EVALUATION OF GEOPHYSICAL AND GEOTECHNICAL PARAMETERS OF RECLAIMED LAND FOR CONSTRUCTION PURPOSES: A CASE STUDY OF BADORE, AJAH, LAGOS STATE, NIGERIA

BY

ADEWOYIN, OLUSEGUN OLADOTUN

B.Sc. (Hons) Physics, University of Ibadan (Ibadan) M.Sc Solid Earth Physics, University of Ibadan (Ibadan) (Matric. No: CUGP110379)

A Ph.D thesis submitted to the School of Postgraduate Studies of Covenant University, Ota in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Applied Geophysics

JUNE, 2016

CERTIFICATION

This is to certify that this work was carried out by ADEWOYIN, Olusegun Oladotun in partial fulfillment of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Physics (Applied Geophysics) of Covenant University, Ota, Ogun State, Nigeria.

DEDICATION

This thesis (research work) is dedicated to God the Father, the Son and the Holy Spirit.

ACKNOWLEDGEMENTS

One vital lesson I have learnt in the course of this Ph.D program is that there is no great feat that can be achieved without the help of others. Therefore, I would like to thank the people who made this dream a reality.

First, I thank God for the guidance and courage to begin and complete this research. Father, I am most unreservedly grateful. I give all glory, honour and praise to your name.

I would also like to appreciate the Chancellor of this great institution, Dr. David O. Oyedepo. I also deeply appreciate the entire management of Covenant University and all my colleagues in the Department of Physics for their contributions to the success of this project. Many thanks go to all my senior colleagues that took time to go through my work despite their tight schedules.

My ever understanding supervisors, Dr. E. O. Joshua and Dr. M. L. Akinyemi, deserve nothing but deep appreciation. I thank you, Sir and Ma, for your belief in me. Your academic and non-academic advice gave impetus to this dissertation. Above all, I sincerely thank you for your tolerance, timely responses and commitment to this course.

Special thanks go to my parents Mr. and Mrs. Adewoyin for their prayers and words of encouragements. I would also like to appreciate my siblings: Adeshina, Adebukola and Adewale Adewoyin for their support. My special thanks also go to my darling wife, Ajiks. She stood solidly behind me, her prayers and timely encouragements made the research a fun.

I thank all the people who contributed in one way or the other to this study, in particular, Professor E. Ayolabi, Dr. A. A. Adepelumi, Dr. M. Omeje, and Dr. D. Olorode for making out time to attend to me on this project and for giving me access to their materials. I would also like to appreciate Pastor and Deaconess Adeyo, Pastor and Mrs. Aladegbeye for their spiritual oversight. Many thanks go to Mr. and Mrs. F. O. Olorunfemi for hosting me all through my stay in Ajah during my field work. I also thank Mr. Lawrence Nnamdi and Mrs. Margaret Ogunbiyi for their assistance.

I am very grateful to the entire management and staff of Geophase Nigeria Limited and the management and staff of Site and Locations Nigeria limited for their tireless effort to see to the success of this study.

Special thanks go to the entire staff and students of Badore Model College and the president and the entire members of the Greenville Estate community for giving me access to their facilities for this research and for their hospitality all through the entire field survey.

