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ABSTRACT 

Over the years, scientific computing has contributed immensely to computational 

mathematics. Mathematica computer programming codes is known to provide

computation and quick results. This research article is specifically built to generate 

Mathematica computer programming codes of exponentially fitted concurrent Milne’s 

device (EFCMD) for solving special problems. Exponentially fitted concurrent Miln

device is formulated via collocation/interpolation with power series as the approximate 

solution. Analyzing the EFCMD will produce the main local truncation error (MLTE) 

after showing the order, 

results were shown to demonstrate the functioning of Mathematica programming codes 

of EFCMD for resolving special problems at some selected bounds of convergence. The 

finished results were obtained with the assistance of Mathematica 9 kernel. Numerical 

results display that EFCMD do better than existing methods in terms of the maximum 

errors in the least studied bound of convergence as a result of varying/designing a 

suitable pace size, ascertain bound of convergence and error control.
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1. INTRODUCTION 

This study views special problems having a particular feature of the approximative solution been 

acknowledged in advance. Such particular problems are of the form D’ Ambrosio et al. (2011); 

Gatuschi (2013); Lambert (1973) and Ngwane &Jator (2013). 

y�� = f�x, y�, y�x	� = y	, y��x	� = y	�  for  xϵ�x	, X    (1) 

Where f: R × R� → R�, k is the proportion of the physical organization.D 

Equation (1) is known to satisfy both theorems stated below Bond (2009) and Ken et al. 

(2011) arises from areas of science discipline and applied sciences such as Newtonian 

mechanics, celestial bodies/universe, quanta theory, control theory, electrical circuit and biology. 

Scientific computing of distinct technique shave been established by well-known exponentially 

fitted method with recognized frequency and most of the important results exist in literatures. 

(SeeAnake et al. (2012); Anake&Adoghe(2013);Edeki et al. (2015); Eke et al. (2017); Eke et al. 

(2018); Gatuschi (2013); Lambert (1973); Owoloko et al. (2015)). Bookmen have proposed and 

execute equation (1) to produce the sought-after result. This includes; Jikantoro et al. (2015) 

computed zero-dissipative trigonometrically fitted hybrid method for numerical solution of 

oscillatory problems applying MAPLE 16. Ngwane &Jator (2013), Ngwane &Jator (2013) and 

Ngwane &Jator (2014) implemented all computations using Matlab programming language. 

Once more,D’ Ambrosio et al. (2011), D’ Ambrosio et al. (2012),Jator (2010),Majid et al. (2012) 

deploy C language and executed on DYNIX/ptx operating system to solve directly general third 

order ODEs using two-point four step block method. Ngwane &Jator (2015) and Ngwane &Jator 

(2017) accomplished numerical application employing a composed encrypt in Mathematica 10. 0 

to show the efficiency and accuracy of the techniques. Nevertheless, Adejumo et al. (2014) and 

Calvo et al. (2015) implemented all numerical computations on a PC using PYTHON 

programming language. Waeleh& Majid (2016) executed A 4-point block method for solving 

higher order ODEs employing Matlab ode45 and ode45: Runge-Kutta-Dormand-Prince ODE 

solver. Waeleh (2011) carried-out a new algorithm for solving higher order IVPs of ODEs 

utilizing C language. Several gaps were observed from the authors listed above. This includes; 

using a fixed step size and inability to decide on a suitable step size, lack of bound of 

convergence to ensure convergence of the method and lastly, lengthy computation without 

controlling the error. 

From the gaps named earlier, this study in addition is built to design a suitable step size and 

varying the step size, determine the bounds of convergence to check convergence and control 

error. This is primarily the objective of developing a Mathematica programming code of 

exponentially fitted concurrent Milne’s device for solving special problems. (SeeAscher 
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&Petzoid (1998);Dormand (1996);Faires& Burden (2012); Lambert (1973);Lambert 

(1991);Oghonyon et al. (2015), Oghonyon et al. (2016), Oghonyon et al. (2016),Oghonyon et al. 

(2018), Oghonyon et al. (2018) and Oghonyon et al. (2018). 

Definition: we considerd − concurrent, b − stage method, when r refers to concurrent size and h$  is step size while concurrent size in time,dh$. Considert = 0,1,2, … formconcurrent amount 

andn = rb, then d − concurrent, b − stage method is composed as next universal category: 

Y*+ = ∑ A.Y+/. + h$ ∑ B.F+/.3.4	3.45 , (2) 

where  

Y+ = �g675, … , g678, … , g679:*, 

F+ = ;f6̅75, … , f6̅78, … , f6̅79=:*
 A. and B. are k × k constants rectangular array of quantities. (SeeIbrahim et al. (2007); 

Oghonyon et al. (2017)). 

