EFFECT OF *Tetracarpidium conophorum* EXTRACT ON TESTOSTERONE-INDUCED BENIGN PROSTATIC HYPERPLASIA IN MALE *WISTAR* RATS

By SALAKO, ABIODUN EVELYN

16PCP0321

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY OTA, OGUN STATE, NIGERIA. IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN BIOCHEMISTRY

MAY, 2018

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of Master of Science (M.Sc.) degree in Biochemistry in the Department of Biochemistry, College of Science and Technology, Covenant University Ota, Ogun State, Nigeria.

Mr. J.A. Philip

.....

Signature and Date

(Secretary, School of Postgraduate Studies)

Prof. S. Wara

••••••

Dean, School of Postgraduate Studies

Signature and Date

DECLARATION

I, **SALAKO ABIODUN EVELYN** (16PCP01321), declare that this M.Sc. dissertation titled: "Effect of *Tetracarpidium conophorum* extract on testosterone-induced benign prostatic hyperplasia in male *wistar* rats" was undertaken by me under the supervision of Dr. O.E. Omotosho. The work presented in this dissertation has not been presented, either wholly or partly for the award of any degree elsewhere. All sources of scholarly information used in this dissertation were duly acknowledged.

Salako, Abiodun Evelyn

.....

(Student)

Signature and Date

CERTIFICATION

We certify that the dissertation titled: "Effect of *Tetracarpidium conophorum* extract on testosterone-induced benign prostatic hyperplasia in male *wistar* rats" is an original work carried out by SALAKO, Abiodun Evelyn with Matriculation Number: 16PCP01321 in the Department of Biochemistry, College of Science and Technology, Covenant University Ota, Ogun State, Nigeria. We have examined the work and found it acceptable for the award of Master of Science (M.Sc.) degree in Biochemistry.

Dr. O. E. Omotosho	
(Supervisor)	Signature and Date
Dr. S.O Rotimi	••••••
(Head, Department of Biochemistry)	Signature and Date
Prof. S. Wara	

(Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

I dedicate this work to an ever faithful and merciful God who was with me throughout this work.

ACKNOWLEDGEMENTS

My utmost appreciation goes to almighty God for giving me the priviledge to write this report in good health. I also appreciate my parent Mr. and Mrs. Joseph Salako without whose support I would never have had this opportunity.

Without doubt, I am also grateful to my project supervisor Dr O.E. Omotosho, for her unpatrolled guidance during the course of this project, I am very grateful for the corrections, advice and training. May God continue to strengthen you. I also appreciate my husband, Mr. Tolulope Babalola for his love, support and understanding during the course of my work.

I also appreciate all the Faculty members of Biochemistry department for their comments, remarks, corrections and helpful tips during the presentation of this work. Also to the Management and Staff of the Department of Biochemistry, Covenant University especially the Head of Department, Dr S.O. Rotimi for providing an enabling environment needed to carry out this research.

And, finally I appreciate my colleague, Ogunlade Dipo for his understanding and support, the sky is your starting point.

THANK YOU ALL

TITLE PAG	E	Ι
ACCEPTAN	VCE	II
DECLARA	CTION	III
CERTIFICA	ATION	IV
DEDICATI	ON	V
ACKNOWI	EDGEMENT	VI
TABLE OF	CONTENTS	VII
LIST OF TA	ABLES	XI
LIST OF FI	GURES	XII
ABSTRACT	[XIII
CHAPTER	ONE	1
INTRODU	CTION	1
1.1 Back	ground	1
1.2. State	ment of the problem	2
1.3 Justi	fication	2
1.4 Aim	and Objectives	3
CHAPTER	TWO	4
LITERATU	RE REVIEW	4
2.1 The	prostate gland	4
2.1.1	Arterial Supply	5
2.1.2	Venous Drainage	5
2.1.3	Innervation	5
2.1.4	Lymphatic Drainage	6
2.1.5	Physiology of the prostate gland	6
2.2 Beni	gn prostate hyperplasia	9
2.2.1	Clinical diagnosis of benign prostatic hyperplasia	9
2.2.2	Drug approach to the management of benign prostatic hyperplasia	10

