EFFECT OF HYDRO-ETHANOLIC EXTRACT OF Laportea aestuans ON BENIGN PROSTATIC HYPERPLASIA

By

OGUNLADE, OLADIPUPO OLAWUMI

MATRICULATION NUMBER: 16PCP01322

B.Sc (HONS) BIOCHEMISTRY (BOWEN UNIVERSITY)

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY OTA, OGUN STATE, NIGERIA.

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN BIOCHEMISTRY.

MAY, 2018.

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of Master of Science (M.Sc.) degree in Biochemistry in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

DECLARATION

I, OGUNLADE Oladipupo Olawumi (16PCP01322), declare that this M.Sc. dissertation titled: "effect of hydro-ethanolic extract of *Laportea aestuans* on benign prostatic hyperplasia' was undertaken by me under the supervision of Dr. O. E. Omotosho. The work presented in this dissertation has not been presented, either wholly or partly for the award of any degree elsewhere. All sources of scholarly information used in this dissertation were duly acknowledged.

Ogunlade, Oladipupo Olawumi

(Student)

Signature and Date

CERTIFICATION

We certify that the dissertation titled: "effect of hydro-ethanolic extract of *Laportea aestuans* on benign prostatic hyperplasia" is an original work carried out by Ogunlade, Oladipupo Olawumi with Matriculation Number: 16PCP01322, of Biochemistry Programme in the Department of Biochemistry, College of Science and Technology, Covenant University Ota, Ogun State, Nigeria. We have examined the work and found it acceptable for the award of Master of Science (M.Sc.) degree in Biochemistry.

Dr. O.E. Omotosho	
(Supervisor)	Signature and Date
Dr. S. O. Rotimi	
(Head, Department of Biological Sciences)	Signature and Date
(External Examiner)	Signature and Date
	U
Drof S. Warr	
Prof. S. Wara	
(Dean, School of Postgraduate Studies)	Signature and Date

DEDICATION

This research is dedicated to an ever faithful God whose mercy, grace and favour saw me to the end of this programme.

ACKNOWLEDGEMENTS

I profoundly acknowledge the Chancellor of Covenant University Dr. David Oyedepo for the vision that birthed this great institution from which I have greatly benefited. I also appreciate the Vice Chancellor Prof. A.A.A. Atayero and the entire Management team of Covenant University for their commitment towards raising a new generation of leaders.

I would like to express my immense gratitude to my supervisor Dr. O. E. Omotosho for her mentorship and guidance all through the writing process of this project report. I also appreciate all the Faculty members of the Department of Biochemistry for their comments, remarks, corrections and helpful tips during the presentation of this work especially Dr. S. O. Rotimi. Also to the Management and Staff of the Department of Biological Sciences, Covenant University.

I am highly indebted to all the members of the Department of Biochemistry who helped me all through the progress of this research especially Prof. Iweala E., Prof. Ogunlana O., Mr Ezekiel O., Mr Adeyemi O., Mr Daniel E. and Mr Olorunshola O. for their assistance. I also want to appreciate my project colleagues for their understanding and support all through the time we spent together through the thick and thin especially Peter Olamide, Salako Abiodun, Oguntade Yomi, Oladejo David, Muogbo Perpetual and Bright. I also wish to acknowledge all other undergraduate students of Biochemistry Department.

My special thanks goes to my friends Adenekan Adedamola (Skillz), Oyejobi Oluwaseyi (Yoruba Angel), Adeyemi Tayo (Blaki Chan) Fafioye Abisoye, Yusuf Olalekan (Mulumbu), Tomi, Uduak Vera (Koko) and Timi. I want to thank them for all the moral support they rendered to me during the course of this programme. I would like to deeply appreciate my Mum Mrs Ogunlade, Abosede for her continuous travail in prayers for me. Mum, your love and encouragement has kept me going all these years and I pray that the good Lord will keep you in health to enjoy the fruits of your labour. I would not have been here if not for the support of my Dad, Dr. Ogunlade Olumuyiwa, I deeply thank you for the support, understanding, sacrifice and push. And to everyone that contributed in one way or the other towards the success of this project, I pray that help will always answer to you all in Jesus name, Amen.

