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explored agro-industrial wastes, slag and corncob ash, for the production of geopolymer
concrete (GPC). Corncob was dehydroxylated at 600°C for 3h and partially used as a
’lfeyw"lrds-' replacement for slag at 0%, 20 %, 40 %, 60 %, 80 %, and 100 %. A 12M, 14 M, and 16 M of both
G(r)cz)i%;ngranulated blast furnace slag sodium silicate (SS) and sodium hydroxide (SH) were used as activators. The chemical

moduli of each and mixed binder were quantified and evaluated based on the major

Geopolymer concrete X . X X .
Chemical composition reactive oxides, hence leading to the evaluation of reactivity indexes (RIs). Moreover, the

Alkaline solutions RIs and mix design properties (MDPs) of concrete were used for the prediction of flexural
Flexural strength strength while the chemical resistance of each concrete sample was investigated.
Regression models Compared with the experimental results, the predictive flexural strengths based on the RIs

and the MDPs yielded a high precision with R? ranging from 88-92 % at 7-90 days,
respectively. Moreover, the GPC, unlike Portland cement concrete (PCC), resisted the more
acidic attack. Therefore, the use of GGBFS—CCA blended concrete would be more
advantageous in a highly acidic environment than PCC. Ultimately, the models proposed by
this study can be useful in the concrete mix design procedure for the flexural strength
development of GPC incorporating agro-industrial provided the oxide compositions of each
and mixed material were obtained.

© 2020 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the construction sector, the utilized rate of concrete is high, owing to the rapid industrialization and urbanization [1].
Amongst the concrete constituents, Portland cement (PC) plays a pivotal role in determining the quality of concrete.
However, the production of PC, apart from its negative impact on the environment, requires a massive industrial process [2].
A ton of PC production, which emits 1 ton of carbon dioxide (CO,) into the atmosphere, requires 4000 M] energy, 1.5 tons of
raw materials, and 140 kW h of electricity [3]. Moreover, a 7-9 % of CO, is emitted yearly into the atmosphere following the
massive requirements of energy in PC production, hence contributing to the serious global warming [4]; this poses huge
threats to human and ecosystem survival and development. Besides, from the building activities alone, Mahmoudkelaye
etal. [5] estimated 30-40% generation of greenhouse gas (GHG) emissions, globally. Moreover, the yearly utilization of PCCin
the construction industry is estimated to be 20 billion tons globally [6]. Furthermore, the need for the construction of
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infrastructures in fast-growing cities could emit 226 gigatonnes of CO, by 2050 in the developing nations [6]. Following this
trend, the carbon budget of 800 gigatonnes of total CO, emissions targeted by the Paris Climate Agreement after 2017 would
be challenging to achieve.

In the construction sector, such as concrete mix design [7], pavement engineering [8], and geotechnical engineering [9],
sustainable development and production have been a major priority. In the construction sector, there is a global call for the
reduction of CO2 emissions associated with PC production. The utilization of supplementary cementitious materials (SCMs)
such as fly ash [1,10], coal ash [11], silica fume [1,12], metakaolin (MK) [10] ground granulated blast furnace slag (GGBFS)
[10,12], rice husk ash (RHA) [13,14], corncob ash (CCA) [15-17], cashew nutshell ash (CNSA) [ 18], bagasse ash (BA) [11], palm
oil fuel ash (POFA) [19], and cassava peel ash (CPA) [20] in the production of sustainable construction materials, have been
yielding favourable results in the recent studies. The partial or full incorporation of SCMs for the green concrete production,
apart from limiting the environmental impact of PCC, has been reported to improve the workability [21,22]; mechanical
[23,24]; durability [23,25]; and economical [26,27] properties. Moreover, the use of SCMs does not only reduce the initial
CO, emissions of PC production but also reduce the volume of PCC needed in the construction industry and extend the
building’s service life [4]. It is interesting to note that in 2016 and 2017 alone, the global production of corn was 969.69 and
1071.51 million metric tons, respectively [28]. Notwithstanding, most of the corncobs produced are discarded as waste,
hence culminating in environmental pollution; this justified the recycling of CCA for GPC production. Besides, CCA possesses
high silica and alumina contents, hence contributing to its strong pozzolanic response [15,21].

Different techniques have been used to correlate both mechanical and mix properties of concrete. Hammoudi et al. [29]
applied artificial neural networks (ANNs) and response surface methodology (RSM) to evaluate the compressive strength (fc)
of concrete. It was discovered that ANNs yielded better accuracy than RSM. Moreover, Al-Shamiri et al. [30] adopted an
extreme learning approach (ELA) to predict the fc of high-strength concrete. It was revealed that ELA yielded acceptable
precision to correlate the fc of high-strength concrete and the mix design proportions. Sobhani et al. [31] used the regression
models to predict the fc of no-slump concrete and compared with ANNs and adaptive network-based fussy inference
systems (ANFIS). It was inferred from the findings of the study that ANNs and ANFIS yielded better accuracy than regression
models. However, the regression models offered a predictive equation for fc based on mix design proportion, while ANNs and
ANFIS could not offer such an equation. Oyebisi et al. [ 18] and Xie and Visintin [14] applied the reactivity, hydraulic, and lime
moduli to predict the relationship between the fc of concrete blended with SCMs and the mix design proportions such as
water-to-binder ratio and binder-to-aggregate volume ratio of 0.618 and 0.30-1.5, and 0.12 and 0.045 to 0.359, respectively;
the predictions yielded good accuracy with 99.66 % and 83.70 % coefficients of determination, respectively. Furthermore, the
activity index of any SCM is influenced by its oxide composition, mineralogical composition, fineness, and specific surface
area [32,33]. Besides, type, mineralogical, and chemical compositions of aggregates influence the performance and reactivity
of concrete [34,35]. However, a single oxide cannot be used to quantify the reactivity of SCM. Hence reactivity, hydraulic, and
lime moduli are majorly applied to quantify the hydraulic or self-cementitious properties, while both silica and alumina
moduli are commonly used to determine pozzolanic properties [36,37].

