DEVELOPMENT AND PERFORMANCE EVALUATION OF A STREET SWEEPING MACHINE

By

ADEBESIN, Akeem Adekunle

(14PCM00715) PGD- Mechanical Engineering, Federal University of Technology, Akure

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING, COVENANT UNIVERSITY, OTA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M. Eng) DEGREE IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA

NOVEMBER, 2016

ACCEPTANCE

I. This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of the degree of Master of Engineering in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota

Philip John Ainwokhai Secretary, School of Postgraduate Studies

Signature & Date

Professor Samuel Wara Dean, School of Postgraduate Studies

Signature & Date

DECLARATION

I, **ADEBESIN**, **Akeem Adekunle**, (14PCM00715), declare that this research was carried out by me under the supervision of **Prof. F.A. Oyawale** of the Department of Mechanical Engineering, Covenant University, Ota. I attest that the Dissertation as not been presented either wholly or partly for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

ADEBESIN, Akeem Adekunle

Signature & Date

CERTIFICATION

We certify that the thesis titled "Development and Performance Evaluation of a Street Sweeping Machine" is an original work carried out by ADEBESIN Akeem Adekunle, (14CM00715), in the Department of Mechanical Engineering, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. F.A. Oyawale. We have examined and found the work acceptable for the award of a degree of Master of Engineering in Industrial/ Manufacturing Option.

Prof. F.A. Oyawale (Supervisor) Signature & Date

Dr. O.O Ajayi (Head of Department)

Prof. John A. Olorunmaiye (External Examiner)

Prof. Samuel Wara (Dean, School of Postgraduate studies) Signature & Date

Signature & Date

Signature & Date

DEDICATION

To the Everlasting God, my saviour, defender and provider. To Him alone be all the glory, praise and adoration.

ACKNOWLEDGEMENTS

To the Almighty God be all the glory! I thank Him, for making a way at the end of the tunnel. Through it all I have learnt to trust and depend completely on you.

I wish to express my deep sense of gratitude and thanks to the Chancellor and Chairman of the Board of Regents, Covenant University, Dr. D. O Oyedepo., for the academic and spiritual platform created. I sincerely thank the Vice-Chancellor, Professor Atayero A. A. A and all the management team for running with the vision.

A heart-felt gratitude goes to my supervisor, Prof. F.A. Oyawale through whom this work kicked off with the iterative option of using vacuum or mechanical sweeping techniques. His time, advice, attention and prayers are most appreciated and I will ever be thankful for the rare privilege of having you on ground in Covenant University by divine providence during the most crucial aspect of my training. To my departmental PG coordinator, Dr. S.O. Oyedepo, I deeply appreciate your mentoring role in my career path.

Many thanks to Dr. O.O Ajayi. (HOD, Mechanical Engineering) who painstakingly took me up at 2015 ICAD conference centre and imparted his engineering experiences on me, your constructive criticism added value to this work, your encouraging words and inspiring advice were always timely, and to all Faculty and Staff of Mechanical Department, Covenant University for their encouragement and support.

I am indebted to the Tertiary Education Trust Fund, Federal Polytechnic, Ilaro and Abuja Offices (TETFUND) for awarding me a scholarship to support my academic pursuit. To my great and wonderful H.O.D, Engr. Dr S.A. Odunlami, I deeply appreciate your mentoring and leadership role. A big thank you to Engr. O.A. Osore, Engr. Dada, A., Prof. (Engr.) S.A. Olagoke, Engr.O.O.Awolola and the entire staff and students of the department of Mechanical Engineering, Federal Polytechnic, Ilaro

The scholarly contributions of my M. Eng. defense external examiner, Prof. John A. Olorunmaiye, and internal assessors: Dr. Kilanko O, Dr. Udo, M.O and Dr. Joshua Olusegun Okeniyi are well appreciated. I also express my gratitude to my lecturers and examiners from day one to M.Eng. Oral defence: Prof. Dumade I.S, Dr. Babalola, P.O. Dr. Nwanya S.C. Dr. R.J.O Ekeocha, Prof. A. O. Inegbenebor, Dr. Onawumi, Dr (Mrs) O. Joseph., Engr Leramo Richard and Engr. F.A. Ishola.

