PROBABILISTIC SEISMIC HAZARD ANALYSIS AND THE SIMULATED RESPONSE OF BUILDINGS TO EARTHQUAKE IN NIGERIA

BY

OLUWAFEMI JOHN OLUWATOBI

MATRIC NO: 16PCI01354

A RESEARCH PROJECT SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, OGUN STATE.

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTERS OF ENGINEERING DEGREE (M.ENG) IN CIVIL ENGINEERING

MAY 2018

DECLARATION

I solemnly declare that I carried out the work reported in this project in the Department of Civil Engineering, Covenant University, Ota, Nigeria under the supervision of Dr. Tokunbo Ofuyatan. I hereby declare to the best of my knowledge that no part of this report has been submitted here or elsewhere in a previous application for award of a degree. All sources of knowledge used have been duly acknowledged.

OLUWAFEMI JOHN OLUWATOBI

MATRIC NO: 16PCI01354

.....

Signature

Date

CERTIFICATION

We certify that the materials recorded in this project resulted from original research work carried out by **John Oluwatobi Oluwafemi** of the Department of Civil Engineering Covenant University, Ota as a requirement for the award of M. Eng. Degree in Civil Engineering, Covenant University, Ota, Ogun State, Nigeria.

Dr. (Mrs.) Olatokunbo Ofuyatan	Date
Supervisor	
Dr. Anthony N. Ede	Date
Head, Department of Civil Engineering	
Chief Examiner	
Prof. Obanishola M. Sadiq	Date
External Examiner	

DEDICATION

This project is dedicated to the Almighty God, the creator of heaven and earth.

ACKNOWLEDGEMENT

I bless the God of heaven and the father of our Lord Jesus Christ for his grace, wisdom, support and provisions to begin and to complete this research. I cannot but appreciate my dear supervisor, Dr. (Mrs.) Olatokunbo Ofuyatan, for her motherly support and guidance through this work. Indeed, she is more than a supervisor. I also want to appreciate my dear brother, Mr. Abolarin John for his immense and timely contribution that has made this work a reality. The contributions of men like Engr. Solomon Oyebisi cannot also go unnoticed. I also deeply appreciate Dr. Anthony N. Ede, Dr. Ben Ngene and Dr. Isaac I. Akinwumi for their care and consistent follow-up to ensure that this work was never stagnated. I thank my dear Mr.& Mrs. Adeoye of Covenant University Farm for their support and guidance in the course of this work.

To my lovely parents, Engr. & Mrs. John O.T. Ogundipe who have worked tirelessly to invest in me in diverse forms, I am indeed blessed to have you as parents. I deeply appreciate you for your sacrifices and prayers. To my siblings; Deborah, Daniel, Mary, Christianah and my niece (Zion) and nephew (Cyrus), thank you for being a part of my life. May God advance our dear nation Nigeria and cause her to flourish again, for in her this research has been carried out.

TABLE OF CONTENT

DECI	LARATION	ii
CERT	ΓIFICATION	iii
DEDI	ICATION	iv
ACK	NOWLEDGEMENT	v
LIST OF TABLES		xi
LISTS OF FIGURES		xii
LIST OF PLATES		xiv
ABST	TRACT	XV
CHA	PTER ONE	1
INTRODUCTION		1
1.1	Background of Study	1
1.2	Aim and Objectives	3
1.2.1	Aim	3
1.2.2	Objectives	3
1.3	Problem Statements	3
1.4	Justification of Study	3
1.5	Scope of Work	4
1.6	Description of the Study area	4
1.7	Thesis Outline	5
CHA	PTER TWO	6
LITE	RATURE REVIEW	6
2.1	Earthquakes	6
2.2	World Seismicity	6

2.2.1	North America	7
2.2.2	South America	8
2.2.3	Asia	10
2.2.4	Europe	11
2.2.5	Africa	12
2.2.6	Australia and New Zealand	13
2.2.7	Antarctica	14
2.3	Great Earthquakes in History	14
2.4	Devastating Earthquakes in History	19
2.4.1	May 22, 1960 Chile Earthquake	19
2.4.2	The 1964 Alaska earthquake	20
2.4.3	Jiajing Great Earthquake	21
2.4.4	The Tangshan Earthquake	21
2.5	Earthquake Occurrence around the World	23
2.5.1	Occurrence of earthquakes in Japan	23
2.5.2	Earthquakes in Indian versus Earthquake in Japan	27
2.5.3	Occurrence of earthquakes in Ghana	29
2.5.4	Occurrence of earthquakes in Algeria	31
2.5.4.1	The El-Asnam Earthquake of 1980	31
2.5.4.2	The Boumerdès earthquake of 2003	31
2.5.5	Occurrence of earthquakes in Rwanda	33
2.5.6	Earthquake in Nigeria	34
2.5.6.1	Geological Setting versus Tectonic Activity in Nigeria	39
2.5.6.2	Seismic Faults in Nigeria	40
2.5.6.3	Probable reasons of earthquake occurrence in Nigeria	41

