
GUISET: A CONCEPTUAL DESIGN OF A GRID-ENABLED 

PORTAL FOR E-COMMERCE ON-DEMAND SERVICES 

 

BY 

 

ODUSOTE BABAFEMI OLUBUNMI 

(CU033020070) 

B.SC COMPUTER SCIENCE 

 

A MASTERS DISSERTATION SUBMITTED TO THE DEPARTMENT 

OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF 

SCIENCE AND TECHNOLOGY COVENANT UNIVERSITY, OTA 

OGUN STATE, NIGERIA. 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

AWARD OF MASTER OF SCIENCE (M.SC) DEGREE IN 

COMPUTER SCIENCE. 

 

June 2011 

 

 

 

 

 

 

 



 

 

2 

DEDICATION 

 

This dissertation is dedicated to God Almighty, the Omnipotent and Omniscient, the giver of life 

and the ingenious architect of my destiny for His faithfulness, tender-mercies and graciousness 

towards me. 

 

I also dedicate this dissertation to my dear parents, Mr. and Mrs. David Odusote, whom God, my 

source has used as the resources for the pursuit of our academic career in covenant university.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3 

ACKNOWLEDGEMENT 

 

I am deeply indebted to God, my father and friend, the author of wisdom and understanding for 

His faithfulness and generous endowments of grace that saw me through my master’s studies. My 

deep and sincere appreciation goes to the Chancellor, Dr. David Oyedepo and the Board of 

Reagents of Covenant University for the vision and mission of the University. Also special thanks 

to the management staff of the University: the Vice Chancellor (VC), Prof. Aize Obayan, the 

Deputy VC, the Registrar, the Deans of the Colleges, the Heads of Departments for their 

unwavering commitments to the pursuit of excellence and sound academic scholarship. 

 

My earnest appreciation goes to my supervisors, Prof. Matthew Adigun, H.O.D, Department of 

Computer Science, University of Zululand, South Africa, in his capacity as my main supervisor 

who provided the research direction and qualitative guidance for the work. I am deeply 

appreciative for the research assistantship he offered me to visit his research center in South 

Africa, an adventure that gave focus to my research work, and gave me opportunities for immense 

capacity development. With all sense of gratitude, I also thank Dr Justine Daramola, my co-

supervisor, for his invaluable contribution to this work.  Your fatherly disposition and undeterred 

willingness and support to ensure academic quality is never undermined are greatly appreciated. 

But for your critical reviews and instructions, this work would not have been an adventure in 

futility. Thank you Dr Daramola. Thank you so much. You are an admirable role model and you 

give me reason to always aim for the stars in my pursuit. Thanks again. 

 

Great thanks to the H.O.D, Department of Computer and Information Science, Covenant 

University, Prof. Ezekiel Adebiyi. Sir, you took amazing interest in my unhindered progress and 

advancement as a young academic. This is still astonishment to me. I appreciate your leadership, 

tutorship, counsels, instructions, encouragements, supports and good wills. I also thank the 

Director, Academic Planning, Covenant University, Prof. C.K Ayo for his fatherly disposition and 

timely encouragements, chastisement and tutorship. I salute your person sir. I thank Dr Nicholas 

Omoregbe for his guidance and supervision and good wills. To all the staff and faculty of the 

Department of Computer and Information Science whose values and worth is far beyond 

description, both my teachers and my highly esteemed colleagues, I appreciate you all and God 

bless you all.   



 

 

4 

Lastly, but deliberately I want to acknowledge a special category of people in my life. I call them 

‘My Heroes’. These are the people that God has used to nurture and make me who I am.  Firstly, I 

specially appreciate my mother, Mrs. M.O Odusote, who has sacrificed all her life to get me to 

where I am today; I pray that God will grant you long life in health and vitality to enjoy all the 

fruits of your labor. Great thanks also to my world dearest brothers, Mr. Olumide Odusote (UK) 

and Mr. Abayomi Odusote, for giving your yesterday to establish my today and your today to 

secure my tomorrow; and to my entire siblings, Mr. and Mrs. Adewale Wahab, Mr. and Mrs. 

Olusesi, Mr. and Mrs. Ibukunoluwa Odusote, Mr. and Mrs. Opeyemi Odusote, Miss Moyosore 

Odusote and my nieces and nephews, thank you very much for your encouragements and supports 

both spiritually and physically. 

 

I am also indebted to the Deputy Registrar, Covenant University, Mr. E.O Ojo. He has been my 

‘school father’ and his fatherly support and counsel have made my stay here a most memorable 

one. God bless you sir. I must also not forget to appreciate Mr. Segun Awonusi (Jay-Tee) for 

helping me early in life to appreciate and embrace the virtues of discipline, diligence and 

dedication as a student in his tutorial college, Jay-Tee Tutorial College. Sir, the positive impacts of 

your words and chastisements are undeniably evident today. God bless you sir! 

 

I also want to appreciate the unmatched efforts of my post graduate lecturers, Dr. P.B Shola of 

University of Ilorin, and Dr. Adewole of University of Agriculture, Abeokuta. God shall reward 

both of you greatly. God bless and keep you all. 

 

 

 

 

 

 

 



 

 

5 

      TABLE OF CONTENTS 

Title Page………………………………………………………………………………..i 

Certification……………………………………………………………………………..ii 

Declaration……………………………………………………………………………...iii 

Dedication………………………………………………………………………………iv 

Acknowledgments………………………………………………………………………v 

Table of Contents……………………………………………………………………….vii 

Appendix...……………………………………………………………………………...x 

List of Figures…………………………………………………………………………..xi 

List of Tables…………………………………………………………………………...xiii 

Glossary ………………………………………………………………………………..xiv 

Abstract…………………………………………………………………………………xvi 

 

 

 

                                                CHAPTER ONE 

 1.   INTRODUCTION………………………………………………….……1 

1.1 Background Information………………………………………………………...1 

1.2 Statement of the Problem………………………………………………………..7 

1.3 Aim and Objectives……………………………………………………………...7 

1.4 Research Methodology…………………………………………………………..9 

1.5 Significance of the Study………..………………………………………………11 

1.6 Contribution to Knowledge……………………………………………………...11 

1.7 Limitations of the Study………………………………………………………....11 

1.8 Dissertation Outline….…………………………………………………………..11 

 

 

 

 

 



 

 

6 

                                                 CHAPTER TWO 

   2.  REVIEW OF RELEVANT LITERATURES ……………………………………13 

     2.1  Grid-Based Portal-Oriented Architecture...............................................................13 

        2.1.1  Grid-enabled Portals with Portlets….……………..........................................13 

        2.1.2  Grid-enabled Portal Models.…………………………………………………17 

        2.1.3  Grid Portlet Services……………….………………………………………...18 

        2.1.4  Grid-enabled Portal Framework…………………….......................................21 

        2.1.5  Portal Development Standards and Technologies…………………………....23    

           2.1.5.1    The Java Specification Requests 168 (JSR 168) ……………………….24 

    2.1.5.2    The Web Service for Remote Portlets (WSRP)………………………....26 

     2.2  Introduction to Service-Oriented Architecture (SOA)...........................................34 

             2.2.1 The Characteristics of SOA…………………………………………………...37 

        2.2.2 The Requirements for SOA…….......................................................................41 

 2.2.3 The Collaboration between SOA Entities…………………………………….42 

             2.2.4 Service Provider and Service Consumer Relationship………………………..44 

             2.2.5 SOA Architectural Style and Principles………………………………………44 

             2.2.6 SOA Implementation Models………………………………………………...46 

             2.2.7 Web Services………………………………………………………………….47 

 2.2.8 Web Service Architecture………………………………………………….....48 

             2.2.9 Web Service Technology……………………………………………………..49 

          2.3 Component Based Development………………………………………………....55 

             2.3.1 Process Model of Component Based Development………………………….58 

     2.4  Web 2.0: Concept and Technologies ……...…………………………................61 

          2.5 Introduction to Utility Computing………………………………………………..62 

             2.5.1 Utility Computing Framework………………………………………………..63 

             2.5.2 Utility Computing Approach to Service Delivery (Pay-As-You-Use) ….......65 

             2.5.3 The Benefits of Utility Computing …………………………………………. 66 

          2.6 Overview of Grid-Enabled Portal Systems ………………………………........... 67 

             2.6.1 Grid-enabled Portal Development Frameworks …………………………….. 68 

             2.6.2 Evaluation of Grid-enabled Portal Development Frameworks ………………69 

             2.6.3 Review of Related Existing Works …………………………………………. 71 

          2.7 Overview of Existing Methods …………………………………………………. 73 



 

 

7 

 

                                                  CHAPTER THREE 

     3.   REQUIREMENTS ANALYSIS AND DESIGN …….…………………..............79 

           3.1 Introduction……………………………………………………………………….79 

           3.2 The System Requirements Analysis ……………………………………………..79 

              3.2.1 The GUISET Architecture ………………………………………………….. 79 

              3.2.2 The Proposed GUISET Portal Framework …………………………………. 82 

              3.2.3 The Portal System Analysis ………………………………………………… 84 

           3.3 The System Design ………………………………………………………………87 

3.3.1  The Logical Design ………………………………………………………….87 

3.3.2 The Portal System Modeling ………………………………………………..89 

3.3.2.1 Use Case Diagrams…………………………………………………………90 

3.3.2.2 Sequence Diagram …………………………………………………………97 

3.3.2.3 Activity Diagram …………………………………………………………..99 

3.3.2.4 Collaboration Diagrams …………………………………………………...100 

3.3.2.5 Entity Class Diagram …………………………………………………….. 102 

3.4 The User Interface Designs …………………………………………………….103 

              3.4.1 The GUISET Portal Home Page ……………………………………………103 

              3.4.2 The Create User Account Interface ………………………………………...103 

              3.4.3 The Portal Administrator’s Registration Interface …………………………103 

              3.4.4 The User Authentication Interface …………………………………………107 

              3.4.5 The Administrator’s Home Page ………………………………………….. 108 

 

 

 

 

 

 

 

 

 



 

 

8 

                                              CHAPTER FOUR 

   4.   THE SYSTEM IMPLEMENTATION……………………………………………109 

          4.1  The Grid-Based Portal Development Tools Used ……………………………....109 

4.2  The Portal Prototype And User Interfaces ……………………………………...110 

4.2.1 The Enterprise Portal Configuration Panel Interface …………………….....110 

4.2.2 The Portal Authentication Setting Interface ………………………………...111 

4.2.3 The Portal Single Sign-On (SSO) Setting Interface ………………………...112 

4.2.4 The Create Membership Account Interface ………………………………...113 

4.2.5 The User Membership Registration Interface ……………………………..114 

4.3 The System Requirements…………………….....................................................115 

4.4 The Hardware Requirements …………………………………………………..116  

4.5 The Evaluation …………………………………………………….117 

4.5.1 The Functional Requirements ………………………………………….......117 

4.5.2  The Usability Evaluation……………………………………………………119 

4.5.3 The Questionnaire Results …………………………………………………120 

 

                                        CHAPTER FIVE 

 5.  SUMMARY, RECOMMENDATIONS AND CONCLUSION……………………124         

          5.2 Summary ………………………………………………………………....……....124 

          5.3 Recommendations and Further Works …………………………………………..125 

          5.4 Conclusion …………………………………………………………………...…..126 

 

     REFRENCES………………………………………………………….........................127                       

      APPENDIX I:  

 Program Inputs and Outputs …...……………………………………………….….134 

 Questionnaire for Evaluation ………………………………………………………142 

 



 

 

9 

                                            LIST OF FIGURES 

FIGURE 1.1: A Simple Portal Architecture……………………………………………………..3 

FIGURE 1.2: A Portal Composed of Five (5) Portlets…………………….…………………….4 

FIGURE 1.3: A Schematic Diagram of the Research Framework.……………………………..10 

FIGURE 2.1: A Portlet-based Portal Architecture………………………………...…………….15 

FIGURE 2.2: A Portal Aggregating Mark-up from Local Portlets……………………………...25 

FIGURE 2.3: WSRP and Existing Web Service Technologies…………….................................27 