I appreciate all the contributions of the technical and administrative staff of Mechanical Engineering, Covenant University, Ota: Mr. Ocheja, Mrs.A.O. Benson, Engr. C.O Ajayi and Dr. Fayomi O. S, to this work.

Special thanks to my parents Chief L.F. Adebesin and my late mother Mrs. M.A. Adebesin, who always encouraged me to go for gold. My children; Moroluwa, Morakinyo, Moronkola and Moronfoluwa Adebesin, I thank you all for every word that cheered me up to aim higher. Mrs. Adebanjo Sherry, God bless her for her understanding and financial assistance. To my brothers, sisters in-laws and relatives for their prayers, love and encouragement; be blessed of the Lord most high.

I would also like to thank all those people who have contributed in some ways both directly and indirectly to the success of this research and the writing of this thesis.

To my wife and best friend Mrs. S. A Adebesin., you are simply the best. I deeply appreciate your unassuming love, prayers, understanding and all round support in this research.

ABSTRACT

Street sweeping using local brooms and parkers are laborious and time consuming and street sweepers are always under stresses and extreme body pains during and after work. This study therefore was aimed at creating a system for effective sweeping while minimizing associated bodily stress. A machine that simulates the traditional method of sweeping was developed and produced using locally sourced raw materials like bristles, teflon, mild steel; these materials were subjected to different common manufacturing processes and techniques. The sweeping action was achieved by principle of a portable gasoline petrol engine with shaft drive. As the rotational drive of the gasoline engine was converted to linear motion via the sprocket and chain arrangement which in turn rotates a secondary shaft with bearing attachment unto an attached portable gear box which converts the linear drive into rotary movement of the brittles dressed teflon drum for the required sweeping action. The results of the performance tests carried out showed that the machine sweeping efficiency increased with the increase in the energy input and speed thus its sweeping capacity was determined using Microsoft excel [®]. The comparison between the developed mechanical street sweepers using gasoline engine (5.5h.p & 7.5h.p) and hand- held broom (common sweeping method) being carried out by men and women sweepers on street and major roads, depicts the variance in time taken, swept area output energy and their corresponding efficiencies. The results of this study were analyzed; we conclude that there was a significant difference in efficiencies of the machine developed and sweeping.

Keywords: machine speed, wastes, sweeper, sweeping efficiency,

INDLE OF CONTENTS	TABLE	OF	CONTENTS
-------------------	-------	----	----------

Title p	age	i
Accept	tance page	ii
Declar	ation	iii
Certifi	cation	iv
Dedica	ntion	v
Ackno	wledgements	vi
Table	of contents	vii
List of	tables	viii
List of	figures	ix
List of	plates	x
List of	symbols	xi
List of	appendices	xii
Abstra	ct	xiii
CHAP	PTER ONE	
INTRO	DDUCTION	1
1.0	Background Information	1
1.1 1.2	Statement of the Problem Aim of the Study	
1.3	Objectives of the Study	10
1.4	Scope of the Project	11
1.5	Delimitation	11
СНАР	PTER TWO	
2.0	LITERATURE REVIEW	12
2.1	Technological advancement	13
2.2	Classification of street wastes	21

2.3	Nigerian Road Network	21	
2.3.1	Ergonomics and Functional Requirements	23	
2.3.2	Bending/Tilting Position	24	
2.3.3	Anthropometrics	26	
2.3.4	Hand and Wrist Problems	26	
2.3.5	The Risk Factors	29	
2.3.6	Safety Design	29	
2.3.7	The Sweeping Task	30	
2.4	Street Sweeping Pickup Performance	32	
2.4.1	Potential Constraints/ Problems	32	
2.5	Focus of this Work	34	
CHAPTER THREE			
3.0	MATERIALS AND METHODS	35	
3.1	Materials	35	
3.2	Design Characteristics	36	
3.2.1	Human factor	36	
3.3	Design criteria	37	
3.3.1	Design of machine components and analysis	38	
3.3.2	Machine power requirements	38	
3.3.3	The Chain Drive	39	
3.3.4	Shaft diameter	39	
3.3.5	Bearings and Lubrication	41	
3.3.6	Torsional Effect	42	
3.3.7	Power transmitted by the rotating shaft subassembly	43	
	Tower transmitted by the folating shart subassembly	15	