2.5.6.4	Seismic Stations in Nigeria	42
2.6	Causes, Trigger, Loss, and Impact of Earthquake	45
2.6.1	Causes of Earthquake	45
2.6.2	Earthquake Triggering phenomenom	45
2.6.3	Impact of Earthquake on Buildings	46
2.6.3.1	Type of Earthquake induce damages on Buildings	47
2.6.3.2	The shake Table	48
2.6.3.3	Loss from global earthquake in 2011	49
2.7	Earthquake prediction and Forecasting	50
2.7.1	Prediction of Earthquake via Animal Behaviors	53
2.7.2	Seismic waves	54
2.8	Approaches to Probabilistic Seismic Hazard Analysis	56
2.8.1	Earthquake Recurrence Interval	57
2.8.2	Gutenberg-Richter Relationship	58
2.9	Measurement of Earthquake	58
2.9.1	Earthquake Magnitude	59
2.9.2	Earthquake Intensities and their Effects	62
2.9.2.1	The European Macroseismic Scales	62
2.9.2.2	The Modified Mercalli Scale	64
2.10	Response Spectrum	66
2.11	Peak Ground Acceleration	67
CHAPTE	ER THREE	69
METHO	DOLOGY	69
3.1	Collection of Data	69
3.1.2	Regionalization of Nigeria Seismicity Based on the Earthquake Data	69

3.2	Generation of Gutenberg-Richter relationship	69
3.2.1	Yearly Earthquake occurrence	70
3.2.2	Earthquake Recurrence Interval	70
3.3	PDF and CDF of the Bounded Gutenberg-Richter relationship for Nigeria and So	uth-
70	Western Nigeria	
3.4	Distribution of Earthquakes in Nigeria and South-Western Nigeria	71
3.5	Probability of Earthquake Occurrence in the Recurrence Year	71
3.6	Numerical Analysis	72
3.6.1	Peak Ground Acceleration	72
3.6.2	Modeling of a 3-Storey Reinforced Concrete Building	73
3.6.3	Response Spectrum Analysis	76
CHAPTER FOUR		80
RESULTS AND DISCUSSION		80
4.1	Conversion from Intensity scale to Local Magnitudes	80
4.1.1	Regionalization of Nigeria Seismicity	83
4.2	Gutenberg-Richter Recurrence Plot	83
4.2.1	Earthquake occurrence per year	85
4.2.2	Earthquake Recurrence Interval	86
4.3	PDF and CDF of the Bounded Gutenberg-Richter	88
4.4	Distribution Models for Earthquakes in Nigeria and South-Western Nigeria	91
4.5	Probability of Earthquake Occurrence in the Recurrence Year	95
4.6	Analysis of a 3-storey Reinforced Concrete Building	96
4.6.1	Response Spectrum analysis	96
4.6.1.	1 Storey Drifts	96

4.6.1.	2 Storey Displacements	97
4.6.1.	3 Storey Stiffness	98
4.6.1.	2 Modal Results	98
CHA	PTER FIVE	102
CONCLUSION AND RECOMMENDATIONS		102
5.1	Conclusion	102
5.2	Recommendations	102
5.3	Contributions to Knowledge	103
REFERENCES		104
APPENDIX A		114

LIST OF TABLES

Tabl	le Title	Page
2. 1	Earthquake occurrences as far back as 1900	14
2.2	Some deadly earthquakes on record	18
2.3	The Great Hanshin-Awaji Earthquake of 1995 and the Great East Japan Earthqu	ake of
	2011	25
2.4	History of Earthquake Events in Nigeria	35
2.5	Locations of Current and Proposed Seismic Stations in Nigeria	43
2.6	Magnitude Comparison using Wavelength Transforms	52
2.7	Approximate Categorization for Magnitude of Earthquakes	61
2.8	The Short form of the European Macroseismic Scale	63
2.9	The Modified Mercalli Scale	65
3.1	PGAs for different Intensities	72