Thus, setting off from over explanatory statement, a concurrentsystem has numerical gains 

for each practical application program, the end result is evaluated to a greater magnitude at the 

same time interval. The amount of stages relies on the construction of the concurrent system. 

Hence, using these techniques can permit more immediate and faster results of the problem 

which can be treated to give the sought-after accuracy. Please refer toMajid & Suleiman (2007), 

Majid & Suleiman (2008Oghonyon et al. (2016), Oghonyon et al. (2016), Oghonyon et al. 

(2018), Oghonyon et al. (2018) and Oghonyon et al. (2018) for more information. 

Theorem (Weierstrass Approximation Theorem) 

Let f: R → R be continuous and 2π −periodic. Then for each ε > 0, there exists a trigonometric 

polynomial P�x� = ∑ cB�B4/6 e8BC such that for all x, |f�x� − P�x�| < F.  Tantamountly, as for any 

such f, there must exist a successive polynomial such that P6 → f in a uniform manner on R. 

(Bond, (2009)). 

Theorem (Existence and Uniqueness) 

Let f�x, y� exist and remain continuous for all stages�x, y� in the neighborhoodDconstituted by a ≤ x ≤ b, −∞ < J < ∞, where a and b are finite real constants and let there subsists a constant 

quantityL such that for any x ∈ �a, b and any two numbers y and y∗, |f�x, y� − f�x, y∗�| ≤L|y − y∗|.  
We acknowledge this prediction as theLipschitz consideration, since there is precisely a 

single function y�x� having the following four properties:  

• y�x� is continuous and differentiable for x ∈ �a, b, 
• y���x� = f�x, y�x��, Q ∈ �a, b,R ∈ ST�U, V, 
• y�x	� = y	, 

• y��x	� = y	� . (Look Ken et al (2011)). 

The subject remainder is as follows: in Subsection 2, we focus on the Mathematica Computer 

Programming Codes of Exponentially Fitted Method. In Subsection 3, we provide Mathematica 

Computer Programming Codes of the studied methods with the Numerical Results and 
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Discussion. Last be not least, Subsection 4 gives similar Conclusion as cited in Akinfenwa et al. 

(2013), Oghonyon et al. (2016), Oghonyon et al. (2016), Oghonyon et al. (2018), Oghonyon et 

al. (2018) and Oghonyon et al. (2018). 

MATERIALS AND METHODS 

Under this subsection, the objective to be reached is to devise Mathematica computer 

programming codes of exponentially fitted concurrent Milne’s device. This consist of a 

unification,j − stepconcurrent predictor system and  j − 1 − stepconcurrent corrector system 

ofsimilar order. Uniting the representation as 

y�x� = X α8
�*

84	 y∗6/8 
+hT ∑ β8�u�f6/8�*84	 ,     (3) 

y�x� = X α8
�*

84	 y∗6/8 
+hT ∑ β8∗�u�f678�845 .    (4) 

Equation (3) and (4) form the concurrent predictor system and concurrent corrector system of 

the exponentially fitted concurrent Milne’s device with u = wh\,  β8�u�, i = 0, 1, 2  containing 

characteristics that depends on varying the step size and frequency. Noting that y67� is the 

approximants to the exact solutionsy�x678�, i.e.,y�x678� ≈ y678, and f^x678, y∗678_ ≈f678wherei = 0, 1, 2. From equations (3) and (4), exponentially trigonometrically fitted method is 

used together with interpolation/collocation method to approximate the precise solution y�x� on 

distinct time intervals of �x6/8, x6by interpolating subroutine of the form (6) 

y�x� = ∑ a\8 `C/Cab c8�84	 + ∑ def8!584	 .     (5) 

Revising (5) and expanding will give rise to the exponentially fitted method presented in 

Mathematica programming codes of the form 

y�x/ = a�0 + a�1 �C/C�6�b + a�2 �C/C�6�bh
T + a�3 �C/C�6�bj

k + a�4 m1 + n�C/C�6�b + nh�C/C�6�Tbh
T +

nj�C/C�6�obj
k + np�C/C�6�Tqbp

qc,    (6) 

where a	, a5, aT, akand aqfor k=4 are unchanging parameters necessary to ensurea particular 
fashion. Presuming the condition that equation (6) matches the precise solution at about some 

pick outtime intervalx6/5, x6 to yield approximation as 

y�x6/8� ≈ y6/8,      y�x6� ≈ y6.     (7) 