FIGURE 2.4: A Typical Publish-Find-Bind Usage Scenario Involving WSRP………………...29 

FIGURE 2.5: The Components of WSRP Architecture………………………………….............31 

FIGURE 2.6: Portal acting as WSRP Consumer to Aggregate Mark-up from Remote Portlets...31 

FIGURE 2.7: A Conceptual Model of a SOA Architectural Style ……………………………...36 

FIGURE 2.8: Coarse Grained Services………………………………………………………….40 

FIGURE 2.9: The Collaboration in Service Oriented Architecture……………………………...43 

FIGURE 2.10: The Attributes of SOA………………..................................................................45 

FIGURE 2:11: The Enterprise Service Bus...……………………………………………………46 

FIGURE 2:12: Web Service Architecture………………………………………………………..49 

FIGURE 2:13: Technologies within the Web Service Technology……………………...............50 

FIGURE 2.14: An Illustration of CBD Process .…………..……………………………….........57 

FIGURE 2.15: Web Services CBD Development……………………...………………………...58 

FIGURE 2.16: The CBD Process Model ………………………………………………………..59 

FIGURE 2.17: Three Layers in a Utility Computing System …..………....….............................64 

FIGURE 2.18: The Evaluation Result as Bar Chart …...….……………………………………..69 

FIGURE 2.19: A Four-Layered SOA Architecture …………………………………….............. 74 

FIGURE 2.20: A Seven-Layered SOA Architecture …………………………………………... 75 

FIGURE 3.1: The Reference Architecture ………………………………………………………80 

FIGURE 3.2: The GUISET Architecture ………………………………………………………. 80 

FIGURE 3.3: The Proposed Grid-enabled Portal Framework …………………………………..82 

FIGURE 3.4: The GUISET Portal Scenario …………………………………………………….85 

FIGURE 3.5: The Conceptual View of GUISET Infrastructure portal ………………………....88 

FIGURE 3.6: Authentication Subsystem ………………………………………………………..91 

FIGURE 3.7: Membership and User Profile Management ……………………………………...92 



 

 

10 

FIGURE 3.8: Portlets Management Subsystem …………………………………………………93 

FIGURE 3.9: Content Management Subsystem …………………………………………..…….94 

FIGURE 3.10: Collaboration Subsystem ………………………………………………………..95  

FIGURE 3.11: Service Registry Management Subsystem ………………………………………96 

FIGURE 3.12: Sequence Diagram (WSRP Protocol) ……...……………………………………98 

FIGURE 3.13: The Activity Diagram …………………………………………………………...99 

FIGURE 3.14a: Validate Subscriber’s Login Collaboration Diagram …………………………100 

FIGURE 3.14b: Service/Product Lookup Collaboration Diagram ……………………………..100 

FIGURE 3.14c: Service/Product Request Collaboration Diagram ……………………..………100 

FIGURE 3.14d: Validate Admin Login Collaboration Diagram …………………..………….. 101 

FIGURE 3.14e: Admin Authorization Collaboration Diagram …………………………….......101 

FIGURE 3.14f: Service/Product Look-Up Collaboration Diagram ………………..…………. 101 

FIGURE 3.14g: Service/Product Request Collaboration Diagram …………………………….102 

FIGURE 3.15: Entity Class Diagram ……………………………………..……………………102 

FIGURE 3.16: The GUISET Portal Home Page …………………………………………….....104 

FIGURE 3.17: The Create User Account Interface …………………………………………....105 

FIGURE 3.18: The Portal Administrator’s Registration Interface ……………………………. 106 

FIGURE 3.19: The User Authentication Interface ……………………………………………. 107 

FIGURE 3.20: The Administrator’s Home Page ……………………………………………… 108 

FIGURE 4.1: The Enterprise Portal Configuration Panel Interface ……………………………110 

FIGURE 4.2: The Portal Authentication Setting Interface ……………………………………..111 

FIGURE 4.3: The Portal Single Sign-On (SSO) Setting Interface ……………………………..112 

FIGURE 4.4: The Create Membership Account Interface ……………………………………...113 

FIGURE 4.5: The User Membership Registration Interface ……………………………………114 

FIGURE 4.6: The Graphical Representation of Participants’ Response ………………………..122 

FIGURE 4.7: The Overall result of the Evaluation………………….…………………………..122 

 

 

 

 

 

 



 

 

11 

 

                                LIST OF TABLES 

TABLE 1.1: The Research Objectives….…………..…………………………………………….8 

TABLE 2.1: Web Services Styles………………..........................................................................52 

TABLE 2.2: The Evaluation Result ...……………………………………………………..………….70 

TABLE 4.1: The Software Requirements ………………………………………...…………….115 

TABLE 4.2: The Web Client Software Requirements ………………………………………….115 

TABLE 4.3: The Hardware Requirements ……………………………………………………...116 

TABLE 4.4: The Security Requirements...………………………………………...…………….118 

TABLE 4.5: The Membership & User Profile Management Requirements ………………...….118 

TABLE 4.6: The Users’ Collaboration Requirements…………………………………………...119 

TABLE 4.7: The Background of Participants…………….……………………………………...120 

TABLE 4.8: The Participants’ Response ………………………………………………………..121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

12 

              ABSTRACT 

 

Conventional grid-enabled portal designs have been largely influenced by the usual functional 

requirements such as security requirements, grid resource requirements and job management 

requirements. However, the pay-as-you-use service provisioning model of utility computing 

platforms mean that additional requirements must be considered in order to realize effective grid-

enabled portals design for such platforms. This work investigates those relevant additional 

requirements that must be considered for the design of grid-enabled portals for utility computing 

contexts.  

 

Based on a thorough review of literature, we identified a number of those relevant additional 

requirements, and developed a grid-enabled portal prototype for the Grid-based Utility 

Infrastructure for SMME-enabling Technology (GUISET) initiative – a utility computing platform. 

The GUISET portal was designed to cater for both the traditional grid requirements and some of 

the relevant additional requirements for utility computing contexts. The result of the evaluation of 

the GUISET portal prototype using a set of benchmark requirements (standards) revealed that it 

fulfilled the minimum requirements to be suitable for the utility context. 
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                                                CHAPTER ONE 

 

1.0   INTRODUCTION 

1.1 BACKGROUND INFORMATION 

The use of computer systems for personal and corporate purposes has increased since the early 

1990’s and many individuals and corporate organizations have benefited tremendously from its 

evolution. Notwithstanding, the personal computer (PC) technology model was adjudged a failure 

for reasons of non-affordability and lack of extensive shareability [1]. 

 

Resource-constrained enterprises such as the Small, Medium and Micro Enterprises (SMMEs) 

especially in the rural areas could not easily afford the PC technology amongst other requirements 

to enable their business processes. Hence many of the SMMEs have to form various business 

clusters with the aim to engendering shareability of relevant technologies, operational equipment, 

facilities, etc through a “co-operative society” approach solely for socio-economic benefits [1]. 

With this approach, every registered member of the co-operative society: business owners, service 

providers, service consumers, etc can easily harness any facility (jointly owned) and some other 

membership benefits to enhance their business processes. 

 

In most developing countries, e-Commerce is being adopted in large organizations, but a large 

number of these resource-constrained enterprises such as the SMMEs are yet to enjoy the 

maximum benefit e-Commerce offers [2]. Some of the reasons as identified in [3] include inability 

to afford the Total Cost of Ownership (TCO) of e-Commerce tools and applications, lack of 

Information Technology (IT) expertise, amongst others.  

 

Moreso, in order to reduce TCO, SMMEs could pay for just the services and resources used per 

time, without being burdened with high operational costs and overheads. This mode of resource 

delivery and utilization is often referred to as On-Demand Computing (ODC) [4, 5]. On-demand 

computing is a paradigm that facilitates the availability and utilization of computing resources 

solely on per user request basis [4]. Utility computing is a form of ODC that enables resource 

provisioning to users through a payment model such as subscription or pay-as-you-use [4]. The 

term Utility is derived from real world provision of utility services such as electrical power, water 

and gas, where consumers pay for the services used, based on usage rather than on a flat-rate basis 

[5]. This paradigm has gained adoption in enterprise computing, where software resources and 
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services are accessible by users over a network, based on the user’s request. This approach to 

software delivery can be termed software on demand [4].  

 

The software-on-demand and utility computing paradigm of software delivery would provide 

SMMEs with several benefits such as the reduction of IT-related operational costs. They no longer 

need to invest heavily in building, owning or maintaining applications for e-Commerce services 

such as Customer Relationship Management (CRM), On-line Payment Processing (OPP), Report 

Generation and Analysis (RGA), Order Management Systems (OMS), Inventory Management 

Systems (IMS), etc, as they can access these services through a network and charged accordingly 

based on resource usage [5]. 

 

This whole scenario however, is one of the motivations for the notion of a Grid-based Utility 

Infrastructure for SMME-Enabling Technologies, GUISET [1], that was proposed by the 

Computer Science Department of the University of Zululand, South Africa. GUISET is a research 

agenda based on adopting the utility approach of service-oriented architecture (SOA) for service 

delivery. It leverages the success of handheld mobile devices whose technology is more affordable 

and shareable with mobile mode of utility computing [6].  

 

GUISET therefore aims at technologically enabling the business activities of SMMEs by 

facilitating an affordable access to relevant technologies on a pay-as-you go basis. The technology 

is conceptualized as a package of mobile e-Services; therefore web presence is the starting point 

for the enterprise being enabled. This research agenda envisages a future in which service 

providers will competitively provide computing services at a varying cost compared to the 

currently fixed cost to clients based on their quality of service (QoS) requirements [1].  

 

GUISET is not an application but, a SOA-based utility infrastructure that is conceptualized to 

accommodate services as a suite of service-oriented on-Demand Applications such as applications 

developed elsewhere by different service providers across various domains such as: e-Commerce, 

e-Tourism, e-Health, e-Business, e-Government, etc [7]. Moreso, as a grid-based utility 

infrastructure, GUISET is meant to provide an enabling operating environment through a portal 

system for every prospective utility service provider and customers willing to form or join any user 

business cluster or community [7]. The GUISET portal therefore is an interface meant to provide a 
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street level entrance into a bring-and-share mode of utility computing [7] for every member or 

prospective member of the business community.  

 

Essentially, a portal is simply a Web-based application that acts as a gateway between users and a 

range of different high-level services [8]. A typical first generation portal is a three-tiered 

architecture, consisting of an interface tier, of a Web browser, a middle tier of Web servers, and a 

third tier of backend services and resources such as databases, high performance computers, 

storage, specialized devices, etc [9]. 

 

 

 

 

 

 

 

 

 

 

 

This generation of portals suffered a number of setbacks due to their lack of customization, 

restricted grid services, and static grid services [9]. While there are limitations with the first 

generation portals, the experiences and lessons learned developing portals have paved the way for 

the development of more sophisticated and user-friendly portals.  

 

In order to overcome the limitations of the earlier portals, the portlet technology was introduced, 

promoted and have been adopted for building new generation portals, often referred to as the 

second generation portals [2, 9]. A so-called second generation portal normally consists of 

different portlets to process user requests for various services and generate dynamic contents from 

the responses [10]. From a user's perspective, a portlet is a window or mini user interface in a 

portal that provides a specific service, for example, a calendar or news feed (see figure 1.2). 

