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Abstract 

This research investigates the impact of atmospheric aerosols to initiate atmospheric corrosion of metallic surfaces. Fifteen years’ 
primary (aerosol optical depth) dataset was obtained from the Multi-Angle Imaging Spectro-Radiometer (MISR). Aerosol 
loading were generated from the primary dataset. The component of the atmospheric aerosols was obtained from existing 
literature. A mathematical projection on the corrosion of metallic surfaces was done using spatial maps and secondary dataset. 
The yearly corrosion rate has doubled since 2004. Higher accuracy of the modified Faraday model can be achieved using ground 
dataset. 
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1. Introduction 

   The behavioral pattern of atmospheric aerosol particle in outdoor environments is largely known due to the 
knowledge of atmospheric forces that controls its transport and loading [1-3]. Aerosol loading concept describes the 
pattern which atmospheric aerosols are retained in the atmosphere for as long as their life time [4-5]. The 
classification of atmospheric aerosols can be via its sizes and composition.  Atmospheric aerosols are considered as 
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one of the main factor in atmospheric corrosion. This is because aerosols are composed of chemical compounds (e.g. 
SO2, CO, NO2, CO2) that initiates the corrosion processes in exposed metals (Figure 1). 
 

 
 

Figure 1: Atmospheric corrosion that is initiated by atmospheric particles 
 
There are research works on how meteorological variables and environmental pollutants affect corrosion of metallic 
surfaces [6-7]. The chemical reaction from pollutants – leading to corrosion is expressed in Figure 2. Most aerosols 
are deposited near shorelines due to dispersion patterns that is assisted with wind activities [2]. Hence, aside the 
humidity in shorelines, atmospheric aerosols play vital role in corrosion [8].  
 

 
Figure 2: effects of environmental pollutants on corrosion 

 
 
The primary data was obtained from Multi-angle Imaging Spectro-Radiometer (MISR). The secondary dataset was 
obtained using the West African regional scale dispersion model (WASDM) from the AOD dataset. 
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Figure 2: effects of environmental pollutants on corrosion 

 
 
The primary data was obtained from Multi-angle Imaging Spectro-Radiometer (MISR). The secondary dataset was 
obtained using the West African regional scale dispersion model (WASDM) from the AOD dataset. 
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2. Materials and Methods 

 The research location is Dori in Burkina Faso. Dori is located on latitude 14.03°N and longitude 0.03°W. 
(Figure 1). The West African regional scale dispersion model (WASDM) was used to estimate the  aerosol loading 
over a region. WASDM for aerosol loading is given as: 

    (1) 

a is atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, n is the 
tunning constant,   is the AOD of the area and   is the aerosol loading.  

The digital voltage and Angstrom parameters of the study area can be obtained from equations (2) and (3) 
respectively.  

         (2) 

where I s the solar radiance over the SPM detector at wavelength λ = 555 nm, Io is the is a measure of solar 
radiation behind the atmosphere,  R is the mean Earth-Sun distance in Astronomical Units, τ is the total optical 
depth (in this case, the average of the each month is referred to as the total AOD, and m is the optical air mass.  

          (3) 

where α is the Angstrom parameter, τ is the aerosol optical depth, and λ is the wavelength. The radius of the 
particles for atmospheric aerosol and back-envelope was calculated using proposals by Kokhanovsky et al [9]. The 
analysis of equations (1) was done using the C++ codes. 
The atmospheric corrossion rate of metals over the Dori was calculated using the Faraday equation [10]. It is given 
as : 

          (4) 

Where  k  is  a  conversion  factor  (3.27  x  106 μm·g·A-1·cm-1·yr-1), icorr is the corrosion current density in μA/cm² 
(calculated from the measurements of Rp), EW is the equivalent weight, and d is the  density  of  Alloy  22  (8.69  
g/cm³). 
Based on equation (4), the modification in the work is the inclusion of aerosol loading.  

        (5) 

In this study, the corrosion current density of iron was considered and it is given as 3.2 x10-3 μA/cm². The EW of 
iron is given as 27.9225. 