Lastly but most importantly, I acknowledge the help of God Almighty towards the successful completion of this research work.

TITL	LE PAGEI
ACC	EPTANCEII
DEC	LARATIONIII
CER'	TIFICATIONIV
DED	ICATIONV
ACK	NOWLEDGEMENTSVI
TAB	LE OF CONTENTSVII
	OF TABLESXII
	OF FIGURESXIII
	REVIATIONSXIV
ABST	FRACTXVIII
СНА	PTER ONE 1
INTF	RODUCTION 1
1.1	Background1
1.2	Statement of the problem
1.3	Justification2
1.4	Aim and Objectives
СНА	PTER TWO 4
LITE	CRATURE REVIEW4
2.1	The Prostate4
	2.1.1 Prostate structure and Biology
	2.1.2 Secretions and Functions

TABLE OF CONTENTS

	2.1.3	Pathology of the Prostate
2.2	Benigi	n Prostatic Hyperplasia7
	2.2.1	Epidemiology of clinical benign prostatic hyperplasia9
	2.2.2	Benign Prostatic Hyperplasia and Inflammation10
	2.2.3	Benign Prostatic Hyperplasia and Oxidative Stress11
2.3	5α- Re	eductase12
	2.3.1	Characteristics of 5-AR isoforms
	2.3.2	Tissue distribution of the isoforms13
	2.3.3	Expression of 5-AR in the human prostate
	2.3.4	Expression of 5-AR in benign prostatic hyperplasia13
2.4	Finaste	eride14
	2.4.1	Clinical Uses of Finasteride15
2.5	Testos	terone Propionate15
	2.5.1	Biochemistry of testosterone propionate16
	2.5.2	Side effects of testosterone17
2.6	Dihyd	rotestosterone17
	2.6.1	Binding affinity of DHT for androgenic receptors17
	2.6.2	Binding of dihydrotestosterone to Protein18
	2.6.3	The androgen signalling axis19
2.7	Prosta	te Specific Antigen20
	2.7.1	Mechanism of Action
	2.7.2	Characteristics of Prostate Specific Antigen
	2.7.3	Factors affecting serum prostate specific antigen21

	2.7.4	Prostate specific antigen isoforms	.22
2.8	Reacti	ve Oxygen Species and Free Radicals	.23
	2.8.1	Reactive oxygen species and reactive nitrogen species	.23
	2.8.2	Free radicals and their properties	.23
	2.8.3	Sources of free radicals	.26
	2.8.4	Targets of free radicals	.27
	2.8.5	Pathway involved in reactive oxygen species generation	.28
2.9	Oxida	tive Stress in the Prostate	.29
	2.9.1	Biomarkers of Oxidative Stress	.29
	2.9.2	Oxidative stress as a signal	.30
	2.9.3	Effects of oxidative stress on DNA	.30
	2.9.4	Effects of oxidative stress on Lipids	.30
	2.9.5	Effects of oxidative stress on Proteins	.31
2.10	Antio	xidants	.31
	2.10.1	Dietary Antioxidants	.31
	2.10.2	Endogenous Antioxidants	.32
	2.10.3	Synthetic Antioxidants	.33
	2.10.4	Antioxidant defence system	.33
2.11	Medic	inal Plants	.34
	2.11.1	Characteristics of medicinal plants	.35
2.12	Phyto	chemicals	35
	2.12.1	Classification of Phytochemicals	.36
2.13	Lapor	tea aestuans	.41

CHA	PTER 1	CHREE 2	43
MAT	ERIAL	S AND EQUIPMENT	43
3.1	Chem	icals and Equipment	43
3.2	Plant	collection4	43
3.3	Identi	fication of plant sample	43
3.4	Extrac	ction of plant material	43
3.5	Preliminary phytochemical screening		14
	3.5.1	Qualitative phytochemical screening4	14
	3.5.2	Quantitative phytochemical screening4	15
3.6	Anima	al treatment and experimental design	46
3.7	Collection of blood and prostate samples4		47
3.8	Detern	nination of antioxidant status	47
	3.8.1	Protein Determination4	1 7
	3.8.2	Determination of superoxide dismutase activity	48
	3.8.3	Determination of catalase activity	48
	3.8.4	Estimation of reduced glutathione level	48
3.9	Determination of Prostate Specific Antigen49		1 9
3.10	Relative porstate weight		19
3.11	Statistical analysis		19
CHA	PTER I	FOUR	50
RESU	JLTS	5	50
4.1	Qualit	ative phytochemical screening of Laportea aestuans5	50
	4.1.1	Qualitative phytochemical screening5	50

