TRACE ELEMENTS AND PAHs SURVEY IN IMPORTED AND LOCAL *Camellia sinensis* COMMERCIALLY SOLD IN NIGERIA

BY

FRED-AHMADU, OMOWUNMI HANNAH

(Matric No: 14PCC00651)

B.Sc. CHEMISTRY (UNILAG)

A THESIS SUBMITTED TO THE DEPARTMENT OF CHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY COVENANT UNIVERSITY, OTA, NIGERIA.

JUNE, 2016

CERTIFICATION

This is to certify that this project was carried out by FRED-AHMADU, Omowunmi Hannah (Matric No. 14PCC00651) under the supervision of Dr. N.U. Benson. The report has been read, approved and accepted as meeting the partial fulfilment for the award of the degree of Master of Science in Chemistry of the Covenant University, Ota, Nigeria.

Dr. Nsikak.U. Benson Supervisor

.....

Signature & Date

Prof. Kolawole.O. Ajanaku Head of Department

Prof. I.Adewale. Bello External Examiner

.....

Signature & Date

Prof. Nicholas Omoregbe Dean, College of Science and Technology

Signature & Date

.....

Signature & Date

DEDICATION

To God Almighty, my Sufficiency and my all in all. Also dedicated to the memory of my late father, Apostle Ayodele Oki.

DECLARATION

I, FRED-AHMADU Omowunmi Hannah, hereby declare that this project report is based on the study undertaken by me in the Department of Chemistry, College of Science and Technology, Covenant University, under the supervision of Dr. N.U. Benson. This project report has not been submitted anywhere else for a degree award. The ideas and reviews are products of the research conducted by me. All sources of data and scholarly information of other researchers have been duly acknowledged.

FRED-AHMADU, Omowunmi Hannah

.....

Signature & Date

ACKNOWLEDGEMENT

I give all thanks and praises to God Almighty who has done all things well and for being the Alpha and the Omega of this work. I appreciate the Chancellor of Covenant University, Dr David Oyedepo and the Board of Reagents of Covenant University for running with such outstanding vision. I also appreciate the University management for their doggedness and commitment to excellence on all spheres.

A very special appreciation goes to my wonderful supervisor, Dr N.U. Benson for his guidance and uncommon commitment throughout the course of the M.Sc. programme and in writing this dissertation. I am truly blessed to have worked with him. My warm appreciation goes to the HOD, Department of Chemistry, Prof. K.O. Ajanaku for being a friend and mentor. To all faculty and staff of the Department of Chemistry, your warmness and support are highly valued.

I sincerely appreciate the assistance of Mr Razaq Oyedeji, Ladipo Ijaduola and Chioma Abiazem of Federal Polytechnic, Ilaro. I thank all my colleagues and friends in the department, especially Mr Emmanuel Adedapo. I appreciate Dr. (Mrs) Omolola Omotosho, Mrs Ayara-Williams and Mrs C.O. Ajanaku for their moral and spiritual support. I thank my siblings and my mum, Mrs Doris Oki for their love and support.

A final but definitely not the least appreciation goes to my dear husband, Dr. Frederick Olusola Ahmadu, for his unending love and unflinching support and to my children Olamide, Oluwafemi, Ifeoluwa and Oluwagbeminiyi for their love and understanding. God bless you all.

LIST OF ABBREVIATIONS

ANT – Anthracene

BaA - Benzo[a]anthracene

BaP - Benzo[a]pyrene

BbF - Benzo[b]fluoranthene

BeP - Benzo[e]pyrene

BghiP - Benzo[g,h,i]perylene

BjF - Benzo[j]fluoranthene

BkF - Benzo[k]fluoranthene

CHY - Chrysene

DahA - Dibenzo[a,h]anthracene

DBP - Dibenzo[a]pyrene

FLR - Fluorene

FLA - Fluoranthene

IP - Indo[123-cd]pyrene

NAP - Naphthalene

PHN - Phenanthrene

PYR - Pyrene

USEPA - United States Environmental Protection Agency

ABSTRACT

The influx of various brands of imported and locally produced Camellia sinensis into the Nigerian market coupled with weak legislation and growing concerns about contaminants such as polycyclic aromatic hydrocarbons (PAHs) and trace metals worldwide has heightened. In this study, twenty three (23) samples of local and imported branded Camellia sinensis commercially sold in Nigeria were randomly purchased from local retail outlets. Extraction of PAHs was carried out using GC grade n-hexane. A four-stage sequential extraction procedure recommended by the Community Bureau of Reference (BCR) and Aqua regia acid cocktail were used to study the metal speciation and pseudo-total metals, respectively. Analyses of PAHs and trace metals were performed using Agilent 7890A Gas Chromatograph equipped with Flame Ionisation Detector with an autosampler and Microwave Plasma Atomic Emission Spectrometer (MP-AES), respectively. PAHs were detected in all samples with concentrations (mg/kg) ranging between 1.63 to 73.53, 4.71 to 79.61 and 12.52 to 26.89 for green, herbal and black teas, respectively. Detected PAHs were dominated by 4-5 membered ring structures and source apportionment analysis indicated biomass burning and vehicular emission as the major sources of PAHs in the investigated tea samples. The aggregate measure of carcinogenicity and mutagenicity (BaP-TEQ and BaP-MEQ) values show a weak positive correlation and BaP-TEQ values were generally higher than BaP-MEQ with two herbal tea samples recording the highest values. The estimated lifetime cancer risk index due to PAHs (for children and adults in Nigeria) indicated that all samples investigated except two green tea samples exceeded the USEPA allowable limits (10-⁶ to 10⁻⁴ mg/kg-day). Trace metals were present in all Camellia sinensis samples. The total concentration sequence for the tea samples were different from that of the speciation, indicating the importance the chemical forms in which the metals exist within a sample matrix, a pointer to their mobility and toxicity. Mn was most accumulated and bioavailable.