ABSTRACT

Oftentimes, when a building collapses, it is usually attributed to substandard building materials, poor building practices, lack of experience of the contractors and the age of the building. The rarely mentioned contributing factor is the condition of the land on which the building lies. Hence, this study was conducted at Badore Model College (Site 1) and Greenville Estate (Site 2) in Ajah, Lagos State to evaluate the subsurface structures of a reclaimed land for construction purposes using geophysical and geotechnical methods. The geophysical method comprised the resistivity and the seismic methods while geotechnical method is composed of the percussion drilling, cone penetration and standard penetration tests. Resistivity methods revealed the second and the third geoelectric layers as the most competent layers in Site 1 and Site 2, with resistivity values ranging between 23.3 and 951.7 Ωm at depth of about 8 m to 54 m. The seismic refraction method delineated three layers at Site 1 and two layers at Site 2 with the last layers being the most competent at a depth range of about 7 m and 18 m. The Young modulus of the competent layer at Site 1 ranged from 1.558 to 25.106 GPa and bulk modulus ranged from 0.999 to 16.093 GPa whereas at Site 2, the Young modulus ranged between 0.514 and 7.018 GPa, for bulk modulus, the value varied between 0.330 and 4.499 GPa. At Site 1, it was noted that the shear modulus ranged between 0.638 and 10.123 GPa, whereas Lame's constant ranged between 0.580 and 9.345 GPa. This is in contrast with the values obtained for shear modulus and Lame's constant at Site 2, which varied between 0.207 and 2.830 GPa and 0.191 and 2.612 *GPa* respectively. The parameters measured in Site 1 were higher than Site 2 by factors of 3.082 and 3.580 respectively. Geotechnically, this layer had the lowest Poisson's ratio of about $0.24 \pm$ 1.1×10^{-5} which could indicate the competent zone within the subsurface at depth range of about 7 m and 18 m below the ground level. The Poisson's ratio found at Site 2 is distinctly lower than that of Site 1 but within the same depth range of 7.5 m and 16 m respectively. The percussion drilling tests showed that at a depth range of 1 m to 7.5 m, the formation that constituted the topsoil was loose and relatively compressible. The SPT-N value for the material within the depth of competence ranged between 13 and 35 at both sites. In the same vein, the results of the cone penetrometer test revealed that the formation from the topsoil to a depth of about 6 m and 7 m into the subsurface, at both sites were characterised by relatively compressible formation. Significantly, this study suggested that civil engineering structure should be founded on competent formation of about 7.5 m and 18 m below the ground level in the study area.

TABLE OF CONTENTS

Certification	ii
Dedication	iii
Acknowledgement	iv
Abstract	vi
Table of Contents	vii
List of Tables	Х
List of Plates	xii
List of Figures	xiii
List of Appendices	
CHAPTER ONE: INTRODUCTION	
1.1 Background to the study	1
1.2 Explanation of key terms	3
1.3Research Problem	5
1.4 Justification for the Study	6
1.5 Scope of work	7
1.6 Aim and Objectives of this study	7
1.7 Significance of the work	8
1.8 Location of the study area	8
1.9 Geology of the study area	11

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	13
2.2	Causes of building failures	13
2.3	Site characterisation using different geophysical and geotechnical methods	16
2.4	Evaluation of geotechnical parameters from geophysical information	21
2.5	Basic theory of the methods of study	24
	2.5.1 Electrical resistivity method	24
2.6	Types of electrical resistivity survey	27
	2.6.1 Seismic refraction method	30
	2.6.2 Geotechnical investigation	33
2.7	Consistency of fine grained soil	36
2.8	Soil and their characteristics	39
СНА	PTER THREE: METHODOLOGY	
3.1	Introduction	41
3.2	Geophysical survey	41
	3.2.1 Electrical resistivity investigation	41
	3.2.2 Data processing for Electrical resistivity methods	42
	3.2.3 Seismic refraction method	45
	3.2.4 Data processing for seismic refraction method	46
3.3	Geotechnical survey	48
	3.3.1 Percussion drilling Test	48
	3.3.2 Cone penetrometer Test	49
3.4	Geotechnical data processing	50

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Introduction	57
4.2	Vertical electrical sounding	57
	4.2.1 2D resistivity imaging	70
4.3	Seismic refraction data interpretation	78
4.4	Geotechnical data interpretation	91
4.5	Integration of results of the geophysical and geotechnical methods	110
4.6	Evaluation of geotechnical parameters using geophysical information	111
СНА	PTER FIVE: CONCLUSION	
5.1	Conclusion	124
5.2	Contributions of the research to knowledge	125
5.3	Recommendation	125
	REFERENCES	127