Figure 1.1:  A Simple Portal Architecture [9] 
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Moreso, from an application developer’s perspective, a portlet is a pluggable user interface, 

software component that are managed by a portlet container, which handles user requests and 

generates dynamic content in a web portal [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grid-enabled portals (portals based on Grid technology) build upon the familiar Web portal model 

to offer virtual organizations (VO) or communities of users a single point of access to 

computational resources such as clusters, data servers, applications, scientific tools, and computing 

services [11]. A grid amongst many ways can be defined as a collection of heterogeneous 

distributed interconnected computing and data resources that provides large scale virtual resources 

with an appropriate single user interface [12].  

Grid-enabled portals are emerging technologies and are currently gaining a lot of popularity. They 

are receiving more attention among developers and programmers due to their ease in development, 

richness in functionality, pluggable architecture and customization of interfaces [10]. They are 

web-based applications that act as a gateway between grid users and a range of different grid 

Figure 1.2: A Portal Composed of Five Portlets [9] 
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resources and services [10]. They provide uniform access or single point entry to underlying grid 

services and resources.  

 

Grid-enabled portals are currently developed using portlets. Portlets can be thought of as a 

miniature web application that is running inside a portal page alongside a number of similar 

entities [13]. They are user-facing, multi-step, interactive modules that can be plugged into a portal 

application [10]. Portlets rely on the overall portal framework to access user profile information, 

participate in a presentation interface, communicate with other portlets to access remote contents, 

lookup credentials, and store persistent data [9].  

 

Portal frameworks are development platform for portal development. They are design structures 

that contain various modules, methods and software features used for developing specific portal [8, 

10]. With the popularity of portals today, there are many portal frameworks that are available as 

open source and the list of these open source frameworks is all the time increasing. 

 

A typical grid-enabled portal has the following capabilities [10]: 

1. Registration of Users. 

2. Accessibility of various users to a range of underlying grid services and resources. 

3. Provision of personalization, single sign-on (SSO), aggregation and customization. 

4. Robust Application Integration 

5. Security 

6. Redundancy, failover and Load balancing. etc. 

 

Portlets are used in portal development as self-contained pluggable user interface components to 

encapsulate one or more applications or services that can be aggregated and transferred as 

information to a presentation layer of a portal system [14]. This new approach to portal 

development takes its cue from the concept of Service Orientation [10].  

Service Orientation is a paradigm that utilizes services as building blocks to enable the 

development and flexible composition of distributed applications that are realizable through the 

service-oriented architecture, SOA [15]. It is an architectural paradigm for developing and 

deploying application quickly and cost effectively.  SOA is an architectural paradigm and a 

discipline that may be used to build systems or infrastructure enabling those with needs 
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(consumers) and those with capabilities (providers) to interact via services across disparate 

domains of technology and ownership [15]. It is an architectural model for building systems based 

the interaction of services. SOA is now used to support grid-enabled portals [16].  

SOA applications can be developed using one of the evolutionary software development 

approaches known as Component-Based Development (CBD). CBD enables development of 

software application by assembling and use of existing components. These components can be 

acquired by leveraging legacy systems, as commercial-of-the-shelf, COTS systems  and some 

others are basically open source, from a third party developers or vendors, developing components 

in order to enable reusability. This facilitates shorter time to market, reduced cost, and increased 

reuse [17]. In SOA, software components are encapsulated as Services. A Service is a software 

component that enables access to one or more capabilities with prescribed interfaces [18]. Some 

properties of Services include: Loose Coupling, Reusability, Autonomy, Discoverability, etc [2, 

17].  

 

The development of grid-enabled portal is also taking advantage of the increasing advancement in 

Web technology [19]. Beyond providing a medium of access to various distributed resources and 

services to users, portals are also developed to enable community user interactions and forum, 

social networking, etc. This new dimension to grid-enabled portal development is based on the 

Web 2.0 technology.  

 

Web 2.0 is a Web technology that results from the advancement of the Web from being a 

document delivery system to an application platform [20]. Sometimes it is called "Web as 

platform” [20]. It is a more socially interactive platform where users can network and collaborate 

for socio-economic benefits, giving various users an opportunity to contribute to the community as 

much as they consume [20].  

 

There are a number of Web-based services and applications that demonstrate the foundations of 

the Web 2.0 concept, and they are already being used within the grid portal context too. These are 

not really technologies as such, but services (or user processes) built using the building blocks of 

the technologies and open standards that underpin the Internet and the Web. These include blogs, 

social networks, wikis, multimedia sharing services, content syndication, podcasting and content 

tagging services [20].  
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1.2 STATEMENT OF THE PROBLEM 

 

Conventional grid-based portal designs have been largely influenced by the usual functional 

requirements such as security requirements, job management requirements and grid resource 

requirements [14, 21]. However, the ‘pay-as-you-use’ service provisioning model of utility 

computing platforms mean that additional requirements must be considered in order to realize 

effective grid-enabled portal designs for such platforms [4, 5, 22, 23]. Consequently, the following 

research question suffices: What are the relevant requirements that must be considered for 

effective design of grid-enabled portals for utility computing contexts? 

 

 

1.3   AIM AND OBJECTIVES OF THE STUDY 

The aim of this research work is to investigate the relevant additional requirements that can be 

catered for in the design and development of grid-enabled portals for utility computing contexts. 

 

In order to be able to achieve this aim, the following objectives were formulated: 

1. To study issues on current grid-enabled portal frameworks and development toolkits as 

profiled in the literature in order to identify a research goal. 

2. Based on a thorough literature review, to identify a number of relevant additional       

requirements that can be catered for in the design and development of grid-enabled portals for 

utility computing contexts. 

3. To design and develop a grid-enabled portal prototype for GUISET with some features that 

caters for these identified requirements.   

4. To conduct an evaluation of the grid-enabled portal prototype using a set of benchmark 

requirement standard, and also the usability evaluation of the portal prototype.  
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Table 1.1: The Research Objectives. 

S/N OBJECTIVES PROPOSED METHODOLOGY 

1 To study issues on current grid-enabled portal 

frameworks and development toolkits as profiled 

in the literature in order to identify a research goal. 

 

 Literature Review 

 Investigation & Evaluation of 

Existing Tools 

 

 

2 

 

Based on a thorough literature review, to identify a 

number of relevant additional       requirements 

that can be catered for in the design and 

development of grid-enabled portals for utility 

computing contexts. 

 

 Literature Review 

 Requirement Elicitation 

 

3 

 

To design and develop a grid-enabled portal 

prototype for GUISET with some features that 

caters for these identified requirements.   

 

 Proof of Concept Prototype 

 Case Study 

4 To conduct an evaluation of the grid-enabled 

portal prototype using a set of benchmark 

requirement standard, and also the usability 

evaluation of the portal prototype.  

 

 Benchmarking 

 Usability Evaluation  

 Case Study 
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1.4    RESEARCH METHODOLOGY 

The research approach of this study will be both theoretical (descriptive) and formulative. The 

former entails a thorough review of literature on relevant techniques, methods and technologies 

used in grid-enabled portal designs and development. This include: SOA, CBD, grid technologies 

and Web 2.0.  The motivation for the selected approaches is highlighted below: 

 SOA:  The various applications or components would be exposed as services, and SOA is the 

most appropriate option to achieve that [17]. SOA is an architectural model for building systems 

based the interaction of services and it is also currently used to support grid-enabled portals 

[16].   

 CBD: To easily achieve the building of an efficient grid-enabled portal from a set of 

interconnected software tools or components that perform specific task [24]. 

 Grid Technology: It is the first type of distributed system to fully actualize interoperability. It 

however, has greater future prospects for successful implementations [21]. 

 Web 2.0: For collaborations and community enablement through user communities and groups, 

online forums and discussion boards, chat groups and e-mails, blogs and white boards, etc [20].  

 

A formal design model of the proposed system was built using the Unified Modeling Language 

(UML). The use case diagrams were used to capture the system requirements. The class diagram 

and collaboration diagram were used to design the various entities and their interactions within the 

system. The sequence diagram, activity diagram and state diagram were used to model the 

activities and business logic of the system. Furthermore, in addition to the traditional requirements 

for design of grid-enabled portals, we identified a number of relevant requirements and 

implemented a grid-enabled portal prototype for GUISET with certain features that cater for these 

additional requirements. The portal prototype is built using Liferay 5.2.3 portal tool kit [10, 25, 26] 

bundled with Tomcat 6.0.18 as the core components adopted for the implementation.  

An evaluation of the grid-enabled portal prototype was conducted using a set of benchmark 

requirement standards, and also the usability evaluation of the portal prototype in a controlled 

experiment by a group of experienced users.  
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1.5    SIGNIFICANCE OF THE STUDY 

 

This study has relevance to the practice of grid-enabled portal development, and also provides a 

model for national economic development. This is because:  

1. It reveals the minimum relevant requirements apart from the traditional requirements that 

must be fulfilled to realize effective design of grid-enabled for the utility context, and  

2. The implementation of the GUISET portal offers a usable prototype that facilitates the 

realization of ODC platform for improved wealth creation and affordable access to scarce 

and expensive computing, particularly among SMMEs and rural-based businesses. 

 

 

 

Figure 1.3: A Schematic Diagram of the Research Framework 
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1.6    CONTRIBUTION TO KNOWLEDGE 

The contribution of this work is that it presents a case study of grid portal design and development 

for utility computing contexts in an elegant and repeatable way.  The perspective of grid portal for 

utility computing embraced by this study is not yet common in the literature, hence it is valuable 

for the advancement of literature and industry practice.  

 

1.7     LIMITATIONS OF THE STUDY 

This research work is part of a bigger on-going research endeavor embarked on by the Center of 

Excellence for Mobile e-Service, Department of Computer Science, University of Zululand, South 

Africa, which aims at building an evolutionary system - GUISET infrastructure. In this work not 

all identifiable additional requirements for design of grid-enabled portals have been considered. 

The scope of this work is limited to those that do not require the expensive third party 

infrastructure and usage access rights such e-Billing and e-Payment. Therefore, only a selected set 

of additional requirements have been considered and not all that is possible. 

   

1.8    DISSERTATION OUTLINE 

The Remainder of this dissertation is organized as follows: Chapter two contains a review of 

relevant literatures on state-of-the-art SOA concepts, Component-Based Design techniques; Web 

2.0 concepts and technologies were done. In view of describing this work in the light of what 

currently exist in the research community an exploration of existing Grid-enabled portal 

frameworks, tools, technologies and standards was also done. Chapter three presents the 

requirement analysis and designs. Chapter four discusses the implementation of the grid-enabled 

portal prototype for GUISET with relevant features that cater for the identified additional 

requirements. Chapter five presents a report on the evaluation of the portal based on a set of 

benchmark requirements standard. The summary, conclusion and recommendations for future 

work were also presented in this chapter. 
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CHAPTER TWO 

 

2.0    THE REVIEW OF RELEVANT LITERATURES 
In this chapter some relevant theoretical foundational concepts that pertain to this research work 

were explored. Modern and relevant computing theories that suit the research concept were also 

explored. Some of these theories include: portal-oriented architectural framework, concepts of 

grid-enabled portal & portlets, service-oriented architecture, web service concepts, mobile mode of 

utility computing to service delivery, Web 2.0, concepts of user interface, etc. We also did An 

investigation on different existing major portal frameworks, tools and technologies for grid-

enabled portal development was done and suitable tools for achieving the GUISET portal 

functionality and capabilities were adopted. 

.  

2.1     GRID-BASED PORTAL-ORIENTED ARCHITECTURE 

2.1.1   Grid-enabled Portals with Portlets 

Portals are receiving more interest and attention among software developers due to their ease in 

development, customization of interfaces, richness in functionality, and pluggable architecture 

[10]. A portal is a software application that provide uniform medium through which the users 

secure access to an online environment of various resources and services [27]. 

Grid-enabled portals (portals based on Grid technology) are built upon the existing Web portal 

model to provide virtual organizations (VO) or communities of users a single and uniform medium 

of access to computational resources: software application and computing services, data servers, 

clusters, and scientific tools [11]. They are similar to websites but the main disadvantage of 

websites is that once they are developed and configured, it is very difficult to adapt them to new 

applications [14].  