Several standards have established the procedures of assessing the chemical indexes and hydraulic efficiency index of
GGBFS [38,39] and the pozzolanic activity of pulverized fly ash or natural pozzolan [40,41]. ASTM C 989 [39] classifies GGBFS
into three grades (80, 100, and 120) based on the mortar strength of slag activity index (SAI). The SAI for grade 80, 100, and
120, using 50 % cement replacement by the mass of the binding materials at both 7 days and 28 days must be 70 % and 80 %,
70 % and 90 %, and 90 % and 110 % strength minimum of the reference-cement mortar, respectively. Moreover, based on the
caustic soda test in assessing the hydraulic activity of slag, ASTM C 1073-18 [42] recommends the compressive strengths of
7 MPa and 8 MPa, and 12 MPa and 15 MPa after 6h and 8 h hardening, respectively. On the other hand, BS 3892-1 [40]
specifies a SAI greater than 0.80 as a positive pozzolanic activity for fly ash or natural pozzolan for 30 % cement replacement
after 7 days and 28 days. In contrast, ASTM C 618 [43] recommends a SAl greater than 0.75 for 20 % cement replacement after
7 days and 28 days. Despite the satisfactory and positive results of using chemical indexes and established procedure in
assessing both hydraulic and pozzolanic properties of SCMs, there was no literature related to the activity indexes and
durability properties of GPC incorporating GGBFS and CCA.

Many of the previous studies considered fc as the most remarkable factor to determine the quality of the concrete mixture
[30,31]. Still, another factor, such as flexural strength (fr) has not been considered. Therefore, this paper provides new insight
into the oxide compositions of each binding material by using the x-ray fluorescence analyzer (XRF); this guides in assessing
the hydraulic and pozzolanic activities of GPC blended with agro-industrial wastes using the RI's concept. It also provides an
evaluation of the reactivity of each and blended binding material using the existing Rls, which are commonly used in self-
cementitious and pozzolanic reactions; it develops a model to predict the fr of GPC blended with SCMs following the RI and
mix design proportions, and investigates the performance of concrete produced under acidic attacks. In achieving these
objectives, agro-industrial wastes such as GGBFS and CCA were harnessed, recycled, activated with alkaline solutions, and
cured under ambient conditions. The experimental data for flexural strengths were obtained through laboratory work, while
the predictive flexural strength was developed via the fit regression model in Minitab 17 to offer a predictive equation [31].
The hydraulic and pozzolanic activity tests of the binding materials were also examined using slag activity index and CST, and
SAI and FT, respectively. Slag activity index and CST were adopted because they have been standardized and offered
satisfactory results [37-39,42]. In the same vein, both SAI and FT have been standardized, reported, and significantly
correlated [37], hence justifying their adoption in this present study. The recycling of both GGBFS and CCA would lessen the
environmental, economic, and societal threats posed by the PC production; improve the concrete properties, and reduce the
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construction cost and solid wastes, hence driving sustainability. The models developed from this study would enhance the
findings of future studies on GPC incorporating SCMs by providing means of predicting fr based on Rls and MDPs.

2. Materials and methods
2.1. Materials

The locally sourced materials, GGBFS and CCA, as shown in Fig. 1, were used as SCMs for the production of GPC, while
Portland limestone cement (PLC), as shown in Fig. 1, was used as a binder for the production of PCC and compared with GPC.
Slag was ground to obtain GGBFS. Corncob was dehydroxylated at 600 °C for 3 h to obtain CCA. The SCMs were then sieved
with BS 90 wm to obtain a similar fineness with PLC.

The specific gravity (SG) of the binding materials was determined following the requirements stated in BS EN 1963 [44]
using a specific gravity bottle and kerosene. The results indicated 2.90 g/cm?, 2.44 g/cm?, and 3.15 g/cm? for GGBFS, CCA, and
PLC, respectively. Owing to these results, GGBFS met the SG limit of 2.90 g/cm?® to 3.15 g/cm? specified by BS EN 15167—1[38],
while that of CCA confirmed the similar results obtained by Oyebisi et al. [21].

The fineness of binding materials was determined using the dry sieving method, and BS sieve 90 pm as stipulated by BS
EN 196—6 [45]. The results showed 7.6 %, 8.0 %, and 7.5 % for GGBFS, CCA, and PLC, respectively, hence satisfying the 12 %
maximum fineness specification prescribed by BS EN 196—6 [45]. Therefore, the materials are suitable for use as binder and
SCMs in concrete production. Furthermore, Laser diffraction, Model Beckman Coulter LS-100, was used to analyze the
particle size distribution of the binding materials, as shown in Fig. 2, over the range size of 0.5 wm-900 pwm. The results
indicated a mean particle size of 20.68 pwm, 23.45 wm, and 18.79 wm for GGBES, CCA, and PLC, respectively. Besides, the
specific surface area was carried out on the binding materials following the procedure stated by BS EN 1966 [45] using the
Blaine method at a standard porosity of 0.500. The results indicated 420 m?/kg, 625 m?/kg, and 375 m?/kg for GGBFS, CCA,
and PLC, respectively.