3.3.9	Machine Description	47	
3.4	Principal Dimensions/ Specifications	48	
3.5	Design for Assembly and Dis- assembly	48	
3.5.1	Sweeping Head	48	
3.5.2	Waste bucket/Collector	49	
3.5.3	Steering lever	49	
3.5.4	The hand lever	50	
3.5.5	Engine seat/ base	50	
3.5.6	Wheels	51	
3.5.7	Sweeping Brushes Assembly	51	
3.6	Tephlon Drum Design And Indexing Calculations	51	
3.7	Construction Procedure	52	
3.8	Controlled Sweeper Pickup Performance Testing	53	
3.9	General Information of the studied Institution	54	
3.9.1	The Pilot Tests Survey	54	
3.9.2	General Aspects	55	
3.9.3	Timing and Methodology	56	
3.94	Engineering Material	57	
CHAPTER FOUR			
4.0	RESULTS AND DISCUSSION	59	
4.1	Simulated Results using Microsoft Excel	63	
4.2	Discussion	67	
CHAI	PTER FIVE		
CONC	CLUSION AND RECOMMENDATIONS	68	
5.1	Conclusion	68	

5.2	Recommendations	68
5.3	Contributions to knowledge	68
Refere	ences	70
Appen	ndix	73

LIST OF TABLES

Table 1:	K_b and K_t values for rotating shafts	28
Table 2:	Construction Details of Machine Elements for Street Sweeping	
	Machine	53
Table 3:	Bill of Engineering Materials and Evaluation	57
Table 4:	Values of 7.5h.P Gasoline Engine	59
Table 5:	Values of 5.5 HP gasoline engine	61

LIST OF FIGURES

Fig 1:	Sweeping Machine Concept Flow Chart	3
Fig 2:	Chart from the Measure of Man	26
Fig 3:	User Centered Design: The sweeping machine, the user, and the task	
	Characteristics	37
Fig 4:	Typical shaft loading deflection	41
Fig 5:	Shaft twisting effect	42
Fig 6:	Maximum Bending Moment on Shaft	43
Fig 7:	Bending Moment on Shaft	44
Fig 8:	Bending Moment on Shaft	44
Fig 9:	Share Force and Bending Moment	46
Fig 10:	Swept Area against Energy Consumed	63
Fig 11:	Swept Area against time taken	64
Fig 12:	Swept Area against Energy consumed	65
Fig 13:	Swept Area against Time taken	66

LIST OF PLATES

Plate 1:	Newer Mechanical Street Sweeper in Ohio	9
Plate 2:	Walk behind street sweeper is used to clean a sidewalk alongside	
	pedestrians	9
Plate 3:	Green Star Mechanical Sweeper Taipei Port 2012	10
Plate 4:	Grader-style vehicle using sweeper	10
Plate 5:	Elgin Mega wind	11
Plate 6:	Vegetable oil powered vacuum cleaner truck - "leaf vacuum	11
Plate 7:	Ogun State Ministry of Environment Street Sweeper	12
Plate 8:	Picture taken along Sango/ Covenant University route	15
Plate 9:	Picture taken along Sango/ Covenant University route	17
Plate 10:	Shaft bracket arrangement	30
Plate 11:	Sweeping Head	36
Plate 12:	Waste Bucket/Collector	37
Plate 13:	Stirring Lever	37
Plate 14:	Engine seat/ base	38
Plate 15:	Indexed Tephlon Arrangement	39
Plate 16:	Sweeping Characteristics: Swept area, Time taken and Machine	
	Efficiency Street Sweeping in Covenant University	42
Plate 17:	Determining the speed of the engine in rpm using tachometer	44
Plate 18:	CNC Programming	59
Plate 19:	Tachometer	60
Plate 20:	Indexed Machining Operation	61
Plate 21:	Indexed Teflon Material	61

LIST OF SYMBOLS

t	time
Р	Pressure
r	Radius
π	phi
V	Volume
К	Load stress factor
Σ	Summation
μ	Miu
Р	Power
σ	Stress
A	Area
m	Metre
τ	Torsional Shear stress
Τ	Torque
"	Inches
N	Number of turns
٥	Degree
S _n	Endurance Strength
Е	Efficiency
h.p	Horse power

LIST OF APPENDICES

1	Detailed View of Machine Components	89
2	Isometric view of the street sweeping machine	89
3	Exploded view of street sweeping machine	89
4	Orthographic view of the street sweeping machine	90