LIST OF TABLES

Table	Title	Pages
2.1	Plasticity index and their description	38
2.2	Consistency of cohesive soils	38
2.3	Consistency of cohesive soils	38
2.4	Consistency of cohesive soils	38
2.5	SPT N value and CPT cone resistance values for non-cohesive soil	39
4.1	Summary of resistivity values, number of layers, depth and their lithologies at Badore Model College	58
4.2	Summary of resistivity values, number of layers, depth and their lithologies at Greenville Estate	65
4.3	Primary and secondary wave velocity and the elastic moduli	
	observed at Badore Model College	79
4.4	Primary and secondary wave velocity and the elastic moduli	
	Observed at Greenville Estate	87
4.5	The depth, cone resistance (q_c) and the bearing capacity (BC) of the penetrometer tests carried out at Badore Model College	he 95
4.6	The depth, cone resistance (q_c) and the bearing capacity (BC) of the penetrometer tests carried out at Greenville Estate	he 96
4.7	Lithologic profile that relates the borehole log and the CPTs carried out at Badore Model College	106
4.8	Lithologic profile that relates the borehole log and the CPTs carried out at Greenville estate	107
4.9	The consistency of both cohesive and non-cohesive soils and	

	SPT-N values	107
4.10	Atterberg limit result	110
4.11	The geophysical and geotechnical parameters for the most competent layer at Badore Model College	112
4.12	The geophysical and geotechnical parameters for the most	
	competent layer at Greenville estate	113

List of Plates

Plates	Title	Pages
3.1	Data acquisition in progress at Badore Model College	51
3.2	Data acquisition in progress at Greenville Estate	52
3.3	Data acquisition in progress at Greenville Estate	53
3.4	An array of geophones to record seismic event	54
3.5	Cone penetration test in progress	55
3.6	Borehole drilling in progress	56

List of Figures

Figure	Title	Pages
1.1	Map of Lagos State, showing the study area	9
1.2	Topographic map of Ajah showing the study area	10
1.3	Geological map of the study area, the point marked red is the are	a
	of study	12
2.1	Electrode arrangement for electrical resistivity method	28
2.2	The typical ranges of the electrical resistivities of earth materials	29
2.3	Standard penetration test	34
2.4	Definition of Atterberg limit	37
3.1	Base map of Badore Model College, indicating the VES points, seismic refraction profiles, borehole and cone penetrometer tests locations	43
3.2	Base map of Greenville Estate, indicating the VES points, seismic refraction profiles, borehole and cone penetrometer tests locations	44
4.1	Sounding curve and geoelectric parameters for VES 1 at	
	Badore Model College	59
4.2	Sounding curve and geoelectric parameters for VES 3 at	
	Badore Model College	60
4.3	Sounding curve and geoelectric parameters for VES 4 at	
	Badore Model College	61
4.4	Sounding curve and geoelectric parameters for VES 5 at	
	Badore Model College	62

4.5	Sounding curve and geoelectric parameters for VES 13 at	
	Greenvile Estate	66
4.6	Sounding curve and geoelectric parameters for VES 14 at	
	Greenvile Estate	67
4.7	Sounding curve and geoelectric parameters for VES 16 at	
	Greenvile Estate	68
4.8	Sounding curve and geoelectric parameters for VES 18 at	
	Greenvile Estate	69
4.9	Measured pseudo-section, calculated pseudo-section and 2D	
	inverse resistivity model for Traverse 1 at Badore Model	
	College	74
4.10	Measured pseudo-section, calculated pseudo-section and 2D	
	inverse resistivity model for Traverse 2 at Badore Model	
	College	75
4.11	Measured pseudo-section, calculated pseudo-section and 2D	
	inverse resistivity model for Traverse 3 at Greenville Estate	76
4.12	Measured pseudo-section, calculated pseudo-section and 2D	
	inverse resistivity model for Traverse 4 at Greenville Estate	77
4.13	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and the	
	depth of investigation of Traverse 1	80