	4.1.2 Quantitative phytochemical screening	50
4.2	Evaluation of oxidative stress biomarkers in blood plasma of experimental animals	51
4.3	Determination of prostate specific antigen in blood plasma of experimental animals	54
4.4	Relative prostate weight determination in experimental animals	55
CHAI	PTER FIVE	56
DISC	USSION	56
5.1	Discussion	56
CHAI	PTER SIX	61
6.1	Conclusion	.61
6.2	Recommendation	61
REFE	CRENCES	62
APPE	ENDICES	72

LIST OF TABLES

Table 2.1: Bioactive phytochemicals in medicinal plants	36
Table 4.1: Qualitative phytochemicals in <i>Laportea aestuans</i>	50
Table 4.2: Quantitative phytochemicals present in Laportea aestuans	50
Table 4.3: Catalase (CAT) activity in different groups	51
Table 4.4: Superoxide dismutase (SOD) activity in different groups	52
Table 4.5: Reduced glutathione (GSH) activity in different groups	53
Table 4.6: Level of prostate specific antigen (PSA) in different groups	54
Table 4.7: Level of relative prostate weight (RPW) in different groups	55

LIST OF FIGURES

Figure 2.1: Location of the prostate gland
Figure 2.2: 5α-reductase enzyme catalysing steroids14
Figure 2.3: Structure of testosterone propionate
Figure 2.4: Correlation of dihydrotestosterone to the hypothalamus
Figure 2.5: Structures of the important naturally occurring alkaloids
Figure 2.6: Structure of some pharmacologically important plant derived glycosides
Figure 2.7: Structure of some pharmacologically important plant derived flavonoid
Figure 2.8: Structure of some pharmacologically important plant derived phenolics
Figure 2.9: Structure of some pharmacologically important plant derived saponins
Figure 2.10: Classification of tannins
Figure 2.11: Structure of some pharmacologically important plant derived tannins
Figure 2.12: Structure of some pharmacologically important plant derived terpenes40
Figure 2.13: Structure of some pharmacologically important plant derived steroids
Figure 2.14: A typical <i>Laportea aestuans</i>

ABBREVIATIONS

5-AR:	5-alpha reductase
A-2M:	alpha-2-macroglobulin
AAS:	Androgen and Anabolic Steroid
ACT:	alpha-1-antichymotypsin
Ang:	Angiotensin
ANOVA:	Analysis of Variance
BHA:	Butylated Hydroxyanisole
BHT:	Butylated Hydroxytoluene
BMI:	Body Mass Index
BOO:	Bladder Outlet Obstruction
BPH:	Benign Prostatic Hyperplasia
BSA:	Bovine Serum Albumin
CAT:	Catalase
CD4+:	Cluster of differentiation 4
CD8+:	Cluster of differentiation 8
COX:	Cyclooxygenase
CT:	Computed tomography
Cu:	Copper
CuSO ₄ :	Copper sulphate
dG:	deoxyguanosine
DHT:	Dihydritestosterone
DM	

DM: Diabetes Mellitus

DNA:	Deoxyribonucleic Acid
DRE:	Digital Rectal Examination
EDTA:	Ethylenediaminetetraacetic acid
EGF:	Epidermal Growth Factor
ELISA:	Enzyme Linked Immunosorbent Assay
eNOS:	endothelial Nitric Oxide Synthase
ETC:	Electron Transport Chain
Fe:	Iron
GSH:	reduced glutathione
G-T:	Guanine-Thymine
H ₂ O ₂ :	Hydrogen peroxide
HOBr:	Hypobromous acid
HOCI:	Hypochlorous acid
HT:	Hydroxytryptamine
IFN-g:	Interferon
IGF:	Insulin Growth Factor
IL:	Interleukin
iNOS:	inducible Nitric Oxide Synthase
iPSA:	intact Prostate Specific Antigen
kDa:	kilodalton
KGF:	Keratinocyte Growth Factor
KLK:	Kalikerrin
LOX:	Lipoxygenase