The alkaline solutions, SH pellets with 99 % purity, and SS gel were locally sourced and used as activators. SS gel comprises
Na,0, Si05, and H,0 of 9.4 %, 30.1 %, and 60.5 % respectively, with SiO,/Na,0 weight ratio of 3.20 and S.G. of 1.40 g/cm? at
20°C.A354¢,400g, and 443 g of SH pellets were measured and dissolved in 646 g, 600 g, and 557 g of clean water based on
the chemistry procedures established by Rajamane and Jeyalakshmi [46] for the preparation of 12M, 14 M, and 16 M
activators, respectively. The SH solutions were prepared 24 h earlier to reduce the high rise in temperature owing to the
reaction between SH pellets and water and added to SS gel 2 h before casting for better performance, using a SS/SH ratio of
25: 1

The locally sourced aggregates were used and prepared at saturated surface conditions before the mix design. Grading
was also conducted on the aggregates to obtain the needed particle size distribution (PSD). Moreover, the aggregates were
characterized in line with the BS EN 12,620 [47]. The specific gravity (SG), water absorption (WA) and moisture content (MC)
of the aggregates were determined following the procedure stated in BS EN 12,620 [47]. The results showed the SG of 2.60 g/
cm?® and 2.64 g/cm®; WA of 0.7 % and 0.8 %, and MC of 0.3 % and 0.2 % for both fine aggregate (FA) and coarse aggregate (CA),
respectively. Fig. 3 shows the PSD of both FA and CA used; the aggregates satisfied the limits of BS EN 12,620 [47]. On the
other hand, the mineralogical composition of the coarse aggregate (granite) was identified with the aid of the Petrological
Microscope, Model RPI-3 T. The sample was prepared, polished in a glass ground plate using a carborundum, and mounted on
a clean glass slide with adhesive [48]. Also, the chemical composition was analyzed using the XRF spectrometer machine,
Philips PW-1800. The results of mineralogical composition showed quartz, feldspar, mica, and iron oxide of 62.50 %, 20.45 %,
16.55 %, and 0.50 %, respectively. Moreover, the chemical composition reveals SiO,, Al,03 Fe,03, CaO, MgO, SOs, K,0, Na,0,
P,0s5, MnO, and LOI as 67.05 %, 14.40 %, 5.63 %, 3.90 %,1.72 %, 0.02 %, 5.50 %, 1.16 %, 0.15 %, 0.05 %, and 0.52 %, respectively. From
these results, it is inferred that the coarse aggregate is acidic granite because the content of SiO, was in the range of 66-75%
[35]. Besides, based on alkalinity, the granite was classified as calcalkalinity in that (Na,0 +K,0)?/(SiO, — 43) was 1.85; this

Fig. 1. Binding materials used (a) PLC (b) GGBFS (c) CCA.
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Fig. 3. The particle size distribution of aggregates used.

ranged between 1.2-3.5 for calcalkalinity [35]. XRF analysis was not performed on the FA because it comprises SiO, content,
almost in its entirety [48].

2.2. Tests for pozzolanic activity

2.2.1. Strength activity index (SAI)
The SAI was determined in line with the BS 3892—1 [40]. The water to binder ratio was modified to allow for the same
flow properties with reference-cement mortar cubes [49], hence requiring mixing water of 235mL of distilled water.

Therefore, the SAI was determined for both 7 days and 28 days compressive strengths (CS) on the average of three samples
using the relationship, as illustrated in Eq. 1 [40].

SAI % = g x 100 (1)
where P is the average CS of pozzolan-reference cement mortar cubes (in MPa)

C is the average CS of reference-cement mortar cubes (in MPa).

The cement-reference mortar cubes, at 7 days and 28 days, showed the CS of 40.64 MPa and 50.43 MPa, respectively.
Following the formula, as illustrated in Eq. 1, the test pozzolan (CCA) exhibited a SAI of 0.85 and 0.91 at 7 days and 28 days,

respectively, thus showing considerable pozzolanic activity because SAI is greater than 0.80, as recommended by BS
3892-1 [40].
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2.2.2. Frattini test (FT)

The FT was analyzed following the procedure specified by BS EN 195-5 [50]. The theoretical maximum concentration
(TMC) of [CaO] was determined using the relationship, as illustrated in Eq. 2 [50]. As shown in Table 1, the [CaO] was
compared with TMC [CaO], and the result was determined as the difference between the two values, expressing as a
percentage of TMC removed. The pozzolanic activity of CCA, as shown in Table 1, removed the lime with 51 %, thus indicating
that CCA is pozzolanically active.

350

TMC[Ca0] = s @)

2.3. Tests for hydraulic activity

2.3.1. Slag activity index

The method was carried out following the procedure in ASTM C 989 [39] for the GGBFS. The procedure is similar to
that of SAI stated in BS 3892—1 [40] except for 50 % cement replacement, C3A content ranging from 6 to 10 %, and a
maximum of 3% SO3 content specified by the standards for the reference cement. Therefore, from the XRF results, PLC
exhibits 2.03 % SO3; content, hence satisfying the maximum requirement of 3%. Besides, C3A was quantified based on
Bogue’s equation, as shown in Eq. 3 [34]. Based on the XRF result and in line with Eq. 3, the result exhibited 10 % C3A,
thus fulfilling the maximum specification of 10 %. Finally, the slag activity index was determined following the
relationship, as illustrated in Eq. 1.

