DEVELOPMENT OF BLENDER-HAMMER MILL FOR MULTIPURPOSE USE

BY

AJAYI CHRISTOPHER OLA MAT. NO. 15PCM01279

JULY 2017

DEVELOPMENT OF BLENDER-HAMMER MILL FOR MULTIPURPOSE USE

BY

AJAYI CHRISTOPHER OLA

MAT. NO. 15PCM01279

B.Sc. ≈ HND (With Distinction) Mechanical Engineering (Metal Working Machines and Techniques.) Kharkov. 1983 USSR

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES OF COVENANT UNIVERSITY, OTA. OGUN STATE, NIGERIA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF POST GRADUATE DIPLOMA (PGD) DEGREE IN THE DEPARTMENT OF MECHANICAL ENGINEERING

JULY 2017

ACCEPTANCE

This is to attest that thesis is recognized as part of required accomplishment for the award of the degree of **Post Graduate Diploma in Manufacturing/Production Engineering** in the **Department of Mechanical Engineering**, College of Engineering, Covenant University, Ota.

Philip John Ainwokhai

Secretary, School of Postgraduate Studies

.....

Signature & Date

Professor Samuel Wara

Dean, School of Postgraduate Studies

.....

Signature & Date

DECLARATION

I, AJAYI CHRISTOPHER OLA, (15PCM01279), affirm that this investigation was performed by me with supervision by Professor F. A Oyawale of the Department of Mechanical Engineering, Covenant University, Ota. I attest that the thesis has not been presented either wholly or partly for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

AJAYI, Christopher Ola

.....

Signature and Date

CERTIFICATION

We certify that this thesis titled "Development of Blender Hammer for multipurpose use" is an original work carried out by Ajayi Christopher Ola, (15PCM012579), in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, and Ogun State, Nigeria. Under the supervision of Professor F. A Oyawale. The work has been keenly reviewed and found it acceptable for the award of degree of Postgraduate diploma in Mechanical Engineering.

Prof. F.A Oyawale Supervisor	Signature and Date
-	
Dr. O. O Ajayi	
Head of Department	Signature and Date
Name of External Examiner	••••••
External Examiner	Signature and Date
Prof. Samuel Wara	
Dean, School of Postgraduate Studies	Signature and Date

DEDICATION

I dedicate this research work to Almighty God my Saviour, defender and provider. To Him alone be all the glory, praise and adoration.

ACKNOWLEDGEMENT

My deep gratitude that words cannot expressed to the God Almighty, for His love and abundant grace for good health and inspirations from on high all the time. The Lord showed Himself strong and mighty on my behalf, supplying all that I needed to finish this project successfully, blessing, glory, wisdom, thanksgiving, honour, and power and might, be unto the Almighty God forever and ever. Amen. (Rev 7:12)

My profound gratitude and best wishes goes to the Chancellor and Chairman Board of regents, Covenant University, Dr. David O. Oyedepo for the excellent spiritual and academic platform provided. I wish to express my sincerely acknowledge the Vice-Chancellor, Professor A. A. A Atayero, the former Vice-Chancellor Professor C K Ayo and the entire Management team of the University for sustaining the set vision excellently and for my employment and for the approval and sponsorship of this programme. Indeed this great University has positively imparted and is still imparting my life in wonderful ways. May the Almighty God continue to uphold our great Covenant University in Jesus Name. Amen.

My sincere appreciation goes to my supervisor and inspirator Prof. F. A Oyawale whose support, patience, guidance and thoroughness has developed me to a better researcher. Thank you for the privilege of working with you sir.

Many thanks to Dr. O. O Ajayi (H.O.D, Mechanical Engineering), and all my lecturers in the Department of Mechanical Engineering at Covenant University for their time and willingness to impart knowledge. I am most grateful to all the staff of the Department for their support and prayers.

