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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Presently, bio-fuels are evolving as a significant alternative to tackle the problem of global warming in the world. Fuel ethanol is 
one of such alternatives employed to reduce the usage of fossil fuels such as petrol. Regardless of the great potentials posed by fuel 
ethanol in comparison to gasoline fuels, corrosion and stress corrosion cracking (SCC) in the presence of fuel ethanol has recently 
been recognized and identified as a phenomenon in end-user storage and blending facilities. Predictions on the performance of 
pipeline steels in fuel ethanol environments, are therefore, needed in solving the ethanol SCC problem. Electrochemical tests have 
been conducted for API 5L X65 and micro-alloyed steel (MAS) in E20 simulated fuel grade ethanol (SFGE) environment via 
potentiodynamic polarization and mass loss methods. The tests were performed using simulated E20 fuel grade ethanol with 
additions of 5 volume percent methanol, 1 volume percent water and 32 mg/L NaCl. Mass loss corrosion rates were very low 
(generally less than 2 mpy). Results show that the two materials are susceptible to degradation in E20 simulated fuel grade ethanol 
(SFGE). No significant difference was observed in the mass loss corrosion rates of API 5L X65 and micro-alloyed steels in E20 
SFGE. However, morphological observation of the post-corrosion samples and calculated polarization resistance show micro-
alloyed steel as more compatible with E20 in this regard. 
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1. Introduction 

The corrosive effects of fuel ethanol environments on transport and storage infrastructure necessitates an 
understanding of the surface and structural integrity of several metallic components utilized in the process [1]. Such 
components include pipe steels, storage tanks, railcars, ships, amongst others. A previous study [2] revealed micro-
alloyed steel to be compatible with E20 (SFGE) at a very low corrosion rate. With E20, dissolved chlorides and high 
acidity promoted pit initiation and growth in micro-alloyed steel [2]. Furthermore, degradation of the mechanical 
integrity of ethanol piping and steel tanks is established in literature due to the well-known phenomenon of ethanol 
stress corrosion cracking [1; 3-6]. A study [7] showed corrosion rates of typically less than 1 mil per year (mpy) for 
carbon steels in various ethanol environments using coupons and electrochemical methods. However, this study is 
focused on a comparative assessment of the electrochemical behaviour of X65 steel and micro-alloyed steel in E20 
SFGE in order to predict which of the two is most compatible for fuel ethanol service; thereby expanding the body of 
knowledge in this expanse. 

2. Experimental 

2.1 Materials 

 A pipeline steel (API 5L X65) and a micro-alloyed steel plate was used for immersion and electrochemical tests. 
The X65 pipeline steel (425 mm diameter with 7 mm wall thickness) was obtained from an oil and gas company and 
the micro-alloyed steel plate (11 mm in thickness) was obtained in as-rolled condition from a steel company. The 
determined chemical compositions of the steels are shown in Table 1. Representative microstructures of the two steels 
are also shown in Fig. 1. Micro-alloyed steel consists mostly of ferritic structure with lamellar pearlite arbitrarily 
distributed in the ferrite matrix. The X65 steel shows a finer-grained structure consisting of polygonal ferrite and 
lamellar pearlite.  
 
Table 1. Chemical composition of X65 and micro-alloyed steels in as-received condition (wt. %)  

 
Element C Mn Si Cr Ni Al Ti Mo Cu Fe 
API-5L X65 0.08 1.22 0.245 0.022 0.023 0.026 0.0029 0.0062 0.008 balance 
MAS 0.13 0.77 0.012 0.027 0.015 0.042 0.0025 0.0017 0.006 balance 

 
2.2 Test Environment 
 
 E20 fuel blend was prepared partly in accordance with ASTM D-4806-07 [8] for fuel grade ethanol and as reported 
in literature [9, 10]. The reagents used for the SFGE environment include: 195 proof ethanol, ultra-pure water (~18 
MΩ.cm), glacial acetic acid, pure methanol and pure sodium chloride (NaCl) with purity ›99%. Addition of 80 percent 
unleaded gasoline to 20 percent SFGE made up E20 fuel blend used for the tests. 
 
 
2.3 Mass loss and Potentiodynamic Tests 

 
 Mass loss and potentiodynamic polarization tests were performed at ambient temperature (27oC). Test specimens 
of dimensions 30 x 30 x 11 mm for micro-alloyed steel (replicate number of 2) and 30 x 30 x 7 mm for X65 steel 
(replicate number of 2) were machined for mass loss tests.  