LUTS:	Lower Urinary Tract Symptoms
Lys:	Lysine
MAPK:	Mitogen Activated Protein Kinase
MDA:	Malondialdehyde
Mn:	Manganese
mRNA:	messenger Ribonucleic Acid
Na ₂ CO ₃ :	Sodium carbonate
NaCl:	Sodium chloride
NADPH:	Nicotinamide Adenine Dinucleotide Phosphate
NaKT:	Sodium potassium tartrate
NaOH:	Sodium hydroxide
NF-kB:	Nuclear Factor kappa B
nNOS:	neuronal Nitric Oxide Synthase
NOS:	Nitric Oxide Synthase
O ₃ :	Ozone
PAP:	Prostatic Acid Phosphatase
PCa:	Prostate Cancer
PCV:	Pack Cell Volume
PSA:	Prostate Specific Antigen
RNS:	Reactive Nitrogen Specie
ROS:	Reactive Oxygen Specie
RPW:	Relative Prostate Weight
SEM:	Standard Error of Mean

SHBG: Sex Hormone B	Binding Globulin
---------------------	------------------

- **SOD:** Superoxide dismutase
- **SRD5A2:** 3-oxo-5α-steroid 4-dehydrogenase
- **sTNF-RII:** soluble tumour necrosis factor receptor 2
- **TBHQ:** Tert-Butylhydroquinone
- **TGF:** Tumour Growth Factor
- **TP:** Testosterone Propionate
- **WHO:** World Health Organization
- Zn: Zinc
- MRI: Magnetic Resonance Imaging
- **AP:** Activator Protein

ABSTRACT

Several plants have been used in ancient times as medicines to treat, manage and prevent many diseases in various traditional settings throughout the world. The effect of administration of hydroethanolic extract of Laportea aestuans (La) leaves at different doses in Wistar rats induced with benign prostatic hyperplasia (BPH) was studied using antioxidant parameters, prostate specific antigen (PSA), relative prostate weight and phytochemical screening. Thirty (30) animals were randomly divided into six (6) groups (A-F) of five (5) animals each. BPH was induced in the animals by daily subcutaneous injection of testosterone propionate (TP) (3mg/kg) in olive oil and administration of treatments for four (4) weeks were done concurrently. Group A received olive oil alone subcutaneously, group B was induced with BPH alone, groups C-E were induced with BPH but received different doses of La at 100, 200 and 400mg/kg. Lastly, group F was induced with BPH but treated with finasteride (5mg/kg) which serves as the positive control group. Phytochemical screening results shows that saponins, flavonoids (0.5010±0.0009mg/ml), alkaloids (0.528mg/ml), phenols (0.6195±0.0015mg/ml), tannins (0.5410±0.0013mg/ml) and steroids (1.6230±0.0210 mg/ml) were present in hydro-ethanolic extract of La. The relative prostate weight result decreased significantly (p<0.05) in the 400mg/kg La (1.15 \pm 0.14mg) in comparison to the BPH group (1.58 \pm 0.05mg). PSA level also decreased significantly (p<0.05) in the 400mg/kg La (131±1.91pg/ml) when compared to the BPH group (174±4.13pg/ml). Meanwhile, the levels of SOD, CAT and GSH increased significantly (p<0.05) at 400mg/kg La (48.1±4.17U/mg protein), (29.43±1.38U/mg protein) and (30.60±2.05ug/ml) respectively when compared to the BPH group (35.5±0.97U/mg protein), (11.36±2.39U/mg protein) and (15.60±1.14ug/ml). Antioxidant, PSA and relative prostate weight results may be due to the phytochemicals present in the plant. These findings also indicate that Laportea aestuans could be useful in the management of benign prostatic hyperplasia.

Key words: *Laportea aestuans*, benign prostatic hyperplasia, prostate specific antigen, antioxidant, phytochemicals.