IN VITRO AND EX VIVO ACTIVITIES OF NOVEL HYDROXAMIC ACID DERIVATIVE AGAINST Plasmodium falciparum

By

OFFOR, GLORIA NWABUGWU

B.Sc. Applied Biochemistry, Nnamdi Azikiwe University Awka M.Sc. Biochemistry, University of Ibadan Ibadan

Matriculation Number: 14PCP00958

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY OTA, OGUN STATE, NIGERIA. IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN BIOCHEMISTRY

JUNE, 2017

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of Master of Science (M.Sc.) degree in Biochemistry in the Department of Biological Sciences, College of Science and Technology, Covenant University Ota, Ogun State, Nigeria.

Mr. J.A. Philip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. S. Wara

.....

Dean, School of Postgraduate Studies

Signature and Date

DECLARATION

I, **OFFOR Gloria Nwabugwu** (14PCP00958), declare that this M.Sc. dissertation titled: *"In vitro* and *Ex vivo* Activities of Novel Hydroxamic Acid Derivative Against *Plasmodium falciparum"* was undertaken by me under the supervision of Dr. A.H. Adebayo. The work presented in this dissertation has not been presented, either wholly or partly for the award of any degree elsewhere. All sources of scholarly information used in this dissertation were duly acknowledged.

Offor, Gloria Nwabugwu

.....

(Student)

Signature and Date

CERTIFICATION

We certify that the dissertation titled: "*In vitro* and *Ex vivo* Activities of Novel Hydroxamic Acid Derivative Against *Plasmodium falciparum*" is an original work carried out by OFFOR, Gloria Nwabugwu with Matriculation Number: 14PCP00958, of Biochemistry Programme in the Department of Biological Sciences, College of Science and Technology, Covenant University Ota, Ogun State, Nigeria. We have examined the work and found it acceptable for the award of Master of Science (M.Sc.) degree in Biochemistry.

Dr. A. H. Adebayo		
(Supervisor)	Signature and Date	
Prof. A.A. Ajayi		
(Head, Department of Biological Sciences)	Signature and Date	
Prof. O.A. Akinloye		
(External Examiner)	Signature and Date	
Prof. S. Wara		

(Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

To an ever faithful God whose unquantifiable mercy, favour and grace saw me to the end of this programme

ACKNOWLEDGEMENTS

I profoundly acknowledge the Chancellor of Covenant University Dr. David Oyedepo for the vision that birthed this great institution from which I have greatly benefited. I also appreciate the Vice Chancellor Prof. A.A.A. Atayero and the entire Management team of Covenant University for their commitment towards raising a new generation of leaders.

I would like to express my immense gratitude to my supervisor Dr. A.H. Adebayo who also doubles as the Sub-Dean of the School of Postgraduate Studies, Covenant University for his mentorship and guidance all through the writing process of this project report. I also appreciate all the Faculty members of Biochemistry unit for their comments, remarks, corrections and helpful tips during the presentation of this work. Also to the Management and Staff of the Department of Biological Sciences, Covenant University especially the Head of Department, Prof. A.A. Ajayi for providing an enabling environment needed to carry out this research.

I am highly indebted to all the members of Covenant University Bioinformatics Research Cluster (CUBRe); especially Prof. Ezekiel Adebiyi, Dr. O.O. Ogunlana, Dr. G.I. Olasehinde, Dr. S.O. Rotimi, and Dr. T.M. Dokunmu for the TWAS-CU postgraduate fellowship award that gave me the opportunity to undertake this programme and to The World Academy of Sciences (TWAS) for the grant that brought me into the programme. I appreciate the generosity of BEI Resources for providing us with the parasite type-strain used in this study. I also say a big thank you to Dr O.O. Ajani in Chemistry Department, Covenant University for providing us with the novel compound used in this study and all the relevant information regarding its synthesis. My profound gratitude goes to all the laboratory personnel at Covenant University Health Centre for their support and assistance with the collection of blood samples from their malaria infected patients.

I also want to appreciate my project colleagues for their understanding and support all through the time I was away for my Dad's burial and wedding especially Openibo John who read the slides from this study and Onile-ere Olabode who helped with the data analysis and printing of this work. Special thanks to Mrs. B.T. Adekeye and Mr. O.S. Taiwo for their assistance with the reading of the microscope slides from this study. I wish to acknowledge all the undergraduate and postgraduate students that participated in

this study by donating their blood especially Oluseye Oreoluwa, Igwe Tochukwu, Opadiran Deborah, Owolabi Akinyomade and Favourite Miracle.

My special thanks goes to my friend Sandra Udegbe for all the moral support she rendered to me during the course of this programme. Sandra, with a friend like you I know I have a sister I can rely on anytime, any day. My prayer for you is that God will grant you all your heart desires. I would like to deeply appreciate my superstar Mum Mrs Angelina Offor for her continuous travail in prayers for me. Mum, your love and encouragement has kept me going all these years and I pray that the good Lord will keep you in health to enjoy the fruits of your labour. I would not have been here if not for the support of my husband Engr. Sydney Okenze. Destiny, I deeply appreciate your understanding, sacrifice and push. Thank you for being the rock in my life and I pray that God will help me to become all that you desire for me. And to everyone that contributed in one way or the other towards the success of this project, I pray that help will always answer to you all in Jesus name, Amen.