Demanding the interpolation function (7) meets equation (1) at stages where x678, i =0, 1, 2,3 willproduce approximation of the following  

y�′�x6/8� ≈ f6/8, y\ �′�x678� ≈ f678, i = 0, 1, 2.     (8) 
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Joining the approximations of (7) and (8) will lead to five-fold systems of equation which 

gives riseto Ax = b. Solving the systems of equation will produce the exponential system of 

equations constituted as the Mathematica kernel programming codes 

matrixa =
tu
uuv
uuu
w x1,0,0,0,1y,

z1, −1,1, −1,1 − w + wT2 − wk6 + wq24 | ,
x0,0,2,0, wTy,

z0,0,2, −6, wT − wk + wq2 | ,
, x0,0,2, −12, wT − 2wk + 2wqy }u

uu~
uuu
�

; 

b = xy�n, y�n − 1, f�n, f�n − 1, f�n − 2y; xc, e, l, q, uy = Inverse�matrixa. b (10) 

matrixa =

tu
uu
uv
uu
uu
w x1,0,0,01y,

z1, −1,1, −1,1 − w + wT2 − wk6 + wq24 | ,
z0,0,2, 6, wT + wk + wq2 | ,

x0,0,2, 12, wT + 2wk + 2wqy,
z0,0,2, 18, wT + 3wk + 9wq2 | ,

}u
uu
u~
uu
uu
�

; 

b = �y�n, y�n − 1, f�n + 1, f�n + 2,f�n + 3 � ; 
xc, e, l, q, ty = Inverse�matrixa. b,     (11) 

to geta8, i = 0, 1, 2, 3, 4,5 and substituting value of a8′s into (6) will result in the continuous 

exponentially fitted concurrent Milne’s device as  

y�x/ = `1 + �C/C�6�b c y�n + `− �C/C�6�b c y�n − 1 + �− 5np + ��/5Tn�7^�ep_h �
�5Tnp� �C/C�6��b +

^/onh7onp_�5Tnp� �C/C�6�hbh + ^�/Tnj�7�knp_�5Tnp� �C/C�6�jbj + ` 5npc �C/C�6�pbp �  f�nhT + �` Tnpc +
`�Tqn�7�knp�c�5Tnp� �C/C�6�b + ` 5�nh�c �C/C�6�hbh + ^�qnj/qnp_�5Tnp� �C/C�6�jbj − ` Tnpc �C/C�6�pbp �  f�n −
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1hT + �`/5npc + m/5Tn/eph ��5Tnp� �C/C�6�b − ` 5Tnhc �C/C�6�hb + ^/Tnj7knp_�5Tnp� �C/C�6�jbj +
` 5nc �C/C�6�pbp �  f�n − 2hT,  (12) 

y�x = `1 + �C/C�6�b c y�n + `− �C/C�6�b* c y�n − 1 + �`− 5npc − m5Tn/p�eph ��5Tnp� �C/C�6�b +
^/onh/5�n_�5Tn� �C/C�6�hbh − ^Tnj7�np_�5Tnp� �C/C�6�jbj + ` 5npc �C/C�6�pbp �  f�n + 1hT + �` Tnpc +

^/Tqn7T�np_�5Tnp� �C/C�6�b − ^/5Tnh75�np_�5Tnp� �C/C�6�b − `^/qnj_/^�np_c5Tnp �C/C�6�jbj −
` Tnpc �C/C�6�pbp �  f�n + 2hT + �`/5npc − ^5Tn/5�np_�5T	n�� �C/C�6�b − ^onh/onp_�5Tnp� �C/C�6�hbh −

`^Tnj_7�kn�c�5Tn� �C/C�6�jbj + ` 5npc �C/C�6�pbp �  f�n + 3hT. (13) 

Evaluating the continuous exponentially fitted concurrent Milne’s device of equation (12) 

and (13) at pick outstages of x678, i = 1, 2, 3 will bring forth exponentially fitted concurrent 

Milne’s device  

y�x/ = y�n + y�n − 1 + hT�β	�w, x�f�n + β5�w, x�f�n − 1 + βT�w, x�f�n − 2�,   (14) 

y�x/ = y�n + y�n − 1 + hT�β	�w, x�f�n + 1 + β5�w, x�f�n + 2 + βT�w, x�f�n + 3�,  (15) 

where w is the frequency, β	�w, x�, β5�w, x�andβT�w, x�are fixed constants.See Abell & 
Braselton (2009);Faires& Burden (2012); Ngwane &Jator (2013); Ngwane &Jator (2013); 

Ngwane &Jator (2014);Ngwane &Jator (2015); Ngwane &Jator (2017); Oghonyon et al. (2016), 

Oghonyon et al. (2016), Oghonyon et al. (2018), Oghonyon et al. (2018) and Oghonyon et al. 