4.14	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and the	
	depth of investigation of Traverse 2	81
4.15	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and the	
	depth of investigation of Traverse 3	82
4.16	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and the	
	depth of investigation of Traverse 5	83
4.17	2D seismic refraction section at Greenville Estate,	
	indicating the number of layers, their velocities and the	
	depth of investigation of Traverse 1	88
4.18	2D seismic refraction section at Greenville Estate,	
	indicating the number of layers, their velocities and the	
	depth of investigation of Traverse 2	89
4.19	Borehole log at Badore Model College	92
4.20	Borehole log at Greenville Estate	93
4.21	Results of the cone penetrometer test carried out at Badore	
	Model College for Test 1	98
4.22	Results of the cone penetrometer test carried out at Badore	
	Model College for Test 2	99
4.23	Result of the cone penetrometer test carried out at	
	Greenville Estate for Test 1	100
4.24	Result of the cone penetrometer test carried out at	
	Greenville Estate for Test 2	101

4.25	Result of the cone penetrometer test carried out at Greenville Estate for Test 3	102
4.26	Result of the cone penetrometer test carried out at	102
	Greenville Estate for Test 4	103
4.27	The graph of density (kg/m^3) against primary wave	
	velocity (m/s)	116
4.28	The graph of the Young's modulus (GPa) against primary	
	wave velocity (m/s)	117
4.29	The graph of the bulk modulus (GPa) against primary	
	wave velocity (m/s)	118
4.30	The graph of the shear modulus (GPa) against primary	
	wave velocity (m/s)	119
4.31	The graph of density (kg/m^3) against primary wave	
	velocity (m/s)	120
4.32	The graph of the Young's modulus (GPa) against primary	
	wave velocity (m/s)	121
4.33	The graph of the bulk modulus (GPa) against primary	
	wave velocity (m/s)	122
4.34	The graph of the shear modulus (GPa) against primary	
	wave velocity (m/s)	123

List of Appendices

Appendix A

Figure	Title	Pages
A1	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 2	140
A2	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 6	141
A3	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 7	141
A4	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 8	142
A5	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 9	142
A6	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 10	143
A7	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 11	143
A8	Typical resistivity sounding curve and geoelectric parameters at	
	Badore Model College for VES 12	144
A9	Typical resistivity sounding curve and geoelectric parameters at	
	Greenville Estate for VES 15	144
A10	Typical resistivity sounding curve and geoelectric parameters at	
	Greenville Estate for VES 17	145

A11	Typical resistivity sounding curve and geoelectric parameters at	
	Greenville Estate for VES 19	145
A12	Typical resistivity sounding curve and geoelectric parameters at	
	Greenville Estate for VES 21	146
	Appendix B	
B1	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and depth of	
	investigation for Traverse 2	147
B2	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and depth of	
	investigation for Traverse 6	147
B3	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and depth of	
	investigation for Traverse 7	148
B4	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and depth of	
	investigation for Traverse 8	148
B5	2D seismic refraction section at Badore Model College,	
	indicating the number of layers, their velocities and depth of	
	investigation for Traverse 9	149
B6	2D seismic refraction section at Greenville Estate,	
	indicating the number of layers, their velocities and depth of	
	investigation for Traverse 3	149
B7	2D seismic refraction section at Greenville Estate,	
	indicating the number of layers, their velocities and depth of	
	investigation for Traverse 4	150

Appendix C

Plate	Title	Pages
C1	Picture of one of the sinking facilities at Badore Model College	151
C2	Picture of one of the sinking facilities at Badore Model College	151
C3	Picture of one of the sinking facilities at Badore Model College	152
C4	Picture of a cracking concrete floor at Greenville Estate	152
C5	One of the sinking facilities at Greenville Estate	153
C6	Cracked wall at Greenville Estate	154
C7	Reclamation process in progress at Greenville Estate	155
	Appendix D	
Table	Title	Pages
D1	Summary of the result of Adepelumi and Olorunfemi (2000)	156
D2	Summary of results of previous studies on seismic refraction	156
	Appendix E	
	List of publications from this Thesis	157
	List of Conferences from this Thesis	157