 

A Grid-enabled portal acts as an access medium between grid users and a range of different grid 

resources and services [10]. It provides a uniform access or a single point entry to these underlying 

grid services and resources [25]. It provides personalization, single sign-on (SSO), aggregation and 

customization features [10]. A so-called “second generation” portal normally consists of different 

portlets to process user requests to the Grid services and generate dynamic content from the 

responses [25]. Portlets can be thought of as a miniature web application that is running inside a 

portal page alongside a number of similar entities [36]. Portlets are used in portals as self-
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contained pluggable user interface components to the services [5]. They are user-facing, multi-

step, interactive modules that can be plugged into a portal application [36].  

 

Portals employ portlets as pluggable and related components that provide a presentation layer and 

user interface, allowing Grid portals to have a complete and easy to maintain structure by reducing 

the element of cohesion [28]. Portlets are managed by portlets containers and they process requests 

from the grid clients through the web and generate dynamic contents that create the portion of a 

web page or interface. The content generated by a portlet is also called a “fragment” [14]. A 

fragment is a piece of markup such as HTML, adhering to certain rules and can be aggregated with 

other fragments to form a complete document [14]. The content generated by a portlet can be 

aggregated with the contents generated by other portlets to form a portal page.  These portal 

contents may vary from one user to another depending on the user configuration for the portlet. A 

user can select the portlets he needs and even rearranges the positions of the portlets. These 

configurations will be saved persistently for this user. Thus, the user can configure a portal 

environment that suits him best [14]. 

 

Portlets have become an increasingly popular concept to describe visual user interfaces to a 

content or service provider [29]. Technically, they represent modular, reusable software 

components that may be developed independently of the general portal architecture [8], and offers 

a specific set of operations. This concept has brought immense benefits to this field in that, portlets 

developed by different groups can be easily reused if they conform to the same standard such as 

Java Specification Request, JSR-168 [18]. It also can be easily removed from or added into the 

portlet container by changing configuration files or by using certain tools provided by the portal 

framework.  

 

However, portals can therefore be either portlets-based or non portlets-based [25]. Portlets-based 

portals are web component that generates fragments – pieces of markup (e.g. HTML, XML) 

adhering to certain specifications. Fragments are then aggregated to form a complete web page. 

Figure 2.1 below depicts a generic portlet-based portal architecture. 

Non Portlets-based portals are usually built based on 3-tier web architecture: (i) Web browser, (ii) 

application server/Web server which can handle HTTP request from the client browser, and (iii) 

backend resources that include computing resources, databases, etc. Many of the early grid portals 
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or early versions of grid portals are non portlets-based, for example, the Astrophysics Simulation 

Collaboratory (ASC) portal [30], UNICORE [31], etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: A Portlet-based Portal Architecture [28]. 

 

The development of portlets-based portals has brought many benefits to both end-users and 

developers, and this is getting more recognition. An investigation of a set of related works done in 

this research work revealed that, a combination of Grid technologies and portal technologies has 

been substantially achieved in order to make grid-enabled portals more flexible and to improve 

their reusability. This is as reported in [14].  

 

Grid technology however, has matured to the point where many different communities are actively 

engaged in building distributed application infrastructures to support discipline-specific problem 

solving. It enables coordinated sharing and use of distributed software resources, hardware 

resources and information in virtual organizations [8]. A Grid is a combination of network 

infrastructure and software framework delivering computing services based on distributed 

hardware and software resources. This distributed infrastructure is based on web and web service 

technology that brings data, various tools and applications to the users in ways that facilitates 
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collaborative works [21].  Grid enables communities (VO) to share geographically distributed 

resources in the absence of central control, omniscience, and trust relationships [21].  

From a user’s perspective, a Grid based portal system usually should provide the following 

functionalities or services: 

A. Authentication Service.  

Any user that intends to log onto the portal using a web browser is first authenticated by means of 

a user-id and password. Once the user is authenticated, it is the job of the portal server to act as the 

user’s proxy in most grid interactions, by obtaining a proxy certificate that it can use on behalf of 

the user. The standard approach is to have the user submit a proxy to a MyProxy [32] server. The 

proxy can then be retrieved by the portal server from the MyProxy server and holds the proxy for 

the duration of the user’s session. This process of making the user manage a key pair and submit 

proxy certificates to a MyProxy server is extremely unpopular with users.  

B. Remote File Management.  

A central requirement for the portal is the access to file metadata directories and remote file 

archives. Simple tools for Grid file transfer protocol, (Grid FTP) are essential here, but many files 

are likely to be managed by a virtual data system, where data is cataloged and staged by back-end 

grid services. 

C.  Remote Job Submission and Monitoring.  

The ability to submit jobs to the grid infrastructure for execution and monitoring is a classic 

requirement for portals [14]. Users with specific resources allocation want to be able to see job 

queues on those resources and consult scheduling assistants. They need to be able to keep track of 

job execution and understand when things fail by reading logs. The most ambitious grid 

applications are those whose execution is defined by complex workflows [14]. 

D.  Access to collaboration. 

Resource sharing is also vital within any VO. The ability to use real-time collaboration tools as 

well as asynchronous collaboration is emphasized here. 

Grid systems have some common services or functionalities, and these services are independent 

from each other somewhat. Thus, one or more Grid services can be encapsulated into a grid portlet 

[14], and enable portlets to interact with each other if needed. An authentication portlet can be 

designed to authenticate users. A Grid FTP portlet can enable users to access remote files if they 

are authenticated users. A job submission portlet allows users to summit jobs and a resource 

monitoring portlet to enable users to check remote resources such as CPUs or memories. 
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Collaboration portlets such as chatting portlet allows users to collaborate with each other. Grid 

users can choose the portlets they need to configure their own portals. 

 

2.1.2    Grid-enabled Portals Models 

Grid-enabled portals exists essentially in two different classes – based on their execution form and 

ubiquitous access (presence everywhere) [8], and User Control [33]. However, depending on their 

execution form, and ubiquitous access, they can be classified into two models. The Open Grid 

Computing Environment, OGCE [33] and HotPage [34] are examples of portals that provide 

ubiquitous access; the user handles certain aspects of the grid portal including accounts with high 

performance computing resources, have setup and configuration responsibilities, and others. On 

the other hand, portals that are exclusively controlled by the administrator correspond to the 

second model.  An example of the second is Punch In-Vigo, where the administrator is responsible 

for almost all the manufactured Grid portal [35] 

 

Furthermore, according to [36] portals can again be classified into two models depending on user 

control. Some portals provide access to high-performance computing resources at anytime; users 

have control access to any resource to install what they need. In this type of portal model, users 

have knowledge of the grid middleware itself, and therefore are required to implement changes. 

Conversely, in the other portal model, access and resource control is assigned to a specific user 

administrator who is responsible for installing, configuring, or running applications and 

middleware. Users (clients) only interact with the portal and are unaware of the procedures running 

under it.  

 

The second model of the latter class provides a more stable and controlled setting, because the 

access and resource control of the portal is the responsibility of the administrators and users only 

perform the operations they need, knowing that the level of knowledge of the administrator, a 

specialized user, is much higher than that of the users although they know the Grid works partially 

in the first model [8]. These two models have advantages and disadvantages therefore; the model 

that best suits the needs of what wants to be deployed is the one that should be used. 

 

 

 



 

 

29 

2.1.3   Grid Portlet Services 

The grid based portlets contain portlets services that offer a high-level application programming 

interface (API) and model of the grid, enabling developers to reuse the functionality offered in grid 

portlets to develop custom grid based portal applications [11]. The Grid Portlet Services API is a 

collection of Java interfaces and extensible base classes that built upon simple concepts to provide 

more complex services, resources and tasks [11]. These classes can be supported with Globus 

Toolkit 2 (GT2), GT3, GT4 and other service-oriented technologies [37] in order to provide 

support for persisting information about resources and tasks performed by users on the Grid. 

The grid portlet services API is further supported by base implementations that make it easy to 

develop support for particular grid middleware technologies. Because GT2 is the most widely 

deployed and supported version of the Globus toolkit [37], grid portlets is distributed with 

implementations for utilizing GT2 resources, such as the Globus Gatekeeper [38] and Grid FTP 

[39] However, support for Open Grid Services Architecture, (OGSA) [40] and Web Service 

Resource Framework (WSRF) [41] based resources are offered in the GT3 portlets and GT4 

portlets applications respectively. These applications provide GT3 and GT4 implementations of 

the Grid Portlet Services API and are distributed separately. 

Within a portal a number of internal services are needed to address of issues of the coordination of 

tools (portlets) within an overall framework. Methods can be provided as an "internal" class 

library, which resides alongside the portlet and service APIs. Each portal framework could have 

the same, or a different set of tools, but the way they are integrated may differ between user 

groups. Alternatively, the services could be federated and available via Web Services calls to 

specialized servers elsewhere in a virtual research environment. 

 

Some example portal integration services are now listed [11]: 

 Session Management: This involves the management of a session key and related issues. It 

requires database access for storing and retrieving other items relevant to the session. User can 

authenticate and start a new session or revert to a previous one. The service can open and close 

sessions and log the state of a session from. Features like rollback and replay, including 

personal workflow, can also be available. 

 Authentication using MyProxy, which is a repository of valid proxy certificates for 

authenticated users. The portal can download these for delegation to trusted external services. 
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A service can also check that certificates are, for example, still valid and refresh them if not. 

Part of the integration API would allow storing and retrieval of the proxy into the portal 

database for later use. This will be done using a session key and user id, (UID) (e.g. 

Distinguished Name (DN) or unique e-mail address). Having the certificate associated with the 

session key allows authorization issues to be tackled, e.g. using subsidiary certificate or 

another method. 

 VO Management that could for example be based around a project which would typically have 

its own portal and Grid. VO users will have been authenticated and have received a digital 

identity (certificate). They are then given rights based on the roles they are taking in this VO 

and thus can be authorized to access services. 

 Integrated State: This is related to the need to manage data related to state information for a 

portlet UID. There is a general need to develop the concepts related to integrated state. For 

example: 

o State can be used as an event trigger, 

o State needs to be logged for session management or workflow, 

o What states can portlets and services have which are meaningful for rollback and 

replay? 

o Service and Portlet location, which can be published, queried, and looked up in a 

registry. This also requires semantic support as it is import to annotate service 

information with further information such as what the service does and why. 

 Portal Preferences, which can be built up from a "preferred set" of services and portlets and be 

based on usage. This service can also log semantic information and build a related ontology. 

The service extends the idea of a workspace toolset allowing dynamic semantic/function-

driven choice. 

 Semantic/Ontology Support for information about services and portlets in the framework. 

These services will be used for decision support and choice, augmenting stored preferences. 

These services would not cover generic semantic issues, which would need separate tools. 

 Workflow via directed links between components (typically graph based). An event 

mechanism is used to trigger actions within portals and attached services. The graphs within 
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the portal will be mostly predefined, but with constrained facilities to swap in and out 

components and provide additional inputs at decision points. 

 Trails and Personalization could involve logging of usage for off-line mining and analysis, 

e.g. for developers to improve presentation, ease of use, and optimization. 

 Inter Portlet Communication and Event Management: This will provide message-based 

communication mechanism between portlets, possibly with event triggers and asynchronous 

handlers. 

Grid Portlets also defines several portlet service interfaces; these services include [11]: resource 

registry service, resource provider services, credential manager service, credential retrieval 

service, logical file browser service, and job submission service. The various portlets leverage the 

above grid portlet services to provide a generic, yet powerful set of user interfaces for using the 

resources on the grid. These portlets include [11]: resource registry portlet, credential manager 

portlet, resource browser portlet, credential manager portlet, file browser portlet, file activity 

portlet, and job submission portlet. 