C3A = 265(A1203) — 1.69(1:6203) ( 3)

The CS of GGBFS-reference cement mortar cubes to the cement-reference mortar cubes with the mean particle size
(dy50=20.68 um) exhibited the slag activity index of 76.42 % and 98.53 % at 7 days and 28 days, respectively, hence
classifying as grade 100 because the activity index is more than 70 % and 90 % at 7 days and 28 days, respectively [39].

2.3.2. Caustic soda test (CST)

This method was carried out following the procedure outlined in ASTM C 1073—18 [42]. The diluted solution-to-GGBFS
ratio was fixed at 0.5 and used to prepare 40 mm x 40 mm x 160 mm prismatic samples. After 6 h and 24 h, all samples were
demoulded and tested for CS. The results, average of three test samples, indicated 7.63 MPa and 14.52 MPa at 6h and 8 h,
respectively, hence satisfying the specifications of 7 MPa to 8 MPa and 12 MPa to 15 MPa after 6 h and 8 h, respectively, as
recommended by ASTM C 107318 [42].

2.4. Materials characterization

The oxide compositions of binding materials, CCA, GGBFS, and PLC, were analyzed using the XRF spectrophotometer
machine, Philips PW-1800. The results are shown in Fig. 4. The results revealed that CCA satisfied the chemical pozzolanic
requirements stipulated by BS EN 450—1 [51] and BS EN 86152 [52] such that the addition of SiO,, Al;05, and Fe,03 met
70 % minimum requirement. The content of CaO within the range of 10-20% established by Al-Akhras [53] was also met. It
can be deduced that the CCA could exhibit a pozzolanic reaction and used as the SCM in the production of blended GPC. On
the other hand, GGBFS met the BS EN 151671 [38]’s limit requirements of 32-40% for both silica (SiO,) and lime (Ca0)
contents. Besides, (CaO + MgO/SiO,) > 1, (Ca0/SiO,) < 1.4, and SiO, + CaO + MgO > 67 % stipulated by BS EN 151671 [38]
were also met. Also, the oxide compositions obtained herein for GGBFS showed similar compositions with the previous
studies [19,31]. Therefore, an inference is made that GGBFS utilized in this study could exhibit both pozzolanic and self-
cementitious reactivity, hence suitable for use. In the same vein, the PLC fulfilled the chemical requirements specified by
BS EN 196-2 [54].

The microstructural behaviour of the binding materials, GGBFS, CCA, and PLC, was examined using the SEM machine, JEOL
7000600, to establish the characteristics that influenced the RIs of each binder. The SEM analysis was performed on a flat
(general) scan. For the investigation, the accelerated voltage was constant at 15 kV, while images were observed at 4000x
magnification in a high vacuum. The SEM micrograph results are presented in Fig. 5(a), to a limited extent, reveals a wrinkled
internal structure with sharp needles. However, Fig. 5(b) shows an amorphous structure, while Fig. 5 (¢) reveals a crystalline
and spherical structure.

Table 1
Results of FT at 8 days.
Sample [OH] [Ca0] TMC [CaO] [Ca0] reduction
mmol 17! mmol 1! mmol 17! (%)
Control 56.83 8.25 8.37 0.70

CCA 39.72 4.63 14.16 50.72
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Fig. 5. SEM micrographs on binding materials (a) PLC (b) GGBFS (c) CCA.

E0 (100 % PLC), E1 (100 % GGBES), E2 (80 % GGBES + 20 % CCA), E3 (60 % GGBFS +40 % CCA), E4 (40 % GGBFS + 60 % CCA), E5 (20 % GGBFS +80 % CCA), and E6
(100 % CCA),

2.5. Mix design quantities

The mix quantities were designed following the procedures stated by BS EN 206 [55]. The percentage replacement of
GGBFS by CCA was selected to examine the replacement levels, which would meet the target strengths for both structural
and non-load bearing applications. Owing to this, GGBFS was replaced with CCA at 0%, 20 %, 40 %, 60 %, 80 %, and 100 % for the
production of GPC and was respectively indicated as E1, E2, E3, E4, E5, and E6, while the PCC (100 % PLC) was indicated as EO.
The mix was designed to attain target strengths 30 MPa and 40 MPa for grades M 30 and M 40 concrete, respectively. The mix
design quantities for both M 30 and M 40 are shown in Tables 2 and 3, respectively.

2.6. Mix preparation, casting and curing

The dry constituents were prepared following the procedures prescribed by BS 1881125 [56] and BS EN 12390-2 [57]
by preparing and pouring fresh concrete into a cubical mould of 150mm> for compressive strength test, and
150 mm x 600 mm long beam for flexural strength test. The fresh sample was randomly compacted each in three layers,

cured under 25°C and 65 % RH. The compressive strength was tested at 90 days curing, while the flexural strength was
tested at 7, 28, 56, and 90 days.



S. Oyebisi et al./ Case Studies in Construction Materials 13 (2020) e00394 7
Table 2
Mix quantities for M 30 (in Kg/m?).
Mix ID PLC GGBFS CCA FA CA SH SS SS/SH
EO 390 0 0 675 1031 0 0 0
E1 0 390 0 675 1031 60 150 2.5
E2 0 312 78 675 1031 60 150 2.5
E3 0 234 156 675 1031 60 150 2.5
E4 0 156 234 675 1031 60 150 2.5
E5 0 78 312 675 1031 60 150 2.5
E6 0 0 390 675 1031 60 150 2.5
w/b is the water to binder ratio=0.54; b/agg is the binder to aggregate ratio=0.23.
Table 3
Mix quantities for M 40 (in Kg/m?).
Mix ID PLC GGBFS CCA FA CA SH SS SS/SH
EO 500 0 0 585 1031 0 0 0
E1 0 500 0 585 1031 60 150 2.5
E2 0 400 100 585 1031 60 150 2.5
E3 0 300 200 585 1031 60 150 2.5
E4 0 200 300 585 1031 60 150 2.5
E5 0 100 400 585 1031 60 150 2.5
E6 0 0 500 585 1031 60 150 2.5

w/b is the water to binder ratio=0.42; b/agg is the binder to aggregate ratio=0.31.