(2018)for more details.  

Devising Bounds of Convergence for Exponentially Fitted Concurrent Milne’s 

Device:  

Set in motion the Mathematica computer programming codes of exponentially fitted concurrent 

Milne’s device, j − stepconcurrent predictor system and j − 1 − stepconcurrentcorrector system 

is treated ascon current predictor-corrector joint pair owning ilk range. Combining Asher 

&Petzoid (1998),Dormand (1996),Faires& Burden (2012), Lambert (1973), Lambert 

(1991),Oghonyon et al. (2016), Oghonyon et al. (2016), Oghonyon et al. (2018), Oghonyon et al. 

(2018) and Oghonyon et al. (2018), exponentially fitted concurrent Milne’s device indicates that 

it is workable to find the approximate of the main local truncation error of the concurrent 

predictor-corrector joint pair in absence of approximating higher differential coefficients, y�x�. 

Presume that p�� = p\\, where p� and p��sets up range of concurrent predictor system and concurrent 

corrector system. Now, method of rangep�� , enquiry ofj − stepconcurrent predictor system will 
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generate main local truncation errors G�����7��5 h\���7�g��^���7�_�x6� = g��x675� − g��675;���= − `�T7kon75Tnh/5�nj�Tnj c + O^h���7o_ 

G�����7��T h���7�g��^���7�_�x6� = g��x67T� − g��67T;���= + `TT� + 5�¡p − T¡j − T¡h − qk¡c + O^h���7o_,(16) 

G�����7��k h���7�g��^���7�_�Q6� = g��x67k� − g��67k;��j= + `TT�Tq + �	¡p − knj − �T¡h − �Tnc + O^h���7o_. 

Similar investigation ofj − 1 − stepconcurrentcorrector gives rise to main local truncation 

errors 

G**�**7��5 h�**7�g\��**7���x6� = g\�x675� − g\\675�¢�\\\\ + �22 − 16£ − 85wk + 4wq + 28£�12wk � + O^h�**7o_, 
G**�**7��T h�**7�g\��**7���x6� = g\�x67T� − g\\67T�¢h\\\\ + �−360 + 176w + 48wT + 32wk − 157wq12wq � 

+O^h�**7o_        (17) 

G**�**7��k h�**7�g\��**7���x6� = g\�Q67k� − g\\675�¢j\\\\ + `− 5��5T − 5o	¡p + TT¡j + �nh + �nc + O^h�**7o_, 

G�����7��5 , G�����7��T , G�����7��k , G**�**7��5 , G**�**7��T
 and G**�**7��k

exist asexistent as separate entity of step-size h\ and y�x�behave as precise solution to differential coefficient fulfiliinginitial preconditiong\�x6� ≈ g\6. 

SeeAsher &Petzoid (1998),Dormand (1996),Faires& Burden (2012), Lambert (1973), Lambert 

(1991),Oghonyon et al. (2015), Oghonyon et al. (2016), Oghonyon et al. (2016), Oghonyon et al. 

(2018), Oghonyon et al. (2018) and Oghonyon et al. (2018)for further details. 

Moving ahead, precondition for small valuates, h\reached g�� ����x6� ≈ g\\����x6�, 

and application of Mathematica programming codes of exponentially fitted concurrent 

Milne’s device trusts instantly on this precondition stated above. 

Reducing further the main local truncation errors of (16) and (17) above, in a similar fashion, 

throwing off terms of degree O^h�**7o_, it turns easily to attain the mathematical calculation of 

main local truncation errors of exponentially fitted block Milne’s device as  

G**�**7��5 h�**7�g��**7���x6� ≈ �5	�T� ¥g��675;�̅�= − g\\675�¢*� ¦ < ε\5,  
G**�**7��T h�**7�g��**7���Q6� ≈ q�5��� ¥g��67T;�̅h= − g\\67T�¢*h ¦ < ε\T, (18) 

G**�**7��k h�**7�g��**7���x6� ≈ k����� ¥g��67k;�̅j= − g\\67k�¢*j ¦ < ε\k.  