Lastly but most importantly, I acknowledge the help of God Almighty towards the successful completion of this research work.

CO	VER PAGEI
TIT	LE PAGEII
ACO	CEPTANCEIII
DEC	CLARATION IV
CEI	RTIFICATIONV
DEI	DICATION VI
ACI	KNOWLEDGEMENTSVII
TAI	BLE OF CONTENTS IX
LIS'	Г OF TABLES XIII
LIS'	Г OF FIGURES XIV
ABI	BREVIATIONSXV
ABS	STRACT XVI
CHA	APTER ONE 1
INT	RODUCTION 1
1.1	Background1
1.2.	Statement of the problem4
1.3	Justification4
1.4	Aim and Objectives

TABLE OF CONTENTS

CHAPTER TWO

LITERATURE REVIEW

6	

6

2.1	The	biology of malaria parasite	6
2.1	1.1	Exo-erythocytic cycle	6
2.1	1.2	Erythrocytic cycle	8
2.1	1.3	Sporogonic cycle	16
2.2	An	timalarial drugs	17
2.2		Quinine and related compounds	
	2.2	Antifolate drugs	
	2.3	Antibiotics	
	2.4	Artemisinin compounds	
2.2		Antimalarial combination therapy	
2.2		Hydroxamic-acid derivatives	
2.3	Med	chanism of antimalarial drug resistance	32
2.3	3.1	Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene	32
2.3	3.2	P. falciparum multidrug resistance protein 1 (Pfmdr1) gene	34
2.3	3.3	P. falciparum multidrug resistance-associated protein (Pfmrp) gene	34
2.3	3.4	Plasmodium falciparum sodium hydrogen exchanger (Pfnhe1) gene	36
2.3	3.5	Plasmodium falciparum bifunctional dihydrofolate reductase-thymidylate	
syı	ntha	se (<i>Pfdhfr -ts</i>) gene	37
2.3	3.6	Plasmodium falciparum dihydropteroate synthetase (Pfdhps) gene	37
2.3	3.7	Cytochrome b (cytb) gene	38
2.3	3.8	Kelch 13	38
2.4	Apr	broaches to antimalarial drug discovery	39
2.4	••	Optimization of therapy with existing agents	
2.4		Development of analogs of existing agents	
2.4		Natural products	
	1.4	Compounds active against other diseases	
2.4		Drug resistance reversers	
	1.6	Compounds active against new targets	
		· · · ·	

2.4.7 Virtual screening technology	44
2.5 Erythrocyte fragility	44
CHAPTER THREE	46
MATERIALS AND METHODS	46
3.1 Drugs and Reagents	46
3.2 Collection and preparation of blood sample from malaria patients	46
3.2.1 Study subject	46
3.2.2 Ethical considerations	46
3.2.3 Collection of blood sample	46
3.2.4 Sample preparation	46
3.3 Preparation of type-strain <i>Plasmodium falciparum</i>	47
3.3.1 Collection of parasite type-strain	47
3.3.2 Thawing of cryopreserved parasite	47
3.4 Preparation of human inactivated serum/Plasma	47
3.5 Preparation of complete medium	48
3.6 Preparation of uninfected red blood cells	50
3.7 <i>In-vitro</i> culture adaptation	50
3.7.1 Freshly-collected sample	50
3.7.2 Cryopreserved sample	51
3.8 Replacing culture media and preparation of blood smear	51
3.8.1 Maintenance of culture	51
3.8.2 Preparation of blood smear	51
3.9 Cryopreservation	52
3.10 Drug sensitivity testing	52
3.10.1 <i>In-vitro</i> sensitivity assay	52

3.10.2 <i>Ex-vivo</i> sensitivity assay	.55
3.11 Erythrocyte stabilization assay	.57
3.12 Statistical analysis	.57
CHAPTER FOUR	58
RESULTS AND DISCUSSION	58
4.1 <i>In vitro</i> antiplasmodial activity of hydroxamic acid derivative on chloroquine- sensitive <i>Plasmodium falciparum</i> (3D7)	58
4.2 <i>Ex vivo</i> antiplasmodial activity of hydroxamic acid derivative on wild type <i>P</i> . <i>falciparum</i> isolate from malaria patient	.64
4.3 Effect of hydroxamic acid derivative on the morphology of red blood cells	.70
4.4 Discussion	.73
CHAPTER FIVE	76
CONCLUSION AND RECOMMENDATIONS	76
5.1 Conclusion	.76
5.2 Recommendations	.76
5.3 Contributions to Knowledge	.77
REFERENCES	.78
APPENDICES	.88

