ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROCEN ENERGY XXX (EXXE) XE

Available online at www.sciencedrect.co

journal homepage: www.elsevier.com/locate/he

Catalytic dehydrogenation of formic acidtriethanolamine mixture using copper nanoparticles

Samuel Eshorame Sanni ^{*,*}, Teniola Abayomi Alade ^{*}, Oluranti Agboola ^{*}, Peter Adeniyi Alaba ^b

^a Department of Chemical Engineering, Governant University, P.M.B 1023, Ois, Ogus State, Nigeria ^b Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia

HIGHLIGHTS

Hydrogen was undaged from formic acid using trigthandaming and compet nanonarticles

- Copper concentration, pH, size and reaction time influenced hydrogen production
- 1 M copper-catalysts had the best performance with reusability of 20 cycles in 120 h
- . Einstics of the reaction shows that the reaction is first order.
- The estimated conversion is \$2.2% accurate.

ARTICLE INFO

Article history:

Received 29 July 2059 Received in revised form 13 October 2019 Accepted 14 December 2019 Assilable coline yw

Kenneda

Approximate conversion Copper nanoparticles Dehydrogenation Fint order Hydrogen production Kinetics

RETRACT

The third equiprimum field by increase the transmission of the tr

© 2029 Hudrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

* Corresponding author.

E-mail address: adver/2000@vahoo.com (S.E. Samil.

101 01 01 0100 analysis 12464 (Davidena 00103 10 101

080-3299/0 2019 Hedrozen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article as: Sanzi SK et al., Catalytic debydrogenation of formic acid-triethanolamine mixture using copper nanoparticles. International Journal of Hydrogen Energy, https://doi.org/10.1016/j.jDydene.2018.12.121