
135

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-4666-2208-1.ch007

Validating the INTERPRETOR
Software Architecture for

the Interpretation of Large
and Noisy Data Sets

ABSTRACT

In this chapter, the authors validate INTERPRETOR software architecture as a dataflow model of com-
putation for filtering, abstracting, and interpreting large and noisy datasets with two detailed empirical
studies from the authors’ former research endeavours. Also discussed are five further recent and distinct
systems that can be tailored or adapted to use the software architecture. The detailed case studies pre-
sented are from two disparate domains that include intensive care unit data and building sensor data.
By performing pattern mining on five further systems in the way the authors have suggested herein, they
argue that INTERPRETOR software architecture has been validated.

INTRODUCTION

In many domains there is a need to interpret high
frequency noisy data. Interpretation of such data
may typically involve pre-processing of the data
to remove noise. Rather than reasoning on a point-
to-point basis which is computationally expensive,
this filtered data would be processed to derive
abstractions which would be interpreted and the

results reported. Such a common approach lends
itself to the development of a software architecture.

Software architectures involve the descrip-
tion of elements from which systems are built,
interactions among those elements, patterns that
guide their composition, and constraints on these
patterns. In general, a particular system is defined
in terms of a collection of components and inter-
actions among these components. Such a system

Apkar Salatian
American University of Nigeria, Nigeria

136

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

may in turn be used as a (composite) element in a
larger system design. Software architectures can
act as a model of computation for data flows in a
system. Indeed, a good software architecture will
involve reuse of established engineering knowl-
edge (Shaw & Garlan, 1996).

In this paper we will describe and validate the
INTERPRETOR software architecture for inter-
preting large and noisy data sets. INTEREPRE-
TOR was inspired by the software architecture
of ASSOCIATE (Salatian & Oriogun, 2011) for
interpreting Intensive Care Unit monitor data and
ABSTRACTOR (Salatian, 2010) for interpreting
building sensor data - both systems have common
features which facilitates a generic architecture.
INTERPRETOR consists of 3 consecutive
processes: Filter which takes the original data
and removes noise; Abstraction, which derives
abstractions from the filtered data; and Interpre-
tation, which takes the abstractions and provides
an interpretation of the original data.

THE INTERPRETOR SOFTWARE
ARCHITECTURE

Figure 1 shows the Context Diagram of the INTER-
PRETOR system. The INTERPRETOR system
takes high frequency noisy data and other relevant
data to assist in interpretation from various input
sources and presents to various output sources an
interpretation of the original data.

Figure 2 shows the data flow in the INTER-
PRETOR system of Figure 1. Data is initially
filtered to get rid of noise; rather than reasoning
on a point to point basis, the resulting data stream
is then converted by a second process into abstrac-
tions – this is a form of data compression. A third

process to provide an assessment of the original
data interprets these abstractions.

We, therefore, derive the overall software ar-
chitecture of the INTERPRETOR System in form
of a Structure Chart as shown in Figure 3.

It can be seen that INTEREPRETOR is a data
flow architecture and model of computation. The
architecture is decomposed into three processes,
which can be changed or replaced independently
of the others - this makes INTERPRETOR a
loosely coupled system. Indeed, each process of
the INTERPRETOR performs one task or achieves
a single objective - this makes the INTERPRE-
TOR a highly cohesive system. INTERPRETOR
can also be considered a pipe and filter architec-
tural style because it provides a structure for
systems that process a stream of data.

We hope to extend our INTERPRETOR design
architecture, such that we have a generic design
pattern for voluminous and high frequency noisy
data, whereby, the data is passed through three
consecutive processes: Filter Data which takes the
original data and removes outliers, inconsistencies
or noise; Abstraction which takes the filtered data
and abstracts features from the filtered data; and
Interpretation which uses the abstractions and
generates an interpretation of the original data.

APPLICATIONS OF THE
INTERPRETOR SOFTWARE
ARCHITECTURE

We will demonstrate the application of the IN-
TERPRETOR software architecture to two case
studies from the author’s research endeavours:
interpreting Intensive Care Unit (ICU) Monitor
Data and interpreting building monitor data.

Figure 1. Context diagram of the INTERPRETOR system

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/chapter/validating-the-interpretor-software-architecture-

for-the-interpretation-of-large-and-noisy-data-sets/79662

This title is available in InfoSci-Books, InfoSci-Multimedia Technologies,

Communications, Social Science, and Healthcare, InfoSci-Media and

Communications. Recommend this product to your librarian:

www.igi-global.com/forms/refer-database-to-librarian.aspx?id=79662

Related Content

Understanding Cloud Computing
Qusay F. Hassan, Alaa M. Riad and Ahmed E. Hassan (2012). Software Reuse in the Emerging Cloud

Computing Era (pp. 204-227).

www.igi-global.com/chapter/understanding-cloud-computing/65173

Enabling Intelligence in Web-Based Collaborative Knowledge Management System
Krissada Maleewong, Chutiporn Anutariya and Vilas Wuwongse (2011). International Journal of Systems

and Service-Oriented Engineering (pp. 40-59).

www.igi-global.com/article/enabling-intelligence-web-based-collaborative/55061

Formal Modeling and Verification of Security Property in Handel C Program
Yujian Fu, Jeffery Kulick, Lok K. Yan and Steven Drager (2013). International Journal of Secure Software

Engineering (pp. 50-65).

www.igi-global.com/article/formal-modeling-verification-security-property/69393

Adaptive Replacement Algorithm Templates and EELRU
Yannis Smaragdakis and Scott Kaplan (2010). Advanced Operating Systems and Kernel Applications:

Techniques and Technologies (pp. 263-275).

www.igi-global.com/chapter/adaptive-replacement-algorithm-templates-eelru/37953

http://www.igi-global.com/chapter/validating-the-interpretor-software-architecture-for-the-interpretation-of-large-and-noisy-data-sets/79662
http://www.igi-global.com/chapter/validating-the-interpretor-software-architecture-for-the-interpretation-of-large-and-noisy-data-sets/79662
http://www.igi-global.com/forms/refer-database-to-librarian.aspx?id=79662
http://www.igi-global.com/chapter/understanding-cloud-computing/65173
http://www.igi-global.com/article/enabling-intelligence-web-based-collaborative/55061
http://www.igi-global.com/article/formal-modeling-verification-security-property/69393
http://www.igi-global.com/chapter/adaptive-replacement-algorithm-templates-eelru/37953