  

3. Results and Discussion 

  The spatial distribution of the aerosol optical depth (AOD) was obtained from Multi-angle Imaging 
Spectro-Radiometer (MISR) is presented in Figure 3. It shows that the impact of the atmospheric corrosion on 
metallic surfaces would be at the center of the city. The aerosol loading that was derived from the West African 
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regional scale dispersion model (WASDM) is presented in Figure 4. It can be shown that the wind activities over the 
region may shift the impact of atmospheric corrosion towards the north-east of the location. The angstrom exponent 
which describe the dependency of the AOD on wavelength is presented in Table 1. The radius of particle (back of 
envelope calculation) is presented in Table 2. Figure 5 presents the radius of particle (atmospheric aerosols). The 
sizes of aerosols determines the deposition rate of aerosols over an exposed metal surface. It can be inferred from 
the saptial distribution shown in Figure 5 that the sizes of aerosols follows same pattern as the AOD. The statistics 
of the AOD data presented in Table 3. The corrosion rate over Dori on iron metallic surfaces is presented in Figure 
6. 
 
 
 

 
 
                         Figure 3: Spatial map of Dori (AOD) 

 
Figure 4: Spatial map of Dori (Aerosol loading) 
 



 M.E. Emetere  et al. / Procedia Manufacturing 35 (2019) 666–673 669 Author name / Procedia Manufacturing 00 (2016) 000–000 3 

 

2. Materials and Methods 

 The research location is Dori in Burkina Faso. Dori is located on latitude 14.03°N and longitude 0.03°W. 
(Figure 1). The West African regional scale dispersion model (WASDM) was used to estimate the  aerosol loading 
over a region. WASDM for aerosol loading is given as: 

    (1) 

a is atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, n is the 
tunning constant,   is the AOD of the area and   is the aerosol loading.  

The digital voltage and Angstrom parameters of the study area can be obtained from equations (2) and (3) 
respectively.  

         (2) 

where I s the solar radiance over the SPM detector at wavelength λ = 555 nm, Io is the is a measure of solar 
radiation behind the atmosphere,  R is the mean Earth-Sun distance in Astronomical Units, τ is the total optical 
depth (in this case, the average of the each month is referred to as the total AOD, and m is the optical air mass.  

          (3) 

where α is the Angstrom parameter, τ is the aerosol optical depth, and λ is the wavelength. The radius of the 
particles for atmospheric aerosol and back-envelope was calculated using proposals by Kokhanovsky et al [9]. The 
analysis of equations (1) was done using the C++ codes. 
The atmospheric corrossion rate of metals over the Dori was calculated using the Faraday equation [10]. It is given 
as : 

          (4) 

Where  k  is  a  conversion  factor  (3.27  x  106 μm·g·A-1·cm-1·yr-1), icorr is the corrosion current density in μA/cm² 
(calculated from the measurements of Rp), EW is the equivalent weight, and d is the  density  of  Alloy  22  (8.69  
g/cm³). 
Based on equation (4), the modification in the work is the inclusion of aerosol loading.  

        (5) 

In this study, the corrosion current density of iron was considered and it is given as 3.2 x10-3 μA/cm². The EW of 
iron is given as 27.9225. 

  

3. Results and Discussion 

  The spatial distribution of the aerosol optical depth (AOD) was obtained from Multi-angle Imaging 
Spectro-Radiometer (MISR) is presented in Figure 3. It shows that the impact of the atmospheric corrosion on 
metallic surfaces would be at the center of the city. The aerosol loading that was derived from the West African 

4 Author name / Procedia Manufacturing 00 (2016) 000–000 

 

regional scale dispersion model (WASDM) is presented in Figure 4. It can be shown that the wind activities over the 
region may shift the impact of atmospheric corrosion towards the north-east of the location. The angstrom exponent 
which describe the dependency of the AOD on wavelength is presented in Table 1. The radius of particle (back of 
envelope calculation) is presented in Table 2. Figure 5 presents the radius of particle (atmospheric aerosols). The 
sizes of aerosols determines the deposition rate of aerosols over an exposed metal surface. It can be inferred from 
the saptial distribution shown in Figure 5 that the sizes of aerosols follows same pattern as the AOD. The statistics 
of the AOD data presented in Table 3. The corrosion rate over Dori on iron metallic surfaces is presented in Figure 
6. 
 