2.7. Experimental tests and analysis

2.7.1. Mechanical test

The compressive strength (f.) and flexural strength (f;) were determined with the aid of an INSTRON 5000R UTM
following the procedures stated by BS EN 12390—4 [58] and BS EN 12390-5 [59] in a constant force regime under a loading
rate of 0.6 MPa and 0.06 MPa per second, respectively. Three (3) samples were made and crushed for each mix ID, and the
average was used for the analysis.

2.7.2. Reactivity indexes (RIs) of binding materials

The RIs of binding materials were evaluated using the principal reactive oxides such as CaO, SiO,, Al,03, Fe,03,
MgO, and SOs following the establishment of their oxide compositions, which reflect both self-cementitious
and pozzolanic reactivity [14,18,32]. The concept which guides the RIs is illustrated in Eq. 4-8 as reactivity,
hydraulic, lime, silica, and alumina moduli of each and blended binder, indicating as RM, HM, LM, SM, and AM,

respectively.
RM — Cao + Mgo +AlL03
5102
HM Cao

LM

SM

AM

T 5{0, + AL O; + Fe, 05

1.0Ca0 — 0.7S03

~ 2.85i0, + 1.1AL,03 + 0.7Fe,05

_sio,
o Al,03 + Fe,05

_ ALO;
n Fe,03

“4)
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2.7.3. Prediction of f, based on RIs and MDPs

For this study, MDPs are indicated as water to binder (w/b) ratio and binder to aggregate (b/agg) ratio. Either
reactivity, hydraulic, or lime moduli quantifies the self-cementitious properties of each and blended binding
material while the pozzolanic activity is quantified by both silica and alumina moduli [32,37]. Consequently, a
linear relationship exists in the prediction of f; and RIs. Thus, the regression was first modelled based on the
combination of RM, SM, and AM; HM, SM, and AM; and LM, SM, and AM using Minitab 17 statistical software.
Furthermore, in determining the f; of blended concrete, the Rls of blended binders were integrated and normalized
with an inverse of w/b ratio; hence, f; becomes a direct proportion to Rls, but an inverse proportion to w/b ratio
[14,18]. Therefore, the fit regression relationship between fc and w/b ratio was first normalized and modelled in the
range of 0.54 to 0.42 w/b ratio for grades M 30 to M 40 concrete, respectively. The f. and RIs were selected as the
response (dependent variable) and continuous predictors (independent variables), respectively, to predict the design
data in Minitab 17.

The binder to aggregate (b/agg) ratio also contributed a vital role to the evaluation and improvement of the
concrete strength apart from RIs and w/b ratio [14]. The f; of blended binders was significantly improved when RIs,
w/b ratio, and b/agg were all used for the strength correlation. It is noteworthy to state that the volume ratio was used
to model the b/agg ratio against the weight ratio. For each mix, the volume fraction was determined using its
moisture content and specific gravity to improve the binder-aggregate packing capacity. Following the incorporation
of w/b ratio, the fit regression relationship between f; and b/agg ratio was modelled in the range of 0.31 to 0.23 b/agg
ratio for grades M 30 to M 40 concrete, respectively. Consequently, f; was predicted based on the RIs and MDPs, as
illustrated in Eq. 9-11.

foo po (MO @A) () )
foopo (DM SRS @A) () (10
fom po (ORI OB (b, (an

where B, a;, ap, a3 represent the magnitudes of coefficients.

2.7.4. Durability test

The chemical resistance was conducted on the prepared cube samples using the solutions of sulphuric acid (H,SO,4) at 2%
concentration [34,60] for acidic attacks. The concrete specimens were tested for both weight and strength loss after 90 days
of immersion in H,SO4.
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Fig. 6. Compressive strength (a) M 30 (b) M 40.
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3. Results and discussion

3.1. Mechanical properties

Figs. 6 and 7 present the results of both compressive and flexural strengths, respectively. From Figs. 6 and 7, the results
revealed both compressive and flexural strengths increased with increasing GGBFS content for both M 30 and M 40 at all
curing days, respectively. The results could be associated with the reaction between the aluminosilicate glassy phases
(amorphous structure) of GGBFS, as shown in Fig. 5(b), and the alkaline solutions, hence resulting in x-ray amorphous
aluminosilicate paste (X-RAAP). The X-RAAP, according to Criado et al. [61], contributes to the higher strengths of the
hardened product, compared with both wrinkled and crystalline structures for PCC and CCA, as shown in Fig. 5(a) and (c),
respectively. Besides, unlike 12M and 16 M activators, 14 M activator exhibited the highest compressive and flexural
strengths at all curing days because of its capacity to liberate more aluminosilicate gels in the mix. However, at 16 M
activating level, the OH™ solution in the mix could be excessive, thus encasing the amorphous paste, causing a barrier to the
activating dissolution, and delaying the hydrating agent (calcium-silicate-aluminate-hydrate, C-S-A-H) in the mixed paste;

this delays and decreases the strengths.
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Fig. 7. Flexural strengths (a) M 30 (b) M 40.
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3.2. Principal reactive oxides of blended binders