2.1.4    Grid-enabled Portal Frameworks 

In [8], portal framework, middleware, a set of Java components, servlets, and portlets, were 

identified as the design components of grid portals, including technical differences depending on 

the architecture, structure, functions and components. Frameworks are designed structures that 

contain various modules, methods and software features whose functions is to serve as template for 

developing applications derived from the same frameworks [10].  

Conceptually, frameworks are composed of two sections: the ‘Core’ and the ‘Slots’ [8]. The core 

represents classes, libraries, methods and modules that are equal and that serve as the basis for all 

applications, thus, all applications generated by the same framework will have the same basic 

features stored in this layer. The second section, Slots represent the elements or features that can be 

adapted, added, or simply ignored in the application. Slots can be imagined as checklists where 

additional methods and functionalities that the application could have and the elements in the slots 

that are not required for the framework to function can be chosen [8]. 

According to [8], frameworks are also characterized by different spots: Frozen Spots, Hot Spots, 

and Extension Spots. The Frozen spots represent those points of the framework that are neither 

extensible nor adaptable. Frozen spots are the basic components of the framework. The Hot Spots 
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are highly extensible, adaptable and configurable, while the Extension Points are the segments that 

might link hot and frozen spots, or two hot spots. 

Portal frameworks are development platform for portal development [10]. They are design 

structures that contain various modules, methods and software features used for developing 

specific portal [8, 10]. In a typical Service-Oriented Architecture, SOA [15], the portal framework 

is depicted as an extra layer in the architecture that provides a standard (presentation) interface for 

business logic independent of programming languages or platforms [10]. It is responsible for 

providing the required resources and environment for proper functioning of the components 

plugged into it.  

 

In literal sense, a portal framework provides a skeleton to plug and play various portlets [16]. At its 

core, there is a universal API built on the top of the application architecture. Unlike the 3-layered 

(database, application logic and interface) architecture [9] for traditional application development, 

a portal framework has this fourth presentation layer that sits between the application logic and the 

user. The portal, apart from being used to present the application logic contained in software 

components/agents, it can as well be used to coordinate different loosely coupled services into a 

single concrete service, by providing the related gluing framework [10].  

 

Furthermore, the responsibility for message flow from users to services and for inter-portlets 

communication rests with the portal framework [9, 42]. The messages which can be stateless or 

stateful, but are normally stateless as software agents are context independent. However, in order 

to facilitate multiple interaction per user, the framework either adds state information to the 

message or stores the state information in a persistent way thus, removing the need for services to 

maintain state when invoked from different portlets [9]. Hence, the failure of any service does not 

result in loss of state as the state of services is known [9]. A service providing the software agent 

can even be replaced dynamically during the execution with another equivalent one. This 

potentially makes recovery from partial failure relatively easy and services seen by the user can be 

made reliable [12]. 

 

Traditionally, stateful services would demand that both the service provider and consumer share 

the same consumer-specific context [9, 10]. This in turn reduces the overall scalability of the 

service provider component and increases the coupling between the service provider and consumer 

making switching of service providers more difficult [10]. Maintaining state through the portal 
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framework and aggregating services as portlets is however not a large overhead and the main 

purpose and benefits of the SOA are then not compromised [10]. The ability to use stateless 

idempotent services results in less overhead on the service-providing component and uniform 

behavior when components are used in different ways. These core functionalities in a portal 

framework make it a most appropriate companion to the SOA [10]. 

Another component of a grid portal that is worth mentioning is the middleware. A good example is 

the In-Vigo [35]. The middleware represents the connectivity software that serves as the 

intermediary between the various platforms in which the portals can be [8]. It is platform-

independent and application-independent; it interacts with physical resources such as built 

applications with the aim of integrating various applications from different platforms and/or 

operating environment [8]. 

There are various set of development tools with features that are incorporated in the design and 

development of grid-based portals. The Grid Portal toolkit [41] and Globus Toolkit [37] are two of 

these tools. The Grid Portal toolkit is a development tool for creating web portals and applications 

for grid infrastructures [41]. It was developed by the Texas Advanced Computing Center (TACC) 

[27], and its security model based on Globus GSI (Grid Security Infrastructure) for a single login 

and authentication to remote servers. It allows to automatically incorporate the use of MyProxy, to 

be possible to authenticate users through identification and credentials for a short period of time 

[41], using the JSR168 standard.  

The Globus Toolkit on the other hand is used for building Grids. It was developed by Globus 

Alliance in 1998, the most popular versions incorporate GT 3.x OGSI (Open Grid Service 

Architecture), GT 3.9 and GT 4.0 supported by WSRF (Web Service Resource Framework) [14]. 

Globus Toolkit includes features that can be used either independently or together with the 

application such as: security software, information infrastructure, resource and management, fault 

detection, among others.   

In order to design a grid-enabled portal, a chosen portal framework, with a middleware, java 

components or development toolkits is required. The Portal frameworks are structures defined for 

specific portal models, while middleware facilitates communication between structures, and 

toolkits allow the development of portals from pre-developed tools [8]. A portlet-based grid 

enabled portal consists of portal framework, portlet container and grid portlets which interact with 

the grid tools including Globus toolkit and grid middleware.  
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2.1.5    Portals Development Standards and Technologies 

There are various generally embraced technologies designed to standardize how portal components 

are being designed and developed. According to [16], all frameworks are currently incomplete and 

deficient in terms of extensibility and reusability across various application domains. In order to 

address this limitation, certain standards were formulated and have been adopted by standard 

organizations consisting of major industry players and research groups with the hope of improving 

the current situation. These standards are otherwise referred to as portlets specifications [13, 18] 

and this work considered two of these major standards - The Java Specification Requests 168 (JSR 

168) [18], and Web  Services for Remote Portlets (WSRP) [13]. 

These specifications define a common portlets application programming interface (API) and 

infrastructure that provide facilities for personalization, presentation, and security [13]. Portlets 

using this API and adhering to the specifications will be product agnostic, and may be deployed to 

any portal framework that conforms to the specifications. This helps to facilitate the support for 

multiple portal applications thus accommodating the various needs of the users. The compliant 

portlets can be deployed to all compliant portal frameworks without extensive engineering changes 

[18].  

 
Moreso, the specifications define how to leverage Simple Object Access Protocol (SOAP)-based 

web services [43, 44], that generates mark-up fragments within the portal application, by defining 

a set of common interfaces, thus allowing portals to display remotely-running portlets inside their 

pages without requiring any additional programming by the portal developer. To the end-user, it 

appears that the portlets are running locally within their portal, but in reality the portlets reside in a 

remotely-running portlets container, and interaction only occurs through the exchange of SOAP 

messages [13]. 

 

2.1.5.1    The Java Specification Requests 168 (JSR 168) 

The Java Specification Request, JSR-168 lays a foundation for a new open standard for portal 

development frameworks. The Java portlet API JSR-168 emerged from the Java Community 

Process (JCP) principally from the Apache JetSpeed portal project in April 2001[18]. JCP is an 

open process involving the organization of Java developer institutions with the remit to develop 

and revise specifications and reference implementations for the Java platform. JSR 168 is designed 

in order to enable interoperability for various portals within different portal frameworks. It defines 
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a set of APIs for interacting between the portlets containers and various portlets addressing the 

areas of presentation, personalization and security [18]. It also seeks to provide a portlet 

abstraction together with portlet API thus enabling interoperability between portals and portlets 

[16].  

 
The JSR 168 specification [18] is based on the mature servlets standard following a community 

review in 2003. The behavior of portlets is similar to that of servlets in many ways, i.e. both 

portlets and servlets are Java-based web components, managed by a container, used to generate 

dynamic content and interact with Web clients via a request/response paradigm. Unlike servlets, 

portlets have additional features and limitations, for example, portlets only generate markup 

fragments and have pre-defined modes and states, but there are optional extensions allowed. JSR 

168 defines a standard API for J2EE-based portal platforms. Its goal is to provide a set of 

standards so that any compliant portlets can be deployed on any portal which supports the 

specification [13]. It also handles the presentation end of information enabling reuse of portlets in 

different containers [9]. The figure 2.2 below depicts a traditional portal model where the portal 

has a portlet container which hosts a number of discrete portlets. Each of these portlets generates 

fragments of mark-up which the portal ultimately pieces together to create a complete page that is 

presented to the user. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: A Portal Aggregating Mark-up from Local Portlets [13]. 
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For developers, the specification offers code reusability, as developers who intend to portal-enable 

their application only need to create and maintain just one set of JSR-168 compliant portlets. This 

also implies that portlets can be easily reused if they conform to the same JSR-168 standard. These 

portlets can run on any JSR 168 portlets specification compliant portal server with few, if any, 

modifications [18], and because this API is specifically designed for portlets creation, developers 

will benefit from additional functionalities beyond the standard ones.  

 

The standard also creates a viable market for portal tools: IDEs, performance measurement tools, 

test tools, etc can be offered to a wider range of users. Amongst the various aspects addresses by 

this specification are: the portlets containers contract and portlets life cycle management, the 

definition of window states and portlets modes, portlets preferences management, packaging and 

deployment, security, etc. 

 
2.1.5.2    The Web Service for Remote Portlets (WSRP) 

The Web Service for Remote Portlets, WSRP [13] was formulated to complement the effort of JSR 

168. WSRP emerged from the world of Web services which uses Web Service Description 

Language, WSDL [45] description on how to publish service information after it was adopted by 

the Organization for the Advancement of Structured Information   Standards, OASIS [13] (which 

also reviewed the JSR-168 standard), a world-wide consortium that drives the development, 

convergence and adoption of e-Business standards [16].  

The ultimate goal of WSRP is to bring web services and the benefits of SOA to the end-user [13]. 

WSRP is suggested to be a natural tool for SOA systems; providing the missing presentation layer 

with additional needed features in the existing SOA [12]. It will essentially allow portals to 

retrieve contents from other portals via their portlet containers and other data sources [9]. The 

specification defines a common, well-defined interface for communicating with pluggable, 

presentation-oriented Web services. These services process user interactions and provide mark-up 

fragments for aggregation by portals [13]. 

From the above definition, a special look at a couple of the most important terms; first, the services 

are presentation-oriented which means that they provide a user interface that allows an end-user to 

interact directly with the service. This is starkly different from a traditional perspective of web 

service which focuses on processing a request and generating a response at a more programmatic 
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level. Second, the specification defines a common, well-defined interface governing how a portal 

communicates with the service and collects the mark-up fragments it needs to present a page to the 

end-user. It is precisely this common interface which allows portal applications to generically 

consume portlets running in remotely-running containers [13]. 

Portlets are not confined to one portal framework; WSRP defines a standard for interactive, user-

facing web services to make portlets hosted by different geographically distributed portal 

frameworks accessible in a single portal [13]. Unlike traditional web services however, it is a 

cross-vendor protocol that defines a set of interfaces for enabling portals and non-portal web 

applications alike to incorporate portlets deployed remotely. It is based on mature extended 

markup language (XML) and web services specifications that allow the plug-and-play of services 

in portals and other web applications that aggregate content from disparate sources [46].  WSRP 

thus enables developers to consume portlets published by other portal sites, irrespective for the 

varying portal frameworks.  

It also allows business level tools to integrate different similar and related portlets services in a 

dynamic fashion (coupling of services on the fly) by publication and discovery in registries such as 

the Universal Description, Discovery, and Integration, UDDI [47] using WSDL. Like any other 

web service, WSRP is also language agnostic although tooling currently only exist in java [12]. It 

is built upon existing web services standards like SOAP, WSDL, and UDDI. This relationship is 

briefly depicted in the figure 2.4 below: 

 

 

Figure 2.3: WSRP and Existing Web Service Technologies [13] 

One of the primary benefits of using a portal is that a portal user can customize the set of 

applications (portlets) that are available to him. However, to customize the portal in such a 

manner, he must first be aware of what portlets are available. If there is a central registry (or 
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potentially several registries), portal users can dynamically discover and bind to new portlets, thus 

creating a work environment tailored to their specific needs.  