Mentioning the arguments thatg��675;��̅= ≠ g\\675�¢*�
,g��67T;�̅h= ≠ g\\67T�¢*h

  and g��67k;�j̅= ≠ g\\67k�¢*j
known as 

predicted and corrected approximations brought forth by the exponentially fitted concurrent 

Milne’s device of range p\, G*�*7��5 h�*7�g��*7���x6�, G*�*7��T h�*7�g��*7���x6� and G*�*7��k h�*7�g��*7���x6� 
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are separately called the main local truncation errors. ε\5, ε\T and ε\k are bounds of convergence of 

exponentially fitted concurrent Milne’s device.  

Still, approximates of main local truncation error (18) applied, decide whether to accept final 

outcomes of iteration or settle to admit the answers of the present pace or redo iteration with 

smaller changing pace size. Process is veritably based on test as seen in (18). CheckAsher 

&Petzoid (1998),Dormand (1996),Faires& Burden (2012), Lambert (1973), Lambert (1991), 

Oghonyon et al. (2015), Oghonyon et al. (2016), Oghonyon et al. (2016), Oghonyon et al. 

(2018), Oghonyon et al. (2018) and Oghonyon et al. (2018)for more details. The main local 

truncation errors (18) is the bounds of convergence of the exponentially fitted concurrent 

Milne’s, (estimate) for adjusting to convergence. 

2. RESULTS AND DISCUSSION 

This section presents the Mathematica computer programming codes of the mathematical results 

implemented using the exponentially fitted concurrent Milne’s device. The finished results 

provided is attained with the support of Mathematica 9 kernel to demonstrate effectiveness and 

preciseness. See attached for Table 1.  

Two problems were studied and solve employing EFCMD at various bound of 

convergence;10/k,10/�,10/�, 10/�,10/� ,10/55 and 10/5k. SeeAnake et al. (2014),Jator 

(2010), Ngwane &Jator (2014), Ngwane &Jator (2015), Ngwane &Jator (2017) and Odekunle et 

al. (2014) for more specifics. A Mathematica computer programming codes based on 

exponentially fitted block Milne’s device is spelt out using Mathematica 9 kernel. This 

Mathematica kernel programming is carried out in a block by block mode as prescribed by the 

exponentially fitted block Milne’s device. See appendix for EFCMD1 and EFCMD2 

Problem 1:  Consider the initial value ODE y�� + ωy = 0, y�0� = 1, y��0�2,  ω = 2. 

Exact Solution:y�x� = cos2x + sin2x.   

Problem 2: Consider the nonlinear Duffing equation:  y�� + y + yk = Bcos�Ωx�, y�0� = C	,  y��0� = 0. 

ExactSolution: y�x� = C5 cos�Ωx� + CT cos�3Ωx� + Ck cos�5Ωx� + Cqcos �7Ωx�, 

where Ω = 1.01, B = 2 × 10/k,  C	 = 0.200426728069,S5 = 0.200179477536, ST = 0.246946143 × 10/k, Sk = 0.304016 × 10/oand Sq = 0.374 × 10/�. Choose £ =1.01. 
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Table 1. [Table 1 establishesthe mathematical final answers of problem 1 and 2 employing EFCMD 

comparable to existence method]. Language stated on table 1 is delivered beneath. 

Temd Maxerrs  B«¬ 

A(α)-S 1.32000e − 05 10/� 

EFCMD 9.88520e − 06 10/� 

EFCMD 9.88538e − 06  

EFCMD 1.00659e − 05 

A(α)-S 1.08990e − 08 10/� 

EFCMD 4.89817e − 09 10/� 

EFCMD 4.93823e − 09  

EFCMD 4.97847e − 09 

A(α)-S 4.32380e − 11 10/55 

EFCMD 8.16480e − 12 10/55 

EFCMD 1.68101e − 11  

EFCMD 4.32290e − 11 

FSBP-BCM 3.397282e − 13 10/5k 

FSBP-BCM 4.541350e − 13   

FSBP-BCM 5.193623e − 13   

FSBP-BCM 5.194734e − 13 

EFCMD 8.282260e − 14 10/5k 

EFCMD 8.126830e − 14  

EFCMD 9.592330e − 14 

TSDM 3.30000e − 03 10/k 

BHTFM 1.30000e − 03   

EFCMD 6.49239e − 04 10/k 

EFCMD 6.49369e − 04 

EFCMD 6.62265e − 04 
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BHT 7.70000e − 05 10/� 