Fig. 8 shows a decrease in Ca0, Al,03, and MgO with increasing CCA content, while SiO,, Fe;05, and SO3 increase with
increasing CCA content in the blended mix; this supports the similar findings reported by Akinwumi and Aidomoje [17]
that the reactive oxides, CaO, MgO, and Al,03 decrease with increasing CCA content, while SiO,, Fe;05, and SOs5 increase
with increasing CCA content for the CCA-PC blend. Meanwhile, Behim et al. [32] and Demoulian et al. [36] stated that
GGBFS exhibits a similar mineralogical composition to PC; it majorly possesses oxides of Ca, Si, Al, Mg, and Fe, and this
gives GGBFS its hydraulic and pozzolanic properties. Also, Xia and Visintin [14] and Darquennes [33] opined that slag is
said to exhibit both self-cementitious and pozzolanic properties if the content of CaO and SiO, is higher than 30 %. From
the XRF results of GGBFS, it is clear that the contents of both CaO and SiO; are higher than 30 %. On the other hand, Taylor
[62] and Hewlett [63] reported that the self-cementitious reaction of slag decreases as the crystalline content in the
blended mix increases; this demonstrates that the reactivity of GGBFS depends on the increasing content of its amorphous
structure, and the significant oxides which contribute to the high phase of an amorphous structure are oxides of Ca, Al, and
Mg [64,65]. Thus, through close examination of microstructures of binding materials, as shown in Fig. 5, it was evident that
the content of the amorphous structure in GGBFS could gradually decrease while the content of the crystalline structure in
CCA might increase when GGBFS is replaced with CCA. Consequently, as the content of CCA in the blended mix increases,
Cao0, Al,03, and MgO in GGBFS decrease. In contrast, SiO,, Fe;03, and SOs in CCA increase; this corroborates the findings
from relevant studies in that the reactivity of GGBFS increases with increasing CaO, MgO0, and Al,O5 contents but reduces
as the contents of SiO,, Fe,03, and SO5 rise [66,67]. However, it was pointed out that GGBFS comprises small crystal
material and is advantageous to its reactivity [68-70]. Besides, Gruskovanjak et al. [67] pointed out that the optimum
content of the principal reactive oxides of slag is more beneficial to its self-cementitious reactivity than the content of the
amorphous structure. Therefore, it is inferred that the contents of CaO, Al,03, MgO, SiO,, Fe;03, and SO3 influence the
reactive potentials of GGBFS—CCA blended binders.

3.3. RIs of the blended mix

In assessing the RIs of each blended binder, Eq. 4-5 was used, and the results are shown in Fig. 9. It was revealed
that the RM, HM, LM, and AM decreased with increasing CCA content, while the SM increased with increasing CCA
content in the blended mix for both M 30 and M 40. Besides, it was evident from the results that CaO, Al,O3, MgO,
Si0,, Fe,03, and SOs influenced the RIs of the blended binders. The RM, HM, and LM of the blended binders increased
with increasing Ca0O, Al,03, MgO contents, while the SM and AM of the blended binders increased as the contents of
SiO, and Al,Os increased, respectively. In contrast to HM, the RM of the blended binders met the
minimum requirement of 1.0 specified by BS EN 86152 [52]. Statistically, the RM, HM, LM, and AM of the blended
mix decreased from 25 to 78 %, 19-77%, 19-77%, and 11-26% as the percentage replacement of CCA by GGBFS
increased from 20 % to 100 % for both M 30 and M 40, respectively. The self-cementitious properties of mixed binders
increase with an increase in Ca0, Al,03, and MgO contents, thus resulting in stronger hydraulic reactions [32,71]. As a
result, the decrease in RIs may be attributed to the reduction in principal reactive oxides, CaO, Al,03, and MgO as a
result of the increase in CCA content in the blended mix. However, the SM of the blended mix decreased from 44 to
10 % as the percentage replacement of CCA by GGBFS rose from 20 to 100 % for both M 30 and M 40, respectively.
Meanwhile, it is shown in Fig. 7 that CCA, being a pozzolan, exhibits higher content of silica (SiO,) compared with
that of GGBFS. Therefore, this result confirms the findings reported by Mathhes et al. [70] that SM increases with
increasing SiO, content, hence resulting in stronger pozzolanic properties. On the other hand, the reactivity of
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Fig. 9. RIs of each and mixed binder for (a) M 30 and (b) M 40.
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Fig. 10. Statistical data for RM, AM, SM, and MDPs (a) 7 (b) 28 (c¢) 56 and (d) 90 days.

GGBFS depends on its amorphous structure, thus influencing its Rls [69,70]. This assertion confirms the SEM
micrographs, as shown in Fig. 5 (b) and (c) for GGBFS and CCA, which display amorphous and crystalline structures,
respectively.