TABLE OF	CONTENTS
----------	----------

Title Pagei
Certificationii
Dedicationiii
Declarationiv
Acknowledgementsv
List of Abbreviationsvi
Abstractvii
Table of Contentsviii
List of Tablesxii
List of Figuresxiv
Chapter One: Introduction
1.1 Background of study1
1.2 Statement of problem2
1.3 Research2
1.4 Justification of study2
1.5 Aim of study
1.6 Objectives

Chapter Two: Literature Review

2.1 Introduction	5
2.2 Active substances in Camellia sinensis	6
2.3 Types of tea	7
2.4 Additives and blends in tea	8
2.5 Polycyclic Aromatic Hydrocarbons (PAHs)	8

2.5.1 Chemical Characteristics
2.6 PAH Diagnostic Ratios13
2.7 Health Effects
2.7.1 Carcinogenic effects
2.7.2 Respiratory effects14
2.7.3 Immunological effects14
2.8 Routes of Exposure of PAHs14
2.8.1 Air
2.8.2 Water
2.8.3 Soil and sediment15
2.8.4 Food`16
2.9 Fate of PAHs in the environment
2.10 Fate of PAHs in the body17
2.11 Trace elements

Chapter Three: Materials and Methods

3.1 Chemicals/ Reagents	.20
3.1.1 Analytical standard of PAHs	.20
3.2 Apparatus	21
3.3 Equipment	21
3.4 Sample Collection	22
3.5 Methodology	24
3.5.1 Preparation of external standard for GC analysis	24
3.5.2 Extraction method for PAHs	25
3.5.3 Clean up and preparation of extracts for chromatographic analysis	25

3.5.4 Total elements concentration	25
3.5.5 Preparation of reagents for sequential extraction	26
3.5.6 Preparation of 0.1 mol/L acetic acid	27
3.5.7 Preparation of 0.1 mol/L hydroxyl ammonium chloride	27
3.5.8 Preparation of 0.1 mol/L ammonium acetate	
3.5.9 Sequential extraction of trace metals	28
3.6 Risk Assessment	
3.6.1 Carcinogenic and Mutagenic Risk assessment calculation	30
3.6.2 Risk Assessment Code	30
Chapter Four: Results	
Chapter Five: Discussion	
5.1 Levels of Polycyclic Aromatic Hydrocarbons (PAHs)	
5.1.1 Green Tea	50
5.1.2 Herbal Tea	51
5.1.3 Black Tea	51
5.2 Mass Distribution Percentage	
5.3 PAH Diagnostic Ratios	52
5.4 Carcinogenic and Mutagenic risk assessment	53
5.5 Comparison of results within the present study and similar studies	53
5.6 Cancer Risk Index	54
5.7 Metal concentrations from sequential extraction of samples	54
5.7.1 Green Tea	54
5.7.2 Herbal Tea	55
5.7.3 Black Tea	
5.8 Pseudo total concentration of trace metals	58

9 Risk Assessment Code	9
5.9.1 Green Tea	50
5.9.2 Herbal Tea	50
5.9.3 Black Tea	61

Chapter Six: Conclusion and Recommendations

6.1 Conclusion	62
6.2 Recommendations	63
References	64
Appendices	74

LIST OF TABLES

Table 2.1 Name, CAS registry no, TEF and structures of USEPA priority PAHs11
Table 2.2 PAH Diagnostic Ratios 13
Table 3.1 List of chemicals/ reagents and their manufacturers
Table 3.2 General information about samples purchased
Table 4.1 Calculated PAH Diagnostic ratios
Table 4.2 Calculated BaP-TEQ and BaP-MEQ
Table 4.3 Mass Distribution percentages of PAHs in samples
Table 4.4 Concentrations of PAHs in branded Green Tea
Table 4.5 Concentrations of PAHs in Herbal and Black Tea
Table 4.6 Comparison of results generated with similar studies
Table 4.7 Estimate cancer exposure risk index for PAHs in samples
Table 4.8a Mean concentrations and RSD of metals from sequential extraction of green tea
samples
Table 4.8b Mean concentrations and RSD of metals from sequential extraction of herbal and
black tea samples40
Table 4.9 Pseudo total concentration of metals and SD in green, herbal and black
tea41
Table 4.10 Classification of RAC and Toxic Index

Table 4.11a RAC% for green tea samples	
Table 4.11b RAC% for herbal and black tea samples	44

LIST OF FIGURES

Figure 2.1 Active substances in <i>Camellia sinensis</i>
Figure 4.1a Per cent speciation contributions of trace metals in green tea samples45
Figure 4.1b Per cent speciation contributions of trace metals in green tea samples
Figure 4.2a Per cent speciation contributions of trace metals in herbal tea samples47
Figure 4.2b Per cent speciation contributions of trace metals in herbal tea samples
Figure 4.3 Per cent speciation contributions of trace metals in black tea samples