I deeply appreciate the Dean of the School of Postgraduate Studies Professor Samuel Wara and Dean College of Engineering Professor C. A Bolu for their drive and commitment to excellence. The fabrication and welding expertise contribution to this work by Mr. Adekunle Adeyemi Nawarudeen and accurate machining to design specifications done by Mr Siyanbola John was highly appreciated, I remained grateful to them, they were marvelous in their respective contributions and suggestion. The sacrifice made in material purchase will long be remembered.

I wish to appreciate Dr. Kilanko for his contribution in the stress analysis of the main shaft, meanwhile my gratitude also goes to Mr Patrick Onwordi, Abiodun Akitoye, Engr. T.O. K Makun, Mr Damola Adelekan, Mrs Toyin Onaolapo, Joseph Ocheja, and Kayode Olaniyi for their contributions.

Lastly but not the least my profound gratitude goes to my lovely wife of almost two decades, my second best half, Mrs. Ajayi Omotomilola Caroline for her support, encouragement, care and prayers for all round success in all my endeavours. Thank you darling for your constant faithfulness.

To my children Ifeoluwa Handel, Temitope, Bosede, and Oluwayemisi, you are simply wonderful, your support and prayers was highly valued.

To all who must have contributed one way or another, directly or indirectly to the success of this research work I say thank you. May the Almighty God bless you all in Jesus Name. Amen.

ABSTRACT

Few problems that have been identified with most of the existing developed blending and hammering machines/mills are as follows: low efficiency and output rate, metal particulate in ground product or flour which is hazardous for consumption and good health. Lubrication systems of some were faulty in that hazardous lubricants get mixed with milled products.

The aim of this project is to develop a blender-hammer crushing machine suitable for domestic and laboratory use for production of fine paste and coarse aggregates. The design was based on elimination of metal to metal contact, contamination of grinded material and excessive vibration.

The blender-hammer mill consists of the following components; inlet hopper, grinding chamber, a combined crushing hammer blades vertically set and blending blade that are horizontally fixed. The mill was constructed from locally sourced martensitic stainless steel 420 series. A sieve was introduced beneath the hammer chamber to sieve the ground mass. The main shaft was mounted on two sealed ball bearings, and it rotate at speed of 2880 rpm transmitted by two 'B'V belt driven from a 3.75 kilowatt electric motor.

The results showed that the crushing efficiency ranged from 86% for dry corn to 98% for cassava. We conclude that a blender hammer machine developed is capable of grinding grains legumes, dry cassava, and yams into fine and coarse aggregates.

TABLE OF CONTENT

i
i
ii
iii
iv
iv
vii
viii
viii
ix
X

CHAPTER ONE

1.0 INTRODUCTION.	1
1.1 Background	1
1.2 Aim	2
1.3 Precise intention of the project	2
1.4. Scope of the work	2
1.4 Justification of the research work	2

CHAPTER TWO:

LITERATURE REVIEW	3
2.1 Background of hammer mills	5
2.2 Different classes of milling machines	.5
2.2.1 Hammer Mills	.6
2.2.2 Plate Mills	.6
2.3 Common material for hammer mills	.7

CHAPTER THREE:

3 MATERIALS AND METHOD	10
	10

3.1 Material adopted for the grinding machine	10
3.2 Bill of material quantity	10
3.3 Parts' nomenclature and Functionality	15
3.4 Theoretical Design Consideration	23
3.4.1 Choice of electric moto	
3.4.2 Selection of transmission drives	23
3.4.3 Pulley or sheaves Design	24
3.4.4 Evaluation of length of belt	25
3.4.5 Calculation of the belt contact angle	
3.4.6 Belt tension determination	
3.4.7 The torque and power transmitted to the shaft	
3.4.8 Determination of the weight of blender hammer	29
3.4.8. i. Weight of one blending blade	
3.4.8. ii Weight of the hammers blades	
3.4.8. iii Weight of both blend	30
3.4.9 Calculation of the centrifugal force applied by the blender hammer	
3.4.10 Calculation of blender hammer shaft diameter	
3.4.11. The maximum bending moment of the main shaft	31
3.4.12 Determination of the shaft diameter	
3.4.13 Shaft component generated	
3.4.14 Bearing selection	45
3.4.15 Blender hammer mill calculated parameters	45
3.5.0 Blender hammer major parts manufacturing/technological process	46
3.5.1 Lathe machine operation	46
3.5.2 Drilling machine operation	46
3.5.3 Milling machine operation	46
3.5.4 Fabrication and welding operation	46
3.5.5 Heat treatment operation	46
3.6 Assembly of the hammer mill	46
3.6.1 Hammer mill installation	46
3.7 Principle of operation of the machine	47
3.7.1 Size reduction principle	47
3.8 Evaluation of the machine throughput capacity	47
3.8.1 Calculation of area of flow	

3.9. Performance evaluation	51
3.9.1 Testing of the machine	51
3.9.2 Idle testing or running	51
3.9.3Load.test procedure	51

CHAPTER 4

RESULTS	
4.1. Testing with dry corn	
4.2. Output capacity and tonnage	53
4.3 Discussion	57
CHAPTER 5	
CONCLUSION	
5.1 Conclusion	58
5. 2 Recommendation	59
REFERENCES	
. References	60

APPENDIX

LIST OF FIGURES

Fig. 1 Blender-hammer assembly Diagram	14
Fig. 2 Main shaft	17
Fig. 3 Hammer blade	
Fig. 4 Blender blade	
Fig. 5 Ball bearing	22
Fig. 6 The idle collar	23
Fig. 7 The v-belt profile	25
Fig. 8 The pulley system	27
Fig. 9 The shear force and bending moment analysis	
Fig. 10 Shear Force	
Fig. 11 Shear Force, YZ Plate	34
Fig. 12 Shear Force, XZ	34

Fig. 13 Bending Moment	
Fig. 14 Bending Moment, YZ Plane	
Fig. 15 Bending Moment, XZ Plane	
Fig. 16 Deflection Angle	
Fig. 17 Deflection Angle, YZ Plane	
Fig. 18 Deflection Angle, XZ Plane	
Fig. 19 Deflection	
Fig. 20 Deflection, YZ Plane	
Fig. 21 Deflection, XZ Plane	
Fig. 22 Bending Stress	
Fig. 23 Bending Stress, YZ Plane	40
Fig. 24 Bending Stress, XZ Plane	40
Fig. 25 Shear Stress	41
Fig. 26 Shear Stress, YZ Plane	41
Fig. 27 Shear Stress, XZ Plane	42
Fig. 28 Torsional Stress	42
Fig. 29 Tension Stress	43
Fig. 30 Reduced Stress	43
Fig. 31 Ideal Diameter	44
Fig. 32 Blender- Hammer Parts Drawings	63
Fig. 33 Blender-Hammer parts assembly Drawing	64
Fig. 34 Blender-Hammer parts Drawing	65

LIST OF TABLES

Table 1: Mechanical properties of martensitic stainless steel 420	7
Table 2: Physical properties of stainless steel 420 series.	7
Table 3: Chemical composition (Cast analysis) of 420 series of stainless steel	8
Table 4: Bill of material quantity	12
Table 5: Standard dimensions for V-belts type B	26
Table 6: Shaft loads on X and Y axis	32

Table 7: Shaft supports	
Table 8: Results of Blender-Hammer mill calculated parameters	45
Table 9: Blender-Hammer milled samples' evaluation	
Table 10: Output capacity	45
Table 11: Cost Estimate.	

PLATES

Plate 1: Hammer blades assembly	15
Plate 2: Blender-Hammer side view	49
Plate 3: Blender-Hammer back view	50
Plate 4: Side view of the sieve	66
Plate 5: Top view of the sieve	67