3.4. Prediction of f; based on RIs and MDPs

3.4.1. Prediction of f, based on RM, AM, SM, and MDPs

Following Eq. 9, the results of the statistical data are shown in Fig. 10 (a)-(d) for 7, 28, 56, and 90 days, respectively.
It was observed that some data points for SM significantly deviated from the regression line. This may be asserted to
the diversity of chemical compositions of blended binders, aggregate type and volume, and mix design proportions;
this assertion confirms the findings reported by Xie and Visintin [21] and Neville [34] that differences in the oxide
composition of blended binders, aggregate types, texture, and shape, and methods of mix design, affect the data
results, hence influencing the reactive potentials of blended concrete incorporating SCMs. Moreover, the flexural
strength increased with increasing RM and AM but decreasing SM; this may be attributed to the higher contents of
CaOo and Al,05 in GGBFS, which increases RM and AM, thus resulting in a stronger self-cementitious reaction.
However, the higher content of SiO, in CCA increases its SM, hence leading to a pozzolanic reaction rather than a
hydraulic reaction; this also confirms the findings of a similar study reported by Gruskovnjak et al. [67] that the RM
and AM increase as the CaO and Al,0O3 contents increase, while SiO, content reduces, thus resulting in high reactivity.
However, the higher contents of SiO, and low contents of CaO and Al,Os result in low reactivity. On the other hand, a
blended mix with high contents of CaO, Al,05, and MgO exhibits high self-cementitious/hydraulic properties in the
presence of alkaline activators [66,68,70].

The fit regression model was used for the correlation of f; based on the RIs (RM, AM, and SM) and MDPs at the
global trend of 95 % confidence interval (CI) and prediction interval (PI). Thus, the regression equations are illustrated
in Eq. 12-15 for 7, 28, 56, and 90 days, respectively. Therefore, the coefficient of determination (R?) is 87.47 %,
87.60 %, 88.12 %, and 92.26 % fit to predict the data at 95 % CI and PI for 7, 28, 56, and 90 days, respectively, thus
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indicating 0-5.20% increase in R? as the curing age increases from 7-90 days. Ultimately, relative to RIs and MDPs,
these developed models can be used for the strength prediction of concrete incorporating SCMs.

7.81 AM — 1.468 SM — 2.63 RM b
fre7days = { W } <—> +3.028 (12)

) ags

2.22AM - 0.440SM + 1.66 RM < b
b asg

Fr25 days = { . deg) 3825 (13)

2.82AM — 0.5975SM + 1.10RM}< b
b

fr—56 days = { w @) +4.125 (14)

4.91AM — 0.969 SM — 0.13 RM} < b
b

fr790days = { w @) +4.193 (15)

3.4.2. Prediction of f, based on HM, AM, SM, and MDPs

Fig. 11 (a)-(d) indicates the statistical data for HM, AM, SM, and MDPs at 7, 28, 56, and 90 days, respectively. It was
observed that some data points of SM were out of the regression line due to the difference in binders’ oxide compositions, the
volume and chemical compositions of aggregates, and mix proportions. Besides, the f. of GGBFS—CCA blended concrete
increased with increasing HM and AM but decreasing SM. The reason for a higher strength cannot be far-fetched: GGBFS
exhibits higher content of CaO and Al,0O; compared with CCA, hence resulting in stronger hydraulic reaction, but this
hydraulic reaction decreases when replaced with CCA, which predominantly contains a higher content of SiO». This assertion
is in line with the findings reported in various studies that the hydraulic response of slag reduces with increasing silica
content [64,65]. Therefore, it is inferred that the HM of GGBFS—CCA blended binder increases with higher contents of CaO
and Al,O5 and the lower content of SiO, in the mix.
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Fig. 11. Statistical data for HM, AM, SM, and MDPs (a) 7 (b) 28 (c) 56 and (d) 90 days.
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The fit regression model was used for the correlation of f. based on the RIs (HM, AM, and SM) and MDPs at the 95 % CI and
PI, and the regression equations are illustrated in Eq. 16-19 for 7, 28, 56, and 90 days, respectively. Thus, at 7, 28, 56 and 90
days, R? is 87.35 %, 87.84 %, 88.38 %, and 92.35 % fit to correlate the data, respectively. Statistically, there is 0-5.4% increase in
R? as the curing age increases from 7 to 90 days.

5.50AM - 1.036SM — 1.99HM b
Frr s = { 0 }(—) +3.022 (16)

B asg
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- - —~ ) +4111 18
fr 56 days { % } agg ( )
3.69AM — 0.753SM + 1.49HM b
fr—90 days — { % } <_agg> +4.178 (19)

3.4.3. Prediction of f, based on LM, AM, SM, and MDPs

The statistical data for LM, AM, SM, and MDPs are indicated in Fig. 12 (a)-(d) for 7, 28, 56, and 90 days, respectively. It was
noticed that some data points of SM were out of the global trend due to the diversity in oxide compositions, aggregates
volumes and types, and mix proportions of the blended binders. Moreover, the f. of GGBFS—CCA blended concrete increased
with increasing LM and AM but decreasing SM; this may be attributed to the fact that GGBFS exhibits higher content of CaO
and Al,03 compared with CCA, hence resulting in a stronger reactive component. Still, this reactive component decreases
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Fig. 12. Statistical data for LM, AM, SM, and MDPs (a) 7 (b) 28 (c) 56 and (d) 90 days.



14 S. Oyebisi et al./ Case Studies in Construction Materials 13 (2020) e00394

when replaced with CCA, which majorly contains a higher content of silica. Therefore, it is inferred that the LM of
GGBFS—CCA blended binder increases with higher contents of CaO and Al,03 and the lower content of SiO, in the mix.

The f,, RIs (LM, AM, and SM), and MDPs were predicted using the fit regression model at the 95 % CI and PI, and the
regression equations are illustrated in Eq. 20-23 for 7, 28, 56, and 90 days, respectively. Therefore, at 7, 28, 56, and 90 days, R2
is 87.50 %, 87.65 %, 88.09 %, and 92.25 % fit to correlate data, respectively, hence indicating 0-5.20% increase in R? as the curing
age increases from 7 to 90 days. Finally, with respect to RIs and MDPs, these proposed models can be used for the strength
prediction of concrete incorporating SCMs.