From the portlet providers' point of view, a centralized registry is equally important since it allows 

them to publish and describe the portlets which they offer. Providers can provide textual 

descriptions, categorizations, and other meaningful metadata which richly describe their portlets so 

that consumers can more effectively discover these services. After all, what is the point of offering 

portlets to a community if no one knows that they exist? 

UDDI provides just such a mechanism to bring together WSRP producers who have portlet 

services to share and WSRP consumers who are seeking to leverage new applications within their 

work environment. Since UDDI has become the standard for Web services discovery, it is only 

natural that it also serves as the backbone for portlet discovery. Portlet discovery, however, does 

throw a few quirks into the mix - a portlet is not a true Web service after all. 

As mentioned above, in the WSRP world there are WSRP producers which are true Web services 

and WSRP portlets which can only be accessed through the API provided by their producer. While 

a WSRP portlet can be logically thought of as a service, it is not a true Web service since it does 

not offer an API by which a consumer could invoke it directly.  

However, the most common use case when dealing with portlet discovery would involve an end-

user looking to find a portlet to add into one of his portal pages. The end-user has no concept of a 

WSRP producer, nor should he have any reason to understand the underpinnings of WSRP. 

However, since a portlet can be only be accessed through its producer, both the WSRP portlet and 

the WSRP producer must be published in the registry. 

It should be noted that once a consumer has discovered a portlet service within the registry, the 

portlets’ metadata will contain all of the information necessary for the consumer to directly contact 

the producer and consume the portlet. Portlet discovery strictly acts as a mechanism to allow 

producers to describe their portlet services in a central location where potential consumers can 

discover them. 
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A typical usage scenario normally has the following steps: 

1. A provider has developed a set of portlets which have been made available by setting up a WSRP 

producer and exposing them as WSRP portlets. The provider wants to make these portlets 

available to the community, so he publishes them to a central UDDI directory. Since UDDI 

exposes a Web service interface itself, the provider would likely perform this task either through a 

custom built user interface, UI or through one provided by the UDDI Server. 

2. An end-user is looking to add a portlet to his portal. Using the tools provided by his portal (or a 

custom-written tool specifically for the purpose), he performs a search for portlets. Once the user 

has found a portlet that he wishes to add to his portal, he easily adds the new portlet application to 

one of his portal pages. Alternatively, a portal administrator could search the UDDI registry for 

portlets and make them available to end-users by adding them to the portal's internal registry. 

3. When the user now accesses the page to which he added the new portlet, it now contains the 

remotely-running portlet. Behind the scenes the portal is making a Web service request to the 

remote producer, and the producer is returning a mark-up fragment for the portal to integrate into 

the portal page. However, the end-user is completely shielded from the nitty-gritty details of 

WSRP -- all he knows is that he was able to seamlessly and easily integrate a new application into 

his portal. 

Figure 2.4: A Typical Publish-Find-Bind Usage Scenario Involving WSRP [13] 
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WSRP provides enhanced and extended support for the following crucial requirements of SOA in 

a portal context [12]: (i) Secured Login; (ii) Single Sign-On, SSO; (iii) Quick Development; (iv) 

Component Reuse; (v) Loose Coupling; (vi) Ease of Configuration and Use; (vii) Identity 

Management; (viii) Plug-and-Play Architecture; (ix) Granularity; (x) Flexibility; (xi) User 

Interaction; (xii) Application Connectivity; (xiii) Information and Process Integration; (xiv) 

Extensibility; (xv) Statefulness. 

Although WSRP is still at an early stage as far as implementation is concerned, it indicates the 

future of portlet/ portal development [13]. Ideally, a deployed service with a portlet interface can 

be published and consumed in many different portals frameworks. This remote sharing of a single 

portlet will greatly ease the construction of large-scale portal based systems, or virtual research 

environment (VRE), enabling them to be more scalable, manageable and maintainable.  

In addition to being published as remote portlets within a normal portal framework which has 

WSRP producer support, portlets can be published through 3rd-party WSRP producers like 

WSRP4J [13] which in turn makes use of Pluto [48] as its portlet container. As reported in [19] 

neither producers nor consumers are however fully functional. 

Both JSR-168 and WSRP alongside the Web service technology are aimed at delivering the 

benefits of SOA to end-users. While Web services offer a mechanism to create platform-

independent services and JSR-168 defines a standard by which to develop portlets. And WSRP 

enables the reuse the entire user interface. 

A. The Components of WSRP 

The WSRP architecture is made up of different components which are often referred to as the 

Primary Actors within the architecture [46]. Figure 2.5 illustrates each of these primary actors, 

how they fit with each other and the roles they play within the architecture. Although this figure 

depicts a WSRP consumer serving only one user or web browser, the consumer can also serve 

many users. In fact, WSRP consumer has portlet repositories that contain mapping of WSRP 

portlets offered by respective WSRP producer and personalization information of each WSRP 

consumer and selected WSRP portlets [46]. 
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In the following figure 2.6 below also, a portal is depicted to consume WSRP portlets from only a 

single producer. This is no way limit the number of producers to one because a portal can consume 

portlets from any number of WSRP producers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: A Portal acting as a WSRP Consumer to Aggregate Mark-up from Remote Portlets [13] 

Figure 2.5: The Components of WSRP Architecture [46] 
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The WSRP Specification defines the following actors within WSRP architecture [46]: 

 WSRP Producer: Producers are modeled as containers of portlets. These are web services that 

offer one or more portlets and implement a set of WSRP interfaces, thus providing a common 

set of operations such as: self description, mark-up, portlet management, etc. for consumers.  

Depending on the implementation, a producer could offer just one portlet, or could provide a 

run-time (or a container) for deploying and managing several portlets. They can optionally 

manage the registration of consumers and require them to pre-register prior to interacting with 

portlets. Registration establishes a relationship between the producers and the consumers.  The 

WSRP producer is a true Web service, complete with a WSDL and a set of endpoints. Every 

producer in WSRP is described using a standardized WSDL document. 

 WSRP Portlets: A WSRP portlets are pluggable user interface components that live inside of 

the WSRP producers and are accessed remotely through the interfaces defined by that 

producers. A WSRP portlets are not web services in their own rights (portlets cannot be 

accessed directly, but instead must be accessed through their parent producers). 

 WSRP Consumers: These are web service clients that invoke producer- offered WSRP web 

services and provide an environment for users to interact with portlets offered by one or more 

such producers. The most common example of a WSRP consumer is a portal.  

In WSRP, the consumer and provider interact via a pre-defined message exchanges independent of 

the content and context of the problem which is key for a scalable and practical SOA [12].  

According to the JSR168 specification [18], a portlet should render different content and perform 

different activities depending on the current context. Part of this context is the portlet mode. A 

portlet mode is a way of behaving. For instance, when in the "view" mode, the portlet renders 

fragments which support its functional purpose. Other modes include the "edit" mode, where the 

portlet provides content and logic that let a user customize the behavior of this portlet; the "help" 

mode, where a portlet may provide help screens that explain the portlet purpose, and its expected 

usage, and, finally, the "preview" mode, which serves to pre-visualize the portlet before adding it 

to a portal page. Other non-standard modes include the "config" mode which can be used during 

configuration to set the appropriate parameter values. 
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B. The Interfaces of WSRP 

In order to standardize communication between the WSRP producers and consumers, WSRP 

defines a set of common interfaces that all WSRP producers are required to implement and which 

WSRP consumers must use to interact with remotely-running portlets [13]. Standardizing these 

interfaces allows a portal to interact with remotely-running portlets generically, since it has a well-

defined mechanism for communicating with any WSRP-compliant producer. The WSRP 

Specification requires that every producer implement two required interfaces, while allowing them 

to optionally implement two others as well [13]: 

  Service Description Interface (required): The Service Description Interface allows a 

WSRP producer to advertise its capabilities to perspective consumers. A WSRP consumer can 

use this interface to query a producer to discover what portlets the producer offers, as well as 

additional metadata about the producer itself. This interface can act as a discovery mechanism 

to determine the set of offered portlets, but also importantly allows consumers to determine 

additional information about the producer's technical capabilities. The producer's metadata 

might include information about whether the producer requires registration or cookie 

initialization before a consumer can interact with any of the portlets. 

  Mark-up Interface (required): The Markup Interface allows a WSRP consumer to interact 

with a remotely running portlet on a WSRP producer. For example, a consumer would use this 

interface to perform some interaction when an end-user submits a form from the portal page. 

Additionally, a portal might need to simply obtain the latest mark-up based on the current 

state of the portlet (for example when the user clicks refresh or interaction with another portlet 

on the same page takes place). 

 Registration Interface (optional): The Registration Interface allows a WSRP producer to 

require that WSRP consumers perform some sort of registration before they can interact with 

the service through the Service Description and Mark-up interfaces. Through this mechanism 

a producer can customize its behavior to a specific type of consumer. For example, a producer 

might filter the set of offered portlets based on a particular consumer. In addition, the 

Registration Interface serves as a mechanism to allow the producer and consumer to open a 

dialogue so that they can exchange information about each others' technical capabilities. 
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 Portlet Management Interface (optional): The Portlet Management Interface gives the 

WSRP consumer access to the life cycle of the remotely-running portlet. A consumer would 

have the ability to customize a portlets’ behavior or even destroy an instance of a remotely-

running portlet using this interface.  

As earlier said, portlets are currently employed in Grid-enabled portal design and development as 

self-contained pluggable user interface components used to encapsulate one or more applications 

or service components that can be aggregated and transferred as information to a presentation layer 

of a portal system [14]. These services which are independent of each other somewhat can interact 

through the portlets if needed. Users of grid services are also enabled to configure services as 

needed [14].   

This new approach to portal development takes its cue from the concept of Service orientation 

[10]. In the next section an exploration of the service-oriented architecture was done. 

 

 

2.2 INTRODUCTION TO SERVICE-ORIENTED ARCHITECTURE (SOA) 

 

There has been a lot of buzz and hype (some factual, some not so well-founded) surrounding the 

opportunities presented by SOA and its implementation as web services. Several predictions by 

analysts have been made, and various companies have scurried to sell what they had, as SOA 

products but often misses the point that SOA is not a product rather a more of an architectural style 

or concept that is about bridging the gap between business enterprise and I.T through a set of 

business-aligned I.T services using a set of design principles, patterns, and techniques [15]. 

 

Service Oriented Architecture is an architectural paradigm and discipline that may be used to build 

infrastructures enabling those with needs (consumers) and those with capabilities (providers) to 

interact through services across disparate domains of technology and ownership [15]. It is an 

approach to designing integration architecture based on concept of service. A Service is a software 

component that enables access to one or more capabilities with prescribed interfaces [10, 15].  

 

SOA is a software architecture that starts with an interface definition and builds the entire 

application topology as a topology of interfaces, interface implementations and interface calls [17]. 

It presents an approach for building distributed systems that deliver application functionality as 

services to either end-user applications or other services [3]. The key characteristic of these 
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services is a loosely-coupled, reusable business components; building blocks of SOA application 

with the intent to provide services to either end user applications or other services through 

published and heterogeneous network addressable software component [44]. A service in other 

words can be also described as a function that is self-contained and immune to the context or state 

of other services [10, 15]. SOA however, describes the relationship between these services and the 

service consumers [3]. 