2.3 PROST	ATE SPECIFIC ANTIGEN	12
2.3.1	Functions and Features of PSA	12
2.3.2	Production of the prostate specific antigen in benign hyperplasia	13
2.3.3	Factors Influencing PSA Levels	13
2.4 Testos	sterone propionate	14
2.4.1	Uses of testosterone propionate	14
2.4.2	Mechanism of action	15
2.4.3	Absorption	15
2.4.4	Metabolism	15
2.4.5	Route of elimination	15
2.4.6	Half life	16
2.4.7	Clearance	16
2.4.8	Toxicity	16
2.5 Finast	eride	16
2.6 Oxida	tive stress in benign prostatic hyperplasia	17
2.7 Antio	xidants	19
2.6.1	First line defence antioxidants	20
2.6.2	Second line defence antioxidants	21
2.6.3	Third line defense antioxidants	21
2.6.4	Fourth line defense antioxidants	21
2.4.5	Superoxide dismutase (SOD)	23
2.4.6	Catalase (CAT)	23
2.4.7	Glutathione peroxidases (GPx)	24
2.7 Medi	cinal plants	25
2.8 Tetra	carpidium conophorum	25
2.8.1	Origin and Description	27
2.8.2	Nutritional Composition and Nutritional Value	28
2.8.3	Chemical Composition and Medicinal Value of T. conophorum	28
2.9 Phyto	ochemicals	31
2.9.1	Classification of phytochemicals	32
2.9.2	Alkaloids	33
2.9.3	Activity of alkaloids	33
2.9.4	Glycosides	33

	2.9.5	Flavonoids	34
	2.9.6	Phenolics	35
	2.9.7	Saponins	36
	2.9.8	Tannins	36
	2.9.9	Terpene	37
	2.9.10	Steriods	38
CHA	APTER I	THREE	39
MA	TERIAL	S AND METHODS	39
3.	1 Chemi	cals and Equipment	39
3.2	2 Plant o	collection	39
3.	3 Extrac	tion of plant material	39
3.4	4 Prelim	inary Phytochemical Screening	40
3.:	5 Anima	l treatment and experimental design	40
3.0	6 Collec	tion of Blood and Prostate samples	41
3.′	7 Determ	nination of Antioxidant Status	41
	3.7.1	Protein determination	41
	3.7.2	Determination of superoxide dismutase (sod) activity	43
	3.7.3	Determination of catalase activity	44
	3.7.4	Estimation of reduced glutathione (gsh) level	45
3.8	8 Determ	nination of prostate specific antigen	47
3.9	9 Relativ	ve prostate weight	50
3.	10 Statist	ical analysis	50
CHA	APTER F	TOUR	51
RES	SULT		51
4.	1 Qualit	ative phytochemical screening of tetracarpidium conophorum	51
4.2	2 Evalua	ation of oxidative stress biomarkers in blood plasma	52
4.	3 Determ	nination of prostate specific antigen in blood plasma	55
4.4	4 Relati	ve prostate weight determination in experimental animals	56

CHAPTER FIVE

DISC	USSION, CONCLUSION AND RECOMMENDATION	58
5.1	Discussion	58
5.2	Conclusion	60
5.3	Recommendations	60
REFE	RENCES	61
APPENDICES		68