Fras = {6.51AM - 1.25%051\/1 - 7.74LM} (é) 3044 20)
Fr 25 aue = {4.21AM - 0.8(%25M+ 1.07 LM} (é) 3835 1)
- {3.87AM - O.78§SM+ 1.62 LM} (é) 4127 22)
fr o0 {4.74AM - 0.93%8 SM — 0.04LM} <é> 4192 23)

3.4.4. Comparison of experimental results with predicted values

Fig. 13 illustrates the statistical comparison and trend between the flexural strengths of experimental results and that of
predictive values. It was observed that both empirical and predictive results exhibited similar values and patterns of flexural
strength. In contrast to HM, both LM and RM showed the best fit at all levels of curing time for both M 30 and M 40. These
observations confirm the findings reported in similar studies such that LM yields the best fit for PC blended with cashew nut
shell ash (CNSA)[18]. In contrast, RM yields the best fit for blended concrete incorporating SCMs [14]. Despite producing the
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Fig. 13. Comparison of experimental results with predicted values (a) M 30 (b) M 40.
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similar values and trends of flexural strength at all levels of curing time, it was evident from Fig. 9 that LM of the GGBFS—CCA
blended binders was low compared with the minimum requirements (> 0.66 < 1.02) recommended by BS EN 197-1 [72];
besides, HM was less than 1 compared with the minimum requirement (< 1) specified by BS EN 197—1 [72]. However, RM
satisfied the minimum requirement (< 1) defined by Behim et al. [32], Demoulian et al. [36], and BS EN 151671 [38]. The
variations in LM and HM may be attributed to the difference in chemical and mix properties of concrete in that BS EN 1971
[72]'s recommendation was based on the PC blended binders such that the ratio of CaO to SiO, in the blended mix was high
compared with GGBFS—CCA blended binders reported in this study. Therefore, it is inferred that RM yields the best fit for
GGBFS—CCA blended binder, and this can be used in the validation of blended binders incorporating SCMs.

3.5. Chemical attacks

Owing to the immersion of selected samples on 2% H,SO,4 solution for 90 days, Fig. 14 (a) and (b) present the weight loss
for both M 30 and M 40, respectively, while Fig. 15 (a) and (b) present the compressive strength (f;) loss for both M 30 and
M 40, respectively. It was observed that the percentage weight loss in GPC samples, for both M 30 and M 40, ranged from 1 to
2% against 10-13% in PCC samples, while the percentage strength loss in GPC, for both M 30 and M 40, varying from 1 to 5% as
against 12-14% in PCC samples after 90 days exposure of concrete samples in 2% H,SO4. These results confirm the similar
findings reported by Sanni and Khadiranaikar [25], Malhotra et al. [73], and Singh et al. [74] that the percentage weight loss
and strength loss in GPC samples was less than 5% against 15 % in PCC samples after 90 days of exposure in 2% H,SO4. The
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Fig. 15. Strength loss of cubes immersed in 2% H,SO,4 for 90 days (a) M 30 (b) M 40.
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deterioration may be attributed to the aggressive attack of H;SO4 on Ca(OH), and C-S-H of PCC structure. In contrast, the
C-S-A-H on GPC structure is protected and fixed by the presence of diluted water-glass (sodium silicate), thus forming
calcium silicates which filled the pores [23,25,34]. Therefore, it is inferred that GGBFS—CCA blended GPC offers better
resistance to acidic attack than PCC.

E1 (100 % GGBFS), E2 (80 % GGBFS+20 % CCA), E3 (60 % GGBFS+40 % CCA), E4 (40 % GGBFS+60 % CCA), E5
(20 % GGBFS+80 % CCA), and E6 (100 % CCA),

4. Conclusion

The study examined the GGBFS—CCA-based GPC, and its effects on the activity indexes and the acidic attacks were
evaluated. Both experimental and statistical methods were used in the course of the study, and the results were compared
with PCC. Consequent upon the findings and in line with research aims, the following sets of conclusions are made:

e The reactivity of GGBFS—CCA blended binder increases with increasing CaO, MgO, and Al,03 contents. However, the
reactivity decreases with increasing SiO,, Fe;0s, and SO3 contents.

e The RM, HM, and LM of GGBFS—CCA blended binder increases with increasing CaO, MgO, and Al,03 contents, while the SM
and AM increase with increasing SiO, and Al,03; contents.

o Flexural strength of GGBFS—CCA GPC increases with increasing RM, HM, LM, and AM

e RM yields the best fit for predicting the flexural strength of slag-based GPC, incorporating CCA compared with HM and LM.
Besides, a good correlation exists between the experimental results and proposed model equations.

e There is a remarkable improvement in R? as the curing age increases.

e Slag-based GPC incorporating CCA provides excellent acidic resistance superior to that of PCC.

The concept of activity moduli in predicting the f; of the GGBFS—CCA blended mix is attainable. This study benefits future
research by focusing on three prospective solutions. First, the proposed model equations can be useful in the prediction and
application of strength design proportions for GPC incorporating agro-industrial by-products under ambient curing
conditions provided the chemical compositions are obtained. Second, the efficiency of the fit regression model in predicting
f; based on the RIs and the MDPs is affirmed. Third, the application of agro-industrial by-products, GGBFS and CCA, can be
advantageous in a highly acidic environment.
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