
<td>0.026</td>
<td>0.066</td>
<td>0.032</td>
<td>0.19</td>
<td>0.149</td>
</tr>
<tr>
<td>Apr</td>
<td>0.075</td>
<td>0.057</td>
<td>0.071</td>
<td>0.047</td>
<td>0.025</td>
<td>0.055</td>
<td>0.074</td>
<td>0.023</td>
<td>0.033</td>
<td>0.105</td>
<td>0.029</td>
<td>0.098</td>
<td>0.040</td>
<td>0.059</td>
</tr>
<tr>
<td>May</td>
<td>0.184</td>
<td>0.078</td>
<td>0.082</td>
<td>0.077</td>
<td>0.118</td>
<td>0.073</td>
<td>0.070</td>
<td>0.042</td>
<td>0.144</td>
<td>0.107</td>
<td>0.037</td>
<td>0.067</td>
<td>0.037</td>
<td>0.120</td>
</tr>
<tr>
<td>Jun</td>
<td>0.133</td>
<td>0.110</td>
<td>0.122</td>
<td>0.060</td>
<td>0.121</td>
<td>0.040</td>
<td>0.014</td>
<td>0.158</td>
<td>0.105</td>
<td>0.101</td>
<td>0.073</td>
<td>0.055</td>
<td>0.125</td>
<td>0.115</td>
</tr>
<tr>
<td>Jul</td>
<td>0.159</td>
<td>0.123</td>
<td>0.063</td>
<td>0.064</td>
<td>0.095</td>
<td>0.113</td>
<td>0.091</td>
<td>0.143</td>
<td>0.143</td>
<td>0.114</td>
<td>0.081</td>
<td>0.088</td>
<td>0.085</td>
<td>0.140</td>
</tr>
<tr>
<td>Aug</td>
<td>0.132</td>
<td>0.150</td>
<td>0.214</td>
<td>0.162</td>
<td>0.093</td>
<td>0.236</td>
<td>0.093</td>
<td>0.172</td>
<td>0.168</td>
<td>0.136</td>
<td>0.102</td>
<td>0.128</td>
<td>0.114</td>
<td>0.193</td>
</tr>
<tr>
<td>Sep</td>
<td>0.161</td>
<td>0.098</td>
<td>0.134</td>
<td>0.165</td>
<td>0.165</td>
<td>0.138</td>
<td>0.113</td>
<td>0.092</td>
<td>0.085</td>
<td>0.181</td>
<td>0.173</td>
<td>0.165</td>
<td>0.168</td>
<td>0.148</td>
</tr>
<tr>
<td>Oct</td>
<td>0.107</td>
<td>0.174</td>
<td>0.145</td>
<td>0.182</td>
<td>0.181</td>
<td>0.138</td>
<td>0.249</td>
<td>0.120</td>
<td>0.213</td>
<td>0.188</td>
<td>0.131</td>
<td>0.099</td>
<td>0.306</td>
<td>0.222</td>
</tr>
<tr>
<td>Nov</td>
<td>0.115</td>
<td>0.204</td>
<td>0.245</td>
<td>0.174</td>
<td>0.186</td>
<td>0.168</td>
<td>0.215</td>
<td>0.229</td>
<td>0.132</td>
<td>0.173</td>
<td>0.224</td>
<td>0.273</td>
<td>0.188</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>0.239</td>
<td>0.124</td>
<td>0.285</td>
<td>0.211</td>
<td>0.180</td>
<td>0.287</td>
<td>0.120</td>
<td>0.080</td>
<td>0.213</td>
<td>0.278</td>
<td>0.205</td>
<td>0.181</td>
<td>0.172</td>
<td></td>
</tr>
</tbody>
</table>