 
SOA as a conceptual model is also based on an architectural style that defines an interaction model 

between the three parties: service providers, service consumers, and service broker [15, 17]. The 

service provider publishes a service description and also provides the implementation for the 

service. A service consumer can either use the uniform resource identifier (URI) for the service 

description directly or can find the service description in a service registry and bind and invoke the 

service [15]. The service broker provides and maintains the service registry. A meta-model 

showing these relationships is depicted below in figure 2.7. SOA is essentially a collection of self 

contained, pluggable, loosely coupled services which have well-defined interfaces and 

functionality with little side effect [10]. These services can communicate with each other either by 

explicit messages which are descriptive, rather than instructive or there could be a number of 

“master” services coordinating or aggregating activities, e.g. in a workflow [3, 17]. A service 

invokes a unit of work done by a service provider to achieve desired end results for a service 

consumer. 
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Figure 2.7: A Conceptual Model of a SOA Architectural Style [15] 
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The consumer-provider role is abstract and the precise relationship relies on the context of that 

specific problem [2]. SOA achieves loose coupling among interacting software agents by 

employing two architectural constraints: (i) a small set of simple and ubiquitous interfaces to all 

participating software agents; (ii) the interfaces should be universally available for all providers 

and consumers [10].  

Services are software modules that are accessed by name via an interface, typically in a request-

reply mode [2, 3]. It is a software resource (discoverable) with an externalized service description. 

It is also described as a unit of work such as a business function, a business transaction, or a 

system service completed by a service provider to achieve desired end results for a service 

consumer [2]. Service consumers are software that embeds a service interface proxy (the client 

representation of the interface). The service provider realizes the service description 

implementation, and also delivers the quality of service requirements to the service consumer.  The 

SOA concept separates the service’s implementation from its interface [17]. Service consumers 

view a service simply as an endpoint that supports a particular request format or contract [3, 17]. 

Service consumers are not concerned with how the service goes about executing their requests; 

they expect only that it will undoubtedly produce an answer. 

 

Consumers also expect that their interaction with the service will follow a contract, an agreed-upon 

interaction between two parties [10, 17]. The way the service executes tasks given to it by service 

consumers is irrelevant. The service might fulfill the request by executing servlets, a mainframe 

application, a C# or a Visual Basic application. The only requirement is that the service sends the 

response back to the consumer in the agreed-upon format [10]. 

 

2.2.1 THE CHARACTERISTICS OF SOA 

The concept of services in software engineering has been in existence long before the advent of 

service-oriented architecture. However, service-oriented software architecture like every other 

software architecture reflects principles that make it suitable for implementing distributed 

functionalities as services. The following are SOA characteristics [17, 49]:  
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1. Discoverable and Dynamically Bound: SOA supports the concept of service discovery. A service 

consumer that needs a service discovers what service to use based on a set of criteria at runtime. 

The service consumer asks a registry for a service that fulfills its needs. 

2. Self-Contained and Modular: Services are self-contained and modular. A service supports a set 

of interfaces. These interfaces should be cohesive, meaning that they should all relate to each other 

in the context of a module. The principles of modularity should be adhered to in designing the 

services that support an application so that services can easily be aggregated into an application 

with a few well-known dependencies. 

3. Modular Decomposability: The modular decomposability of a service refers to the breaking of an 

application into many smaller modules where each module is performing distinct function within 

an application. This is sometimes referred to as "top-down design," in which the bigger problems 

are iteratively decomposed into smaller problems. The crust of this is to achieve reusability. The 

goal for service design is to identify the smallest unit of software that can be reused in different 

contexts. 

4. Modular Composability: The modular composability of a service refers to the production of 

software services that may be freely combined as a whole with other services to produce new 

systems. Service designers should create services sufficiently independent to reuse in entirely 

different applications from the ones for which they were originally intended. This is sometimes 

referred to as bottom-up design. 

5. Modular Understandability: The modular understandability of a service is the ability of a person 

to understand the function of the service without having any knowledge of other services. 

6. Modular Continuity: The modular continuity of a service refers to the impact of a change in one 

service requiring a change in other services or in the consumers of the service. This is as a result of 

an interface not sufficiently hiding its implementation details. It will require changes to other 

services and applications that use the service when the internal implementation of the service 

changes. Every service must hide information about its internal design. A service that exposes this 

information will limit its modular continuity, by exposing internal design decision through the 

interface. 

7. Modular Protection: The modular protection of a service is sufficient if an abnormal condition in 

the service does not cascade to other services or consumers. Faults in the operation of a service 

must not impact the operation of a client or other service or the state of their internal data or 
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otherwise break the contract with service consumers. Therefore, we must ensure that faults do not 

cascade from the service to other services or consumers. 

8. Direct Mapping: A service should map to a distinct problem domain function. This is to allow 

service designers create a self-contained and independent module. 

9. Conceptual Service Model: The conceptual service model consists of a model of the problem 

domain. Techniques for defining module interfaces assume that the problem domain is known a 

priori. The conceptual model of the business is simply the business architecture. A conceptual 

model is one created without regard for any application or technology. It typically consists of a 

structural model derived from a set of use cases that illustrate how the business works. 

10. Contracts and Information Hiding: An interface contract is a published agreement between a 

service provider and a service consumer. The contract specifies the arguments the service requires 

to be invoked, the return values a service supplies and the service’s pre-conditions and post-

conditions. The pre-conditions are those that must be satisfied before calling the service, to allow 

the service to function properly. 

11. Interoperability: Service-oriented architecture stresses interoperability: the ability of systems 

using different platforms and languages to communicate with each other. Each service provides an 

interface that can be invoked through a connector type. An interoperable connector consists of a 

protocol and a data format that each of the potential clients of the service understands. 

Interoperability is achieved by supporting the protocol and data formats of the service’s current 

and potential clients. 

12. Loose Coupling: Coupling refers to the number of dependencies between modules. There are two 

types of coupling: loose and tight. Loosely coupled modules have a few well known dependencies. 

A system’s degree of coupling directly affects its modifiability. The more tightly-coupled a system 

is, the more a change in a service will require changes in service consumers. Coupling is increased 

when service consumers require a large amount of information about the service provider to use 

the service. In other words, if a service consumer knows the location and detailed data format for a 

service provider, the consumer and provider are more tightly coupled. If the consumer of the 

service does not need detailed knowledge of the service before invoking it, the consumer and 

provider are more loosely coupled.  

SOA accomplishes loose coupling through the use of contracts and bindings. A consumer asks a 

third-party registry for information about the type of service it wishes to use. The registry returns 

all the services it has available that match the consumer’s criteria. The consumer chooses which 
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service to use, binds to it over a transport, and executes the method on it, based on the description 

of the service provided by the registry. The consumer does not depend directly on the service’s 

implementation but only on the contract the service supports. 

Although coupling between service consumers and service producers is loose, implementation of 

the service can be tightly coupled with implementation of other services. For instance, if a set of 

services shares a framework, a database, or otherwise has information about each other’s 

implementation, they may be tightly coupled.  

13. Network-Addressable Interface: A service must have a network-addressable interface. A 

consumer on a network must be able to invoke a service across the network. The network allows 

services to be reused by any consumer at any time. The ability of an application to assemble a set 

of reusable services on different machines is possible only if the services support a network 

interface. The network also allows the service to be location–independent, meaning that its 

physical location is irrelevant. 

14. Coarse-Grained Interfaces: The concept of granularity applies to the scope of the domain the 

entire service implements and also the scope of the domain that each method with the interface 

implements. If a service implements all the functions in its domain, it is referred to as coarse 

grained, but if it implements just a function in its domain, we consider it as fine grained. The 

appropriate level of granularity for a service and its methods is relatively coarse. A service 

generally supports a single distinct business concept or process. It contains software that 

implements the business concept so that it can be reused in multiple large, distributed systems. 
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Figure 2.8: Coarse Grained Services [17] 

 



 

 

50 

15. Location Transparency: Consumers of a service do not know a service’s location until they 

locate it in the registry. The lookup and dynamic binding to a service at runtime allows the service 

implementation to move from location to location without the client’s knowledge. The ability to 

move services improves service availability and performance.  

16. Composability: A service may be composed in three ways: application composition, service 

federations, and service orchestration. An application composition is essentially an assembly of 

services, components, and application logic that binds these functions together for a specific 

purpose. Service federations are collections of services managed together in a larger service 

domain. Service orchestration is the execution of a single transaction that impacts one or more 

services in an organization. It is sometimes called a business process. It consists of multiple steps, 

each of which is a service invocation. If any of the service invocations fails, the entire transaction 

should be rolled back to the state that existed before execution of the transaction.  

For a service to be composed into a transactional application, federation, or orchestration, the 

service methods themselves should be sub-transactional. That is, they must not perform data 

commits themselves. The orchestration of the transaction is performed by a third-party entity that 

manages all the steps. It detects when a service method fails and asks all the services that have 

already executed to roll-back to the state they existed before the request. If the services have 

already committed the state of their data, it is more difficult for the method to be composed into a 

larger transactional context. 

17. Self-Healing: A self-healing system is one that has the ability to recover from errors without 

human intervention during execution. Reliability measures how well a system performs in the 

presence of disturbances. Reliability depends on the hardware’s ability to recover from failure. 

Service-based systems require that the interface be separate from the implementation, 

implementations may vary. For instance, a service implementation may run in a clustered 

environment. If a single service implementation fails, another instance can complete the 

transaction for the client without the client’s knowledge. This capability is possible only if the 

client interacts with the services interface and not its implementation. 

 

2.2.2 The Requirements for SOA 

SOA should be developed to meet the following requirements in one way or the other to address 

problems and issues that led to the concept of SOA [10, 12]: 
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1. Leveraging existing assets is the most important requirements here. Strategically, the objectives is 

to build a new architecture that will tactically integrate existing systems, such that over a period, 

they can be componentized or replaced in manageable, incremental projects; 

2. Support all required types or “styles” of integration such as: 

 User Interaction – being able to provide a single interactive user experience achievable through 

portals and portlets, 

 Application Connectivity – communication layer i.e. middleware that underlies all of the 

architecture, 

 Process Integration – choreographs applications and services through the process model called 

“workflow”, 

 Data Integration – incorporate data flow within aggregated grid service, 

 Portal Integration – provides presentation layer to diverse resources to access them through 

single location; 

3. Architecture should allow incremental implementations and migration of assets. Due to project 

complexity, cost and unworkable implementation schedules, many integration projects have failed; 

4. Developments environment built around standard components framework such as portal/portlets 

specifications, WSRP, Web Services; promote better reuse of modules and systems and allows 

timely implementation of new technologies; 

5. Allow implementation of new computing models; specifically new portal-based client models, grid 

computing, and even on-demand computing. 

 

2.2.3  The Collaboration between SOA Entities  

SOA consist of three entities: Service provider, Service Consumer and Service Registry [17, 49]. 

The collaboration between these three entities follows the “find, bind, and execute” paradigm as 

shown in Figure 2.3, allows the consumer of a service to ask a third-party registry for the service 

which it is intending to bind to. If the registry has such a service, it gives the consumer a contract 

and an endpoint address for the service. 
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1. Service Consumer 

The service consumer is an application, service, or some other type of software module that 

requires a service. It is the entity that initiates the location of the service in the registry, binding to 

the service over a transport and executing the service function. The service consumer executes the 

service by sending it a request formatted according to the contract. 

2. Service Provider: The service provider is a network-addressable entity that accepts and executes 

requests from consumers. It can be a mainframe system, a component, or some other types of 

software system that executes the service request. The service provider publishes its contract in the 

registry for access by service consumers. 

3. Service Registry: A service registry is a network-based directory that contains available services. 

It is an entity that accepts and stores contracts from service providers and provides those contracts 

to interested service consumers. 
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Figure 2.9: The Collaboration in Service Oriented Architecture [17] 

 

The operations in a SOA are: 

 Publish: for a service to be accessible, the service provider publishes the service description so 

that it can be discovered and invoked by service consumers. 

 Find: service requester locates a service by querying the service registry for a service that 

meets its criteria. 