LIST OF TABLES

Table 2.1: Approaches to antimalarial drug discovery and development	40
Table 2.2: Antimalarial compounds active against old and new targets	13
Table 3.1: Volumes of reagents required for the preparation of 1 L of complete culture	
medium	19
Table 3.2: Drug Concentrations in micro titer plate for in-vitro sensitivity assay	54
Table 3.3: Drug Concentrations in microtiter plate for ex-vivo sensitivity assay	56
Table 4.1: Estimated <i>in vitro</i> IC ₅₀ values for the test compound and standard drugs	52
Table 4.2: Percentage parasitemia in <i>in vitro</i> sensitivity assay	53
Table 4.3: Estimated <i>ex vivo</i> IC ₅₀ values for the test compound and standard drugs	58
Table 4.4 : Percentage parasitemia in ex vivo sensitivity assay	59

LIST OF FIGURES

Figure 2.1: Schematic representation of the lifecycle of <i>Plasmodium</i> in man and
mosquito7
Figure 2.2: Blood stages of P. falciparum9
Figure 2.3: Diagram of a merozoite showing its core secretory organelles10
Figure 2.4: The main phases of merozoite invasion into an erythrocyte
Figure 2.5: The functional group of hydroxamates
Figure 2.6: Detailed structure of PFCRT protein
Figure 2.7: Detailed structure of P-glycoprotein molecule
Figure 4.1: In-vitro dose response plot for chloroquine
Figure 4.2: <i>In-vitro</i> dose response plot for artemisinin
Figure 4.3: <i>In-vitro</i> dose response plot for the hydroxamic acid derivative OA461
Figure 4.4: Ex-vivo dose response plot for chloroquine
Figure 4.5: Ex-vivo dose response plot for artemisinin
Figure 4.6: <i>Ex-vivo</i> dose response plot for the hydroxamic acid derivative OA467
Figure 4.7: Photomicrography of blood smear from uninfected erythrocytes treated with
RPMI 1640 (control)71
Figure 4.8: Photomicrography of blood smear from uninfected erythrocytes treated with
OA472

ABBREVIATIONS

DMSO	dimethyl sulfoxide
HEPES	2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
RBC	red blood cell
RPMI	Roswell Park Memorial Institute
RSA	ring-stage survival assay
WBC	white blood cell
BSA	Bovine Serum Albumin
MSP1	Merozoite Surface Protein 1
MSP2	Merozoite Surface Protein 2
Pfcrt	P. falciparum Chloroquine resistance transporter gene
PCR	Polymerase chain reaction
pfmdr1	P. falciparum multidrug resistance gene 1
Pfnhe l	plasmodium falciparum sodium hydrogen exchanger
Pfmrp	P. falciparum multidrug resistance-associated protein
cytb	Cytochrome b
DHFR	Dihydrofolate reductase
DHPS	Dihydropteroate synthase
DNA	Deoxyribonucleic acid
HRP II	Histidine-rich protein II
IC ₅₀	50% inhibitory concentration
WHO	World Health Organization
CQ	chloroquine
ART	artemisinin
OA4	hydroxamic acid derivative
L	liter
mL	milliliter
μL	microliter
mM	millimolar
nM	nanomolar
MW	molecular weight
RT	room temperature

ABSTRACT

Emergence of drug-resistant strains of *Plasmodium* has recently led to increased efforts to discover and develop new antimalarial drugs both for the prophylaxis and treatment of malaria infection. The present study was conducted to evaluate the antiplasmodial activity of novel hydroxamic acid derivative against Plasmodium falciparum 3D7 strain and the wild type isolate from malaria infected patients. Chloroquine-sensitive P. falciparum 3D7 was grown in vitro in O⁺ human red blood cells in RPMI 1640 medium supplemented with 10% heat inactivated AB human serum, 25 mM HEPES buffer, 50 µg/ml penicillin and 50 µg/ml streptomycin under an atmosphere of 90% N₂, 5% O₂ and 5% CO₂. Serially diluted drugs were placed in the wells of 96 well micro titre plates and incubated with aliquots of parasite culture medium containing asynchronized rings at a parasitemia of 0.2% and a haematocrit of 4%. For the ex vivo assay, aliquots of the washed infected red blood cells in complete medium were incubated with varying concentrations of the drugs. The parasitemia for both assays were determined microscopically using Giemsa-stained smears. Chloroquine and artemisinin used as the positive controls as well as the drug-free negative control were all assayed in duplicates simultaneously with the test compound (OA4). Results from the half maximal inhibitory concentrations (IC_{50}) analyses showed the in vitro and ex vivo IC₅₀ values of OA4 to be 28200 nM and 154.2 nM respectively. OA4 lowered the parasitemia across all the drug-treated wells when compared to the drug-free negative control wells. The result from the erythrocyte stabilization assay revealed that OA4 did not induce any alteration on the morphology of red blood cells. In conclusion, these results demonstrated that the hydroxamic acid derivative OA4 could be a promising antimalarial drug candidate and is therefore a useful hit compound for further medicinal chemistry optimization.

Keywords: Malaria, P. falciparum, hydroxamates, drug sensitivity, cell morphology