 
 

 
 
                         Figure 3: Spatial map of Dori (AOD) 

 
Figure 4: Spatial map of Dori (Aerosol loading) 
 



670 M.E. Emetere  et al. / Procedia Manufacturing 35 (2019) 666–673
 Author name / Procedia Manufacturing 00 (2016) 000–000 5 

 

 
Figure 5: Spatial map of Dori (Aerosol size) 

 
 
 
Table 1: Angstrom parameter over Dori 

Month 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Jan   0.144 0.169 0.250 0.216 0.085 0.181 0.240 0.225 0.232 0.300 0.229 0.244 0.309 

Feb   0.128 0.193 0.173 0.113 0.144 0.194 0.204 0.258 0.053 0.251 0.206 0.100 0.316 

Mar 0.075 0.135 0.073 0.061 0.024 0.037 0.097 0.089 0.140 0.026 0.066 0.032 0.019 0.149 

Apr 0.075 0.057 0.071 0.047 0.025 0.055 0.074 0.023 0.033 0.105 -
0.029 0.098 0.040 0.059 

May 0.184 0.078 0.082 0.077 0.118 0.073 0.070 0.042 0.144 0.107 0.037 0.067 0.037 0.120 

Jun 0.133 0.110 0.122 0.060 0.121 0.040 0.014 0.158 0.105 0.101 0.073 0.055 0.125 0.115 

Jul 0.159 0.123 0.063 0.064 0.095 0.113 0.091 0.143 0.143 0.114 0.081 0.088 0.085 0.140 

Aug 0.132 0.150 0.214 0.162 0.093 0.236 0.093 0.172 0.168 0.136 0.102 0.128 0.114 0.193 

Sep 0.161 0.098 0.134 0.165 0.165 0.138 0.113 0.092 0.085 0.181 0.173 0.165 0.168 0.148 

Oct 0.107 0.174 0.145 0.182 0.181 0.138 0.249 0.120 0.213 0.188 0.131 0.099 0.306 0.222 

Nov 0.115 0.204 0.245 0.174 0.186 0.168 0.215 0.229 0.132 0.173 0.224 0.273 0.188   

Dec 0.239 0.124 0.285 0.211 0.180 0.287 0.120 0.080 0.213 0.278 0.205 0.181 0.172   

 
 
Table 2A: Radius of particulate-back of envelope calculation  

Month 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 
Jan 

 
0.466 0.446 0.387 0.411 0.517 0.436 0.393 0.404 0.399 0.354 0.401 0.391 0.349 

Feb 
 

0.480 0.428 0.442 0.492 0.466 0.427 0.420 0.381 0.546 0.386 0.418 0.503 0.344 
Mar 0.526 0.474 0.527 0.539 0.576 0.562 0.506 0.513 0.469 0.573 0.534 0.567 0.580 0.462 
Apr 0.526 0.543 0.530 0.553 0.574 0.545 0.527 0.577 0.566 0.499 0.632 0.505 0.560 0.541 
May 0.435 0.523 0.520 0.524 0.488 0.527 0.530 0.557 0.466 0.497 0.562 0.533 0.562 0.486 
Jun 0.475 0.495 0.484 0.540 0.485 0.559 0.586 0.454 0.499 0.503 0.528 0.545 0.482 0.491 
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Table 3A: AOD statistics over Dori 
Statistics 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Number of 
values 

10,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

12,00
0 

10,00
0 

Number of 
missing 
values 

2,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 2,000 

Minimum 0,222 0,275 0,165 0,206 0,256 0,163 0,207 0,219 0,196 0,173 0,150 0,178 0,145 0,136 