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2018.11.297&domain=pdf
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                                                (a)  
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Fig. 1 SEM image of a) API-5L X65 steel and b) MAS in as-received condition. 

 
 The immersion test samples were dry-abraded with suspended in air-tight sealed plastic containers containing 300 
ml SFGE. Exposure time was for 60 days.  Cleaning as per ASTM G1-03 [11] and morphological examination of 
corroded samples (via a FEI-430 NOVA NANO FEG-Scanning Electron Microscope) was carried out at the end of 
the exposure period. Furthermore, corrosion rate was calculated in mils per year using equation (1) [10]. 

    
 

 DTA
WKRC



.    (1) 

 Where K  is a constant (534), T  is the exposure time in hours, A is the area in square inches,  W  is the mass loss 
in milligrams, D is the density in g/cm3. 
 
 For anodic polarization tests, each of the specimens were mounted to reveal an exposed area of 15 x 10 mm2 after 
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dry-abrasion with abrasive paper of up to 2000 microns. Duplicate polarization tests were also performed using a 
Gamry Potentiostat/Galvanostat/ZRA. The test setup was made up of a three-electrode glass cell which consisted of 
saturated calomel electrode (SCE) as the reference electrode and platinum wire as the counter electrode. The 
polarization tests commenced with cathodic polarization at -0.75 V vs SCE. A potential scan rate of 2 mV/s was used. 

 
 
3. Results and Discussion 

 
3.1 Comparison of mass loss and corrosion rates obtained for API 5L X65 and micro-alloyed steels  
 
 The bar charts in Figures 2a and 2b show the trend observed for mass loss and corrosion rates determined for both 
X65 and micro-alloyed steels. X65 steel exhibited highest corrosion rate. However, the margin of rise in corrosion 
rate from 0.00125 mpy for micro-alloyed steel to 0.00131 mpy for X65 steel is insignificant (approximately 4.8 
percent). Consequently, it can be decided that there is no significant difference in the mass loss corrosion rates of the 
two steels in E20 SFGE. It is important to also note that the determined corrosion rates were very small.  
 
Nevertheless, surface examination (via scanning electron microscope) of the corroded steels after the immersion tests 
shows significant pitting on the surface of X65 steel in comparison to micro-alloyed steel (Fig. 3). The excessive 
pitting explains the marginal difference in their corrosion rates. The occurrence of pits in the two steels due to 
immersion in E20 for the period of 60 days is in agreement with the results of investigations carried out on the 
corrosion behaviour of carbon steel in E20 as reported in literature [6].  
 
 The availability of oxygen and the hygroscopic nature of ethanol have been identified as factors for the participation 
of ethanol in corrosive reactions [7]. Pitting of carbon steel in SFGE are also associated with water and chloride 
contents of the fuel [6]. 
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(b)  
 

Fig. 2 Mass loss and corrosion rates of (a) API 5L X65 steel and (b) Micro-alloyed steel. 
   

(a)  
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(b)  
 

Fig. 3 SEM image of (a) API 5L X65 and (b) micro-alloyed steel at 1000x after immersion in E20 for 60 days. 
 
 
3.2 Comparison of polarization test results for API 5L X65 and micro-alloyed steels  

 
 The results of anodic polarization carried out on the two steels with similar potential difference (1.5 VSCE) from 
their initial OCPs are shown in Table 2 and Fig. 4. No distinct passivation is seen from the polarization curves. X65 
steel show higher icorr-estimate in comparison to micro-alloyed steel which is consistent with the higher corrosion rate 
seen from mass loss test in Fig. 2. Furthermore, the polarization resistance (Rp) of the two steels was calculated to 
determine the degree of their resistance to corrosion using Equation (2) [12]. Table 2 shows that polarization resistance 
was least for X65 steel which indicates that resistance to charge-transfer reactions was smallest at the surface of X65 
steel. This is also a possible explanation for the excessive pitting observed on X65 steel.  
 

 cacorr

ca
p I

R






3.2

              (2) 

Where Rp is polarization resistance (ohms), a is anodic slope (v/decade), c is cathodic slope (v/decade), corrI is 
current (A/cm2). 

 
 
Table 2. Anodic Polarization Data for X65 and micro-alloyed steels in E20 

 

 
 

Material Ecorr (mv) icorr-estimate (A/cm2) Rp (Ω) 

API 5L X65 steel 
Micro-alloyed steel 

-492 
-445 

2.18 x 10-6 

7.14 x 10-6 
129 
443 
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