University Links: Home Page | Site Map
Covenant University Repository

Investigation of the effects of selected bio-based carburising agents on mechanical and microstructural characteristics of gray cast iron

Salawu, Enesi Y. and Ajayi, O. O. and Inegbenebor, A.O. and Akinlabi, Stephen A. and Akinlabi, Esther T. and Popoola, A. P. I. and Uyor, U. O. (2020) Investigation of the effects of selected bio-based carburising agents on mechanical and microstructural characteristics of gray cast iron. Heliyon.

[img] PDF
Download (2472Kb)

Abstract

The mechanism of graphite formation on gray cast iron metal during carburisation process using organic nanocarbon (ONC) was investigated at 900 �C for a holding time of three (3) hours. TEM and XRD were employed to characterize the pulverised nano-carbon to determine their phases and bonding potentials. Also, SEM/EDS, XRD and Vickers’ hardness tester were employed to determine the microstructure, phase compositions as well as hardness and wear properties of the carburised material. The microstructural result showed that, there was uniform carbon diffusion into the substrate material which led to layers of graphite formation and subsequent surface modifications for each of the selected nano-carbon used. Also, the XRD results revealed variations in the peak patterns for each of the substrate carburised with different organic carbon with substrates showing graphite and iron phases as observed in that carburised in pulverised palm kernel shell having broad peaks at 35.50o, 44.4o, 65.12o and 82.395o. This is traceable to amorphous properties and crystalline behaviour of the organic carbon. Further to this, the micro-hardness measurement showed that substrate carburised using pulverised palm kernel shell performed better compared to other substrates in other media with a micro hardness value of 355.8 (HV) against as-received which is 116.9 (HV). Thus, this is a novel and possible method of improving the properties of grey cast iron to meet the increasing demand in gear applications.

Item Type: Article
Uncontrolled Keywords: Materials science Mechanical engineering Gears Carburization Mechanical properties Organic carbon Wear Production
Subjects: T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering, Science and Mathematics > School of Engineering Sciences
Depositing User: Mrs Patricia Nwokealisi
Date Deposited: 27 May 2020 07:30
Last Modified: 27 May 2020 07:30
URI: http://eprints.covenantuniversity.edu.ng/id/eprint/13336

Actions (login required)

View Item View Item