Maximum 0,624 0,700 0,670 0,745 0,862 0,790 0,917 0,867 0,810 0,849 1,203 0,817 0,885 0,689 

Mean 0,437 0,462 0,426 0,463 0,484 0,496 0,490 0,473 0,406 0,449 0,504 0,469 0,488 0,366 

First 
quartile 0,363 0,395 0,278 0,325 0,320 0,374 0,306 0,307 0,260 0,312 0,258 0,295 0,321 0,246 

Third 
quartile 0,509 0,519 0,613 0,674 0,553 0,668 0,596 0,586 0,475 0,523 0,645 0,614 0,682 0,468 

Standard 
error 0,041 0,034 0,051 0,057 0,058 0,059 0,058 0,060 0,050 0,057 0,087 0,058 0,068 0,053 

95% 
confidence 
interval 

0,092 0,074 0,112 0,124 0,127 0,130 0,127 0,131 0,109 0,124 0,191 0,128 0,150 0,120 

99% 
confidence 
interval 

0,132 0,104 0,158 0,176 0,180 0,184 0,179 0,185 0,154 0,176 0,269 0,181 0,212 0,173 

Variance 0,016 0,013 0,031 0,038 0,040 0,042 0,040 0,043 0,030 0,038 0,090 0,041 0,056 0,028 

Average 
deviation 0,098 0,084 0,146 0,179 0,148 0,168 0,151 0,167 0,121 0,151 0,231 0,169 0,188 0,129 

Standard 
deviation 0,128 0,116 0,176 0,196 0,200 0,205 0,200 0,207 0,172 0,196 0,300 0,201 0,236 0,168 

Coefficient 
of variation 0,294 0,252 0,415 0,423 0,414 0,414 0,408 0,437 0,424 0,436 0,595 0,430 0,484 0,460 

Skew 0,043 0,564 0,069 0,297 1,032 -
0,023 0,501 0,608 1,136 0,660 1,066 0,181 0,350 0,326 

Kurtosis -
0,447 0,558 -

1,435 
-

1,862 0,277 -
0,976 0,492 -

0,452 1,633 0,216 1,363 -
1,021 

-
0,908 0,216 

Kolmogoro
v-Smirnov 
stat 

0,124 0,169 0,167 0,284 0,191 0,148 0,141 0,129 0,186 0,174 0,136 0,134 0,142 0,159 

Critical K-S 
stat, 
alpha=,10 

0,369 0,338 0,338 0,338 0,338 0,338 0,338 0,338 0,338 0,338 0,338 0,338 0,338 0,369 

Critical K-S 
stat, 
alpha=,05 

0,409 0,375 0,375 0,375 0,375 0,375 0,375 0,375 0,375 0,375 0,375 0,375 0,375 0,409 

Critical K-S 
stat, 
alpha=,01 

0,489 0,449 0,449 0,449 0,449 0,449 0,449 0,449 0,449 0,449 0,449 0,449 0,449 0,489 

Jul 0.454 0.484 0.537 0.536 0.508 0.492 0.512 0.467 0.467 0.491 0.521 0.514 0.517 0.469 
Aug 0.476 0.461 0.412 0.452 0.510 0.396 0.510 0.443 0.447 0.473 0.502 0.479 0.491 0.427 
Sep 0.453 0.505 0.474 0.449 0.449 0.471 0.492 0.511 0.517 0.437 0.443 0.449 0.447 0.463 
Oct 0.497 0.442 0.465 0.436 0.436 0.471 0.387 0.486 0.413 0.431 0.476 0.505 0.351 0.406 
Nov 0.490 0.419 0.390 0.442 0.433 0.447 0.411 0.401 0.476 0.443 0.405 0.371 0.431 

 

Dec 
 

0.482 0.364 0.414 0.437 0.362 0.486 0.521 0.413 0.368 0.418 0.437 0.443 
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It is observed that yearly corrosion rate has almost doubled since 2004. The highest corrosion rate is in 2006. Higher 
accuracy of the modified Faraday model can be achieved using ground dataset.  
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