BHTFM 5.60000e − 05   

BHTRKKNM 7.52000e − 05 

HLMMs 1.18000e − 05 

TSDM 6.40000e − 05   

EFCMD 6.50386e − 06 10/� 

EFCMD 650516e − 06 

EFCMD 6.63459e − 06 

BHTFM 1.40000e − 07 10/� 

BHTRKKNM 1.34000e − 07 

HLMMs 4.98000e − 07 

TSDM  1.00000e − 07   

EFCMD 6.50398e − 08 10/� 

EFCMD 6.50528e − 08 

EFCMD 6.63471e − 08 

BHTRKKNM 8.11000e − 09 10/� 

EFCMD 6.50398e − 10 10/� 

EFCMD 6.50527e − 10 

EFCMD 6.63470e − 10 

EFCMD 6.50402e − 12 10/55 

EFCMD 6.50538e − 12 

EFCMD 6.63494e − 12 

EFCMD 6.48648e − 14 10/5k 

EFCMD 6.48925e − 14 

EFCMD 6.64746e − 14 
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EFCMD: errors in EFCMD (Mathematica computer programming codes of exponentially fitted 

concurrent Milne’s device) for tested problems 1 and 2. 

Temd: technique employed. 

Maxerrs: magnitude of the maximum errors in EFCMD. B®¯°: bound of convergence. 

A(α�-S: errors in A(α�-S (an A(α�-stable method for solving initial value problems of Ordinary 

differential equations) for tested 

Problem 1. (SeeAnake et al., 2014). 

BHT: errors in BHT (block hybrid trigonometrically fitted of δ = 10/o) for Tested problem 2. 

(SeeNgwane &Jator, 2015). 

BHTFM: errors in BHTFM (block hybrid trigonometrically fitted method) for numerical tested problem 

2. (SeeNgwane & Jator, 2013). 

BHTRKNM: errors in BHTRKNM (block hybrid trigonometrically fitted Runge-Kutta-Nystrom method 

of δ = 10/o) for tested  

Problem 2. (SeeNgwane &Jator, 2017)). FSBP-BCM errors in FSBP-BCM (five steps block predictor-

block correc to rmethod for the solution of y�� = f�x, y, y�) fortested 

Problem 1.  (SeeOdekunle et al., 2014).HLMMs: errors in HLMMs (hybrid linear multistep methods) for 

tested problem 2. (See Jator, 2010). 

TSDM: errors in TSDM (trigonometrically-fitted second derivative method) for tested  

problem 2. (SeeNgwane &Jator, 2014). 

Spelt algorithm for designing new pace size and evaluate magnitude of maximum errors using 

Mathematica kernel programming codes of concurrent Milne’s device is been prescribed as follows: 

Step 1:  Choose the step size (h) for computing the methods. 

Step 2: Same order of the concurrent predictor-corrector joint pair must be the similar. 

Step 3: Step number of concurrent predictor method must be one step greater than concurrent 

corrector system. 

Step 4: Define bound of convergence of the EFCMD. 

Step 5: Input the EFCMD in Mathematica kernel 9 

Step 6: Adopt Taylor’s series method to generate the required initializations, otherwise avoid 

step 6 the move forward to step 7. 

Step 7: Execute EFCMD in Mathematica 

Kernel 9. 

Step 8: If step 7 fails to converge, use this formula stated below to decide the appropriate step 

size for h to arrive at convergence and if not proceed to step 9. 

qh = ² ³\�T`�́�µ¶·�� /,*́*µ¶·�� c²�p
. 

Step 9: Evaluate magnitude of maximum errors after bound of convergence is attained 

Step 10: Output maximum errors. 
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3. CONCLUSION 

The mathematical final results have displayed the EFCMD is fulfilled with support of bound of 

convergence, designing a suitable step size and changing the step size. This convergence criteria 

decides either to accept or reject the iterations. Thus, this institute the performance of the 

EFCMD is discovered to yield an improve maximum errors than A(α)-S, BHT, BHMTB, 

BHTRKNM, FSBP-BCM, HLMMs and TSDM at all tried out convergence criteria of 10/k, 10/�,  10/�,   10/�, 10/� ,10/55 and 10/5kas mentioned in Anake et al. (2014),Jator (2010), 

Ngwane &Jator (2014), Ngwane &Jator (2015), Ngwane &Jator (2017) and Odekunle et al. 