58

LIST OF TABLES

Table 2.1: Drugs that block Alpha-1-adrenergic receptor, Dosage and adverse effects6
Table 2.2: Drugs that inhibit 5-alpha reductase enzyme and their adverse effects
Table 2.3: Bioactive Phytochemicals in Medicinal Plants
Table 3.1: A table showing procedure for protein standard curve
Table 3.2: A table showing preparation of GSH standard curve
Table 4.1: The presence or absence of phytochemicals in Tetracarpidium conophorum.51
Table 4.2: Catalase (CAT) activity in rats induced with benign prostatic hyperplasia and
treated with Tetracarpidium conophorum
Table 4.3: Superoxide dismutase (SOD) activity in rats induced with benign prostatic
hyperplasia and treated with Tetracarpidium conophorum
Table 4.4 : Reduced glutathione (GSH) activity in rats induced with benign prostatic
hyperplasia and treated with Tetracarpidium conophorum54
Table 4.5 : Level of prostate specific antigen (PSA) in Wistar rats treated with
Tetracarpidium conophorum.and induced with benign prostatic hyperplasia55
Table 4.6 : Relative prostate weight (RPW) in Wistar rats treated with Tetracarpidium
conophorum and induced with benign prostatic hyperplasia

LIST OF FIGURE

Figure 2.1: The prostate gland and surrounding organs
Figure 2.2: Normal prostate gland vs. enlarged prostate gland7
Figure 2.3: Chemical structure of Testosterone propionate
Figure 2.4: Chemical structure of finasteride
Figure 2.5: Oxidative stress: Imbalance between free radicals and antioxidants
Figure 2.6: First line antioxidants defense against reactive oxygen species
Figure 2.7: Nuts of the African walnut
Figure 2.8: Leaves of the African walnut
Figure 2.9: Structures of the important naturally occurring alkaloids
Figure 2.10: Basic structures of some pharmacologically important plant derived glycosides
Figure 2.11: Basic structures of some pharmacologically important plant derived flavonoids
Figure 2.12: Basic structures of some pharmacologically important plant derived phenolics
Figure 2.13: Basic structures of some pharmacologically important plant derived
Figure 2.14: Classification of tannins
Figure 2.15: Basic structures of some pharmacologically important plant derived terpenes
Figure 2.16: Basic structures of some pharmacologically important plant derived Steroids38

ABSTRACT

Benign prostatic hyperplasia (BPH) is the enlargement of the prostate, a walnut-sized gland located just below the bladder. Currently, two main treatment options are available for BPH patients: 5-alpha reductase inhibitors (finasteride) and alpha-1-adrenergic receptor antagonists. However, these drugs can produce undesirable side effects. In this study, the levels of antioxidant (superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH)), prostate specific antigen (PSA), relative prostate weight and phytochemicals were investigated in *Tetracarpidium conophorum* leaf extract on the development of BPH in male Wistar rat. Thirty (30) animals were randomly divided into six groups of five animals each. All treatments were administered to animals concurrently for four (4) weeks. Group A (normal control) received olive oil subcutaneously and other groups (B, C, D, E and F) received subcutaneous injection of testosterone propionate. Tetracarpidium conophorum (100, 200 and 400 mg/kg body weight) was administered by oral gavage daily to Groups C, D and E respectively while Group F received finasteride. From the phytochemical screening result obtained, saponins, phenols, tannin, flavonoid, steroid, glycoside, terpenoids and alkaloids were present. Animals in group E showed significant decrease (p<0.05) in relative prostate weight $(10 \times 10^{-4} \pm 29 \times 10^{-5} g)$ and serum PSA level (91.83 \pm 5.78pg/ml) when compared to relative prostate weight (17 \times 10⁻ $^{4}\pm84\times10^{-6}$ g) and serum PSA level (174.8±3.13pg/ml) of group B. However, a significant increase (p<0.05) in group E was observed in the levels of CAT (31.74±1.43U/mg protein), SOD (52.85±1.23U/mg protein) and GSH (16.50±0.28U/ml) when compared to levels of CAT (11.04±0.44U/mg protein), SOD (33.36±1.27U/mg protein) and GSH (7.28±0.27U/mg protein) of group B. It may therefore be concluded that oral administration of *Tetracarpidium conophorum* at 400mg/kg can prevent the development of BPH induced by testosterone.