LIST OF FIGURES

Figu	re Title	Page
1.1	Geopolitical Zones on the Map of Nigeria	4
2.1	Global Seismic Hazard Map	6
2.2	Seismic Map of North America developed in the global seismic assessment	7
2.3	Seismic Map of South America developed in the global seismic assessment	9
2.4	Seismic Map of Asia developed in the global seismic assessment	10
2.5	Seismic Map of Europe developed in the global seismic assessment	11
2.6	Seismic Map of Africa developed in the global seismic assessment	12
2.7	Seismic Map of Australia developed in the global seismic assessment	13
2.8	Major earthquakes in China	28
2.9	Geological Map of Nigeria	39
2.10	The Ifewara-Zungeru fault on the Nigerian Map	40
2.11	Possible Fault Lines in Nigeria	41
2.12	The Geological framework of Nigeria	42
2.13	The Existing and proposed Seismic Stations in Nigeria	44
2.14	AZALEE Shaking table	49
2.15	Seismic Waves	55
2.16	Relationship between moment magnitude and other magnitude scales	61
3.1	Properties of Concrete	73
3.2	Properties of Rebar	70
3.3	Building Plan View	74
3.4	3D Frame of Building	74
3.5	Beam section properties	74
3.6	Slab section properties	75
3.7	Wall load assignment	75
3.8	Column Section Properties	76
3.9	Response Spectrum Definition	77
3.10	Load Case Data assignment for Response Spectrum	78
3.11	Load Combination Data assignment for Response Spectrum	78

3.12	Modal Case Data assignment for Response Spectrum	79
4.1	Regionalization of Nigeria Seismicity	83
4.2	Gutenberg-Richter Relationship for Nigeria	84
4.3	Gutenberg-Richter relationship for South-West	84
4.4	Earthquake Occurrence per year	86
4.5	Earthquake Recurrence Interval	87
4.6	Bounded Gutenberg-Richter Recurrence PDF for Nigeria	88
4.7	Bounded Gutenberg-Richter Recurrence CDF for Nigeria	89
4.8	Probability Distribution Models for Earthquake in Nigeria	92
4.9	Probability Distribution Models for Earthquake in South Western Nigeria	92
4.10	Cumulative Probability Distribution Models for Earthquake in Nigeria	93
4.11	Cumulative Probability Distribution Models for Earthquake in Nigeria	93
4.12	Probability of occurrence for 7.1 and 7.2 earthquake from 2019 to 2028	96

LIST OF PLATES

Plate	Title	Page
2.1	2011 Great East Japan Earthquake	23
2.2	G G Schierle Shake Table with testing model	48

ABSTRACT

The seismic record of Nigeria shows the occurrences of quakes that range from small to medium magnitude as against the belief of some people that Nigeria is aseismic. Researchers in Nigeria have also recently raised alarm that devastating earthquake is likely to be experienced in the nearest future. Hence this research is focused on probabilistic earthquake hazard assessment of Nigeria and the response of building structures against superlative earthquake. In this research the Gutenberg-Richter approach was employed to forecast and to assess the extent of future earthquakes in Nigeria. Distribution models such as Burr, Rayleigh, Exponential, Gamma, t Location scale, and Weibull were also used to establish the distribution and the probability of yearly occurrence of earthquakes in the South-West and Nigeria as a whole. A 3-storey reinforced concrete building was also modeled and subjected to response analysis under a peak ground acceleration of 0.55g so as to ascertain the response of buildings to earthquake in Nigeria. The results of the forecast established that possible future earthquakes in Nigeria will be experienced in the South-West and the probable earthquake magnitudes are as high as 6.0 in the year 2020; 6.5 in the year 2022; 7.0 between the year 2026 and 2027; 7.1 between the year 2027 and 2028 and 7.2 in the year 2028. According to the poison distribution model, the probability of occurrence of the future earthquakes in the forecasted years was found to be 36.79%. The results of the response spectrum analysis also demonstrated a maximum drift of 0.010695m at storey-2 level and a maximum deflection of 90mm at Storey-4 level. Hence, it is better to classify Nigeria as a low seismic country rather than aseismic.

Keywords: Earthquakes, Tremors, Recurrence Interval, Magnitudes, Intensities, Nigeria