(2014). Therefore, it can be concluded that the developed Mathematica computer programming 

codes of exponentially fitted block Milne’s device is suitable for solving special problems 

compared to the existing methods which solved problems using fixed step size, and lack of 

convergence criteria. Further work will hope to focus on the reverse exponentially fitted block 

Milne’s device.  
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APPENDIX 

This appendix presents the Mathematica computer programming codes of exponentially fitted concurrent 

Milne’s device (EFCMD) 

 

Mathematica Computer Programming Codes of Concurrent Predictor System 

 

Given second order differential equations  

Exact Solutions 

h=given values 

v[n]=given values 

t=values generated from v[n] 

w= given values 

 

g[1]=g[0]+h(g'[0])+(h^2/2)g''[0]+(h^3/6)g'''[0]+(h^4/24)g''''[0] 

g[2]=g[1]+h(g'[v[n]])+(h^2/2)g''[v[n]]+(h^3/6)g'''[v[n]]+(h^4/24)g''''[v[n]] 

g[3]=g[2]+h(g'[v[n]+h])+(h^2/2)g''[v[n]+h]+(h^3/6)g'''[v[n]+h]+(h^4/24)g''''[v[n]+h] 

g[4]=g[3]+h(g'[v[n]+2h])+(h^2/2)g''[v[n]+2h]+(h^3/6)g'''[v[n]+2h]+(h^4/24)g''''[v[n]+2h] 

 

t=v[n]+h 

g[3]=2g[2]-g[1]+h^2((-1/w^3-1/(2w^2)-1/6w+25/24)g''[t]+(-1/12+2/w^3+1/w^2+1/3w)g''[t-v[n]]+(-

1/w^3-1/(2w^2)-1/(6w)+5/24)+1/w^2)g''[t-v[n]+h] 

t=v[n]+3h 

g[5]=3g[3]-2g[2]+h^2((55/12+15/w^4-2/w^3-2/w^2-4/(3w))g''[t]+(-13/6-

30/w^4+4/w^3+4/w^2+8/(3w))g''[t-v[n]]+(23/12+15/w^4-2/w^3-2/w^2-4/(3w))g''[t-v[n]+h]) 

t=v[n]+5h 

g[7]=4g[4]-3g[3]+h^2((80/w^4-3/w^3-9/(2w^2)-9/(2w)+97/8)g''[t]+(-33/4-

160/w^4+6/w^3+9/w^2+9/w)g''[t-v[n]]+(80/w^4-3/w^3-9/(2w^2)-9/(2w)+53/8)g''[t-v[n]+h]) 

 

t=v[n]+4h 

g[6]=2g[5]-g[4]+h^2((-1/w^3-1/(2w^2)-1/6w+25/24)g''[t]+(-1/12+2/w^3+1/w^2+1/3w)g''[t-v[n]]+(-

1/w^3-1/(2w^2)-1/(6w)+5/24)+1/w^2)g''[t-v[n]+h] 

t=v[n]+6h 

g[8]=3g[6]-2g[5]+h^2((55/12+15/w^4-2/w^3-2/w^2-4/(3w))g''[t]+(-13/6-

30/w^4+4/w^3+4/w^2+8/(3w))g''[t-v[n]]+(23/12+15/w^4-2/w^3-2/w^2-4/(3w))g''[t-v[n]+h]) 

t=v[n]+8h 

g[10]=4g[7]-3g[6]+h^2((80/w^4-3/w^3-9/(2w^2)-9/(2w)+97/8)g''[t]+(-33/4-

160/w^4+6/w^3+9/w^2+9/w)g''[t-v[n]]+(80/w^4-3/w^3-9/(2w^2)-9/(2w)+53/8)g''[t-v[n]+h]) 

 

t=v[n]+7h 

g[9]=2g[8]-g[7]+h^2((-1/w^3-1/(2w^2)-1/6w+25/24)g''[t]+(-1/12+2/w^3+1/w^2+1/3w)g''[t-v[n]]+(-

1/w^3-1/(2w^2)-1/(6w)+5/24)+1/w^2)g''[t-v[n]+h] 

t=v[n]+9 

g[11]=3g[9]-2g[8]+h^2((55/12+15/w^4-2/w^3-2/w^2-4/(3w))g''[t]+(-13/6-

30/w^4+4/w^3+4/w^2+8/(3w))g''[t-v[n]]+(23/12+15/w^4-2/w^3-2/w^2-4/(3w))g''[t-v[n]+h]) 

t=v[n]+11h 

g[13]=4g[10]-3g[9]+h^2((80/w^4-3/w^3-9/(2w^2)-9/(2w)+97/8)g''[t]+(-33/4-

160/w^4+6/w^3+9/w^2+9/w)g''[t-v[n]]+(80/w^4-3/w^3-9/(2w^2)-9/(2w)+53/8)g''[t-v[n]+h]) 

 