 Bind and invoke: after successfully retrieval the service description, the service consumer 

then invokes the service based on the information provided by the service description. 
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4. Service Contract: A contract specifies the way a consumer of a service will interact with the 

provider of the service. It specifies the format of the request and response from the service. A 

service contract may require a set of preconditions and post-conditions. The preconditions and 

post-conditions specify the state that the service must be in to execute a particular function. The 

contract may also specify quality of service (QoS) levels. QoS levels are specifications for the non-

functional aspects of the service [3]. For instance, a quality of service attribute is the amount of 

time it takes to execute a service method. 

 

2.2.4 Service Provider and Service Consumer Relationship 

In a SOA there are certain relationships that exist between the service providers and consumers 

[49]. These are briefly stated below: 

1. Negotiated - both consumer and provider jointly agree to how the services should work. In 

scenarios where there are many participants and where services are common to many providers, it 

is important that the industry considers standardizing those services [49]. This include:  

 Close partners agreeing on the service interface as  a natural part of reaching and implementing 

a commercial agreement 

 Forming standard for vertical sectors in the industry. 

2. Mandated - this is a take-it or leave-it scenario [17]. Very large or dominant organization(s) 

dictate the business practice in their industry. Examples include: 

 Provider-led situations – such as Ford Motors “use this service or we can’t do business”. 

 Consumer-led situations – such as Wal-Mart and Tesco [50]. 

 

2.2.5    SOA Architectural Style and Principles 

The architectural style that defines a SOA describes a set of patterns and guidelines for creating 

loosely coupled, business-aligned services that, because of the separation of concerns between 

description, implementation, and binding, provide unprecedented flexibility in responsiveness to 

new business threats and opportunities [15]. 

 

As enterprise-scale I.T architectures, SOA is used for linking resources on demand. Participants in 

a line of business, enterprise (typically spanning multiple applications within an enterprise or 

across multiple enterprises) can access available resources in a SOA. It consists of a set of 

business-aligned I.T services that collectively fulfills an organization’s business processes and 
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goals. These services can be choreographed into composite applications and then invoked through 

some standard protocols. This is depicted in the figure 2.10 below. 

 

SOA provides the emerging trend for organisations’ transformation program. This is to make 

information resources substiantially independent, reusable, and to create an adaptable environment 

[17]. Business and technical services are published using open standard protocols that create self-

describing services that can be used independently of underlying technology [17].  

Technical independence allows sevices to be more easily used in different contexts to achieve 

standardisation of business processes, rules and policies. Collaboration, internal and external to an 

enterprise, can more easily be established through improvement in process and information 

consistency [17, 49]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: The Attributes of SOA [15] 

Most significant SOAs are proprietary or customized implementations based on reliable messaging 

and Enterprise Application Integration middleware (for example WebSphere Business Integration, 

WBI).  

 

2.2.6    SOA Implementation Models 

SOA is an architectural style that presents an approach for building distributed systems that deliver 

application functionality as services to either end-user applications or other services [17, 49]. Early 

adopters of the service-oriented architecture approach used messaging systems to create service-
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oriented enterprise architecture. Examples of these include IBM WebSphere MQ [51]. Currently, 

the SOA arena has expanded to include the World Wide Web (WWW), Web Services (WS) and 

Enterprise Service Bus (ESB) [52, 53].  

An ESB is an architectural practice for implementing a service-oriented architecture [53]. As 

shown in Figure 2.11 below, it establishes an enterprise-class messaging bus that combines 

messaging infrastructure with message transformation and content-based routing in a layer of 

integration logic between service consumers and providers. 

 

 

 

 

 

 

 

 

 

Figure 2.11: The Enterprise Service Bus [53] 

The ESB incorporates a standards-based, enterprise-class messaging backbone, together with 

enhanced systems connectivity using Web services, Java 2 Enterprise Edition (J2EE), Microsoft 

.NET, and other standards.  In essence, ESB makes large-scale implementation SOA principles 

manageable in the heterogeneous world [52, 53]. 

The ESB helps to provide virtualization of the enterprise resources, by allowing the business logic 

of the enterprise to be developed and managed independently of the infrastructure, network, and 

provision of those business services [52]. Using ESB, one can link individual enterprises together 

for extended process efficiency across the supply chain and allow them to become more flexible 

and adaptable to rapidly changing requirements. The ESB lets an enterprise leverage its previous 

investments by supporting the deployment of processes over existing software and hardware 

infrastructure [52]. ESB supported standards include: 

 Java Message Service (JMS) for communication; 

 Web services, J2EE, and .NET for connectivity to various systems; 

 Extensible Stylesheet Language Transformation (XSLT) and Xquery for transformation; 
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 Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), and others for 

security. 

 

Implementing an Enterprise Service Bus requires an integrated set of middleware services that 

support the following architectural styles [52]: 

 Services-Oriented Architecture:  where distributed applications are composed of granular re-

usable services with well-defined, published and standards-compliant interfaces. 

 Message-Driven Architectures (MDA):  where applications send messages through the ESB to 

receiving applications 

 Event-Driven Architectures (EDA): where applications generate and consume messages 

independently of one another. 

 

Other technologies that are at partly service-oriented and have been widely used in achieving 

interoperability include: Common Object Request Broker Architecture (CORBA) [54], Remote 

Method Invocation (RMI) [55], and Distributed Component Object Model (DCOM) [56].  

 

2.2.7 Web Services 

The implementation of SOA applications is made possible through the realization of Web 

Services, WS [48]. According to W3C [57], “A Web service is a software application identified by 

a URI, whose interfaces and bindings are capable of being defined, described, and discovered as 

XML artifacts and supports direct interactions with other software applications using XML based 

messages via internet-based protocols”. It is a software system designed to support interoperable 

machine-to-machine interaction over a network [58]. It is also described as a software component 

representing specific set of business functions that can be described, published and invoked over 

the Internet using XML-based open standards such as SOAP [43], WSDL [45] and UDDI [47]. A 

Web service supports direct interactions with other software agents using XML-based messages 

exchanged via Internet-based protocols [57]. It has an interface described in a machine-processable 

format (specifically WSDL). Other systems interact with the web service in a manner prescribed 

by its description using SOAP messages, typically conveyed using HTTP with an XML 

serialization in conjunction with other Web-related standards [58]. 

 

Web service is a useful tool in enabling collaboration and sharing of business process between two 

or more enterprises. It offers technology neutrality and standard approach than using proprietary 
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integration technologies [57]. Web services promises to offer enterprise application the capability 

that World Wide Web did to interactive end-user application. Primarily, web service is a technique 

that allows disparate server systems to communicate with each other and exchange information for 

which the web and traditional web browser is the primary data access point [57]. Web service is a 

good beginning toward implementing service-oriented architecture because its concept supports 

many of the characteristics of service-oriented architecture [17, 49]. 

 

2.2.8 Web Service Architecture 

According to [59] Web services architecture describes the relationship among various components 

and technology that comprises web services “stack”. A valid implementation must consist of at 

least the components in the basic architecture. The basic architecture includes web services 

technology that allows: 

 Exchange messages; 

 Describing web services; and 

 Publishing and discovering Web service descriptions as depicted in figure 2.12 below. 

 

The Web Service architecture models the interactions between three roles: the service provider, 

service discovery agency, and service requester. The interactions involve publish, find, and bind 

operations. In a typical scenario, a service provider hosts a network accessible software module (an 

implementation of a web service). The service provider defines a service description for the web 

service and publishes it to a requester or service discovery agency. The service requester uses a 

find operation to retrieve the service description locally or from the discovery agency (i.e. a 

registry or repository) and uses the service description to bind with the service provider and invoke 

or interact with the web service implementation. Service provider and service requester roles are 

logical constructs and a service may exhibit characteristics of both. 

The architecture also defines an interaction between software agents as an exchange of messages 

between service requesters and service providers. A software agent in the web services architecture 

can act in one or multiple roles, acting as requester or provider only, as both requester and 

provider, or as requester, provider, and discovery agency. Requesters are software agents that 

request the execution of a service. Providers are software agents that provide a service. A service is 

invoked after the description is found, since the service description is required to establish a 

binding. 
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Figure 2.12: Web Service Architecture [59] 

Figure 2.12 illustrates the basic Web service architecture, in which a service requester and service 

provider interact, based on the service's description information published by the provider and 

discovered by the requester through some form of discovery agency. 

2.2.9   Web Service Technology 

Within the framework of web service are a number of various technologies that underline the web 

service execution. This is depicted in figure 2.13 below. 

 

 

 

  

              

 

 

 

 

 

 

Figure: 2.13: Technologies within the Web Service Technology [58]. 
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 The Management Layer is a supervisory layer allowing the control of the many agents involved 

in a web services-based operation.  

 The Application Semantics layer indicates the necessity for any useful interoperability. 

1. Web Services Description Language (WSDL)   

Web Services are defined by a Web Services Definition Language, WSDL. A WSDL is an XML 

format to describe how a particular web service can be called. WSDL description specifies how to 

interact with the web service, what data must be sent, what operations are involved, what protocol 

is to be used to invoke the service, and what data can be expected in return. The WSDL provides 

an Interface Definition Language (IDL) that is used to describe the operations (method calls) that a 

web service may invoke as well as protocol bindings used to transport method invocations.  

A WSDL document uses the following elements in the definition of network services [15, 59]: 

 Types - a container for data type definitions using some type system.  

 Message - an abstract, typed definition of the data being communicated.  

 Operation - an abstract description of an action supported by the service.  

 Port Type - an abstract set of operations supported by one or more endpoints.  

 Binding - a concrete protocol and data format specification for a particular port type.  

 Port - a single endpoint defined as a combination of a binding and a network address.  

 Service - a collection of related endpoints.  

2.  Simple Object Access Protocol (SOAP) 

SOAP is an open Internet standard for achieving message exchange amongst interactive agents. It 

is used for the invocation of web services and consists of a messaging layer described by XML 

over a transport protocol, often HTTP, although  any protocol may be used e.g. FTP, JMS.  

SOAP is designed with three goals in mind [43]: 

 It should be optimized to run on the Internet. 

 It should be simple and easy to implement. 

 It should be based on XML. 

It supports two types of message patterns: the first is the one-way exchange, where a client issues a 

request against a server, and will not receive an answer. The second is the pattern which consists of 



 

 

60 

request response interaction. Here, the client use HTTP request for a resource on a server, and the 

server replies by sending a HTTP response. 

 

3. Universal Description, Discovery, and Integration (UDDI) 

The UDDI specification provides a framework for describing and discovering web services. It 

supports application developers in finding information about web services so that they know how 

to write clients applications that can interact with those services. It also enables dynamic binding 

by allowing clients to query the registry and obtain references to services in which they are 

interested. The information within a UDDI registry can be categorized as follows [47]: 

 Listings of organizations, contact information, and services that those organizations provide; 

 Classifications of companies and web services according to taxonomies that are either 

standardized or user defined; 

 Descriptions of how to invoke web services, by means of pointers to service description 

documents, stored outside the registry, for example, at a service provider’s site. 

 

A UDDI registry contains web services descriptions with four different kinds of information 

elements described as follows: 

 Business Entity: An organization that provides web services, including the company’s name, 

address, and other contact information.  

 Business Service: A group of related web services offered by a business entity. Typically, it 

corresponds to one kind of service (such as a procurement or reservation service).  

 Binding Template: Technical information needed to use a web service, such as the address at 

which the web service can be found and references to documents (called tModels) that describe 

the web service interface and other service properties. It also defines how operation parameters 

should be set and what the default values are.  

 tModel: Technical model, which is a container for any kind of specification. For example, it 

might represent a WSDL service interface, a classification, or an interaction protocol, or it 

might provide the semantics of an operation. 

 

2.2.10   Web Service Characteristics and Best Practices            

The realization of SOA is centered on Web Services (WS) [44]. It is important to understand fully 

the characteristics of Web Services, in terms of the dos and don