Table 2A: Radius of particulate-back of envelope calculation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.466</td>
<td>0.446</td>
<td>0.387</td>
<td>0.411</td>
<td>0.517</td>
<td>0.436</td>
<td>0.393</td>
<td>0.404</td>
<td>0.399</td>
<td>0.354</td>
<td>0.401</td>
<td>0.391</td>
<td>0.349</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>0.480</td>
<td>0.428</td>
<td>0.442</td>
<td>0.492</td>
<td>0.466</td>
<td>0.427</td>
<td>0.420</td>
<td>0.381</td>
<td>0.546</td>
<td>0.386</td>
<td>0.418</td>
<td>0.503</td>
<td>0.344</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>0.526</td>
<td>0.474</td>
<td>0.527</td>
<td>0.539</td>
<td>0.576</td>
<td>0.562</td>
<td>0.506</td>
<td>0.513</td>
<td>0.469</td>
<td>0.573</td>
<td>0.534</td>
<td>0.567</td>
<td>0.580</td>
<td>0.462</td>
</tr>
<tr>
<td>Apr</td>
<td>0.526</td>
<td>0.543</td>
<td>0.530</td>
<td>0.553</td>
<td>0.574</td>
<td>0.545</td>
<td>0.527</td>
<td>0.577</td>
<td>0.566</td>
<td>0.499</td>
<td>0.632</td>
<td>0.505</td>
<td>0.560</td>
<td>0.541</td>
</tr>
<tr>
<td>May</td>
<td>0.435</td>
<td>0.523</td>
<td>0.520</td>
<td>0.524</td>
<td>0.488</td>
<td>0.527</td>
<td>0.530</td>
<td>0.557</td>
<td>0.466</td>
<td>0.497</td>
<td>0.562</td>
<td>0.533</td>
<td>0.562</td>
<td>0.486</td>
</tr>
<tr>
<td>Jun</td>
<td>0.475</td>
<td>0.495</td>
<td>0.484</td>
<td>0.540</td>
<td>0.485</td>
<td>0.559</td>
<td>0.586</td>
<td>0.454</td>
<td>0.499</td>
<td>0.503</td>
<td>0.528</td>
<td>0.545</td>
<td>0.482</td>
<td>0.491</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Jul</td>
<td>0.454</td>
<td>0.484</td>
<td>0.537</td>
<td>0.536</td>
<td>0.508</td>
<td>0.492</td>
<td>0.512</td>
<td>0.467</td>
<td>0.467</td>
<td>0.491</td>
<td>0.521</td>
<td>0.514</td>
<td>0.517</td>
<td>0.469</td>
</tr>
<tr>
<td>Aug</td>
<td>0.476</td>
<td>0.461</td>
<td>0.412</td>
<td>0.452</td>
<td>0.510</td>
<td>0.396</td>
<td>0.510</td>
<td>0.443</td>
<td>0.447</td>
<td>0.473</td>
<td>0.502</td>
<td>0.479</td>
<td>0.491</td>
<td>0.427</td>
</tr>
<tr>
<td>Sep</td>
<td>0.453</td>
<td>0.505</td>
<td>0.474</td>
<td>0.449</td>
<td>0.449</td>
<td>0.471</td>
<td>0.492</td>
<td>0.511</td>
<td>0.517</td>
<td>0.437</td>
<td>0.443</td>
<td>0.449</td>
<td>0.447</td>
<td>0.463</td>
</tr>
<tr>
<td>Oct</td>
<td>0.497</td>
<td>0.442</td>
<td>0.465</td>
<td>0.436</td>
<td>0.436</td>
<td>0.471</td>
<td>0.387</td>
<td>0.486</td>
<td>0.413</td>
<td>0.431</td>
<td>0.476</td>
<td>0.505</td>
<td>0.351</td>
<td>0.406</td>
</tr>
<tr>
<td>Nov</td>
<td>0.490</td>
<td>0.419</td>
<td>0.390</td>
<td>0.442</td>
<td>0.433</td>
<td>0.447</td>
<td>0.411</td>
<td>0.401</td>
<td>0.476</td>
<td>0.443</td>
<td>0.405</td>
<td>0.371</td>
<td>0.431</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>0.482</td>
<td>0.364</td>
<td>0.414</td>
<td>0.437</td>
<td>0.362</td>
<td>0.486</td>
<td>0.521</td>
<td>0.413</td>
<td></td>
<td>0.368</td>
<td>0.418</td>
<td>0.437</td>
<td>0.443</td>
<td></td>
</tr>
</tbody>
</table>

Table 3A: AOD statistics over Dori
It is observed that yearly corrosion rate has almost doubled since 2004. The highest corrosion rate is in 2006. Higher accuracy of the modified Faraday model can be achieved using ground dataset.

4. Conclusion
The yearly corrosion rate has almost doubled since 2004. Hence, atmospheric corrosion in regions of high aerosol loading is high. Higher accuracy of the modified Faraday model can be achieved using ground dataset.

Acknowledgements
The authors wish to appreciate their institutions. The authors acknowledge NASA for primary dataset.

References
[7]. Rosa Vera, Patricia Verdugo, Marco Orellana, Eduardo Muñoz, Corros. Sci. 52 (2010) 3803-3810
It is observed that yearly corrosion rate has almost doubled since 2004. The highest corrosion rate is in 2006. Higher accuracy of the modified Faraday model can be achieved using ground dataset.

Figure 6: Yearly corrosion rate between 2000 - 2013

Conclusion

The yearly corrosion rate has almost doubled since 2004. Hence, atmospheric corrosion in regions of high aerosol loading is high. Higher accuracy of the modified Faraday model can be achieved using ground dataset.

Acknowledgements

The authors wish to appreciate their institutions. The authors acknowledge NASA for primary dataset.

References