Mathematica Computer Programming Codes of Concurrent Corrector System (EFCMD2) 

Given second order differential equations 
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Exact Solution 

h=given values 

x[n]=given values 

u= values generated from x[n] 

w=given values 

 

y[1]=y[0]+h(y'[0])+(h^2/2)y''[0]+(h^3/6)y'''[0]+(h^4/24)y''''[0] 

y[2]=y[1]+h(y'[x[n]])+(h^2/2)y''[x[n]]+(h^3/6)y'''[x[n]]+(h^4/24)y''''[x[n]] 

y[3]=y[2]+h(y'[x[n]+h])+(h^2/2)y''[x[n]+h]+(h^3/6)y'''[x[n]+h]+(h^4/24)y''''[x[n]+h] 

y[4]=y[3]+h(y'[x[n]+2h])+(h^2/2)y''[x[n]+2h]+(h^3/6)y'''[x[n]+2h]+(h^4/24)y''''[x[n]+2h] 

 

u=x[n]+h 

y[3]=2y[2]-y[1]+h^2((-1/w^3-1/(2w^2)-1/(6w)+73/24)y''[u+x[n]]+(17/12-

2/w^3+1/w^2+1/(3w))y''[u+x[n]+h]+(-1/w^3-1/(2w^2)-1/(6w)+25/24)y''[u+x[n]+2h]) 

u=x[n]+3h 

y[5]=3y[3]-2y[2]+h^2((79/12+15/w^4-2/w^3-2/w^2-4/(3w))y''[u+x[n]]+(23/6-30/w^4-

4/w^3+4/w^2+8/(3w))y''[u+x[n]+h]+(19/12+15/w^4-2/w^3-2/w^2-4/(3w))y''[u+x[n]+2h]) 

u=x[n]+5h 

y[7]=4y[4]-3y[3]+h^2((80/w^4-3/w^3-9/(2w^2)-9/(2w)+65/8)y''[u+x[n]]+(45/4-160/w^4-

6/w^3+9/w^2+9/w)y''[u+x[n]+h]+(80/w^4-3/w^3-9/(2w^2)-9/(2w)+1/8)y''[u+x[n]+2h]) 

 

u=x[n]+4h 

y[6]=2y[5]-y[4]+h^2((-1/w^3-1/(2w^2)-1/(6w)+73/24)y''[u+x[n]]+(17/12-

2/w^3+1/w^2+1/(3w))y''[u+x[n]+h]+(-1/w^3-1/(2w^2)-1/(6w)+25/24)y''[u+x[n]+2h]) 

u=x[n]+6h 

y[8]=3y[6]-2y[5]+h^2((79/12+15/w^4-2/w^3-2/w^2-4/(3w))y''[u+x[n]]+(23/6-30/w^4-

4/w^3+4/w^2+8/(3w))y''[u+x[n]+h]+(19/12+15/w^4-2/w^3-2/w^2-4/(3w))y''[u+x[n]+2h]) 

u=x[n]+8h 

y[10]=4y[7]-3y[6]+h^2((80/w^4-3/w^3-9/(2w^2)-9/(2w)+65/8)y''[u+x[n]]+(45/4-160/w^4-

6/w^3+9/w^2+9/w)y''[u+x[n]+h]+(80/w^4-3/w^3-9/(2w^2)-9/(2w)+1/8)y''[u+x[n]+2h]) 

 

u=x[n]+7h 

y[9]=2y[8]-y[7]+h^2((-1/w^3-1/(2w^2)-1/(6w)+73/24)y''[u+x[n]]+(17/12-

2/w^3+1/w^2+1/(3w))y''[u+x[n]+h]+(-1/w^3-1/(2w^2)-1/(6w)+25/24)y''[u+x[n]+2h]) 

u=x[n]+9h 

y[11]=3y[9]-2y[8]+h^2((79/12+15/w^4-2/w^3-2/w^2-4/(3w))y''[u+x[n]]+(23/6-30/w^4-

4/w^3+4/w^2+8/(3w))y''[u+x[n]+h]+(19/12+15/w^4-2/w^3-2/w^2-4/(3w))y''[u+x[n]+2h]) 

u=x[n]+11h 

y[13]=4y[10]-3y[9]+h^2((80/w^4-3/w^3-9/(2w^2)-9/(2w)+65/8)y''[u+x[n]]+(45/4-160/w^4-

6/w^3+9/w^2+9/w)y''[u+x[n]+h]+(80/w^4-3/w^3-9/(2w^2)-9/(2w)+1/8)y''[u+x[n]+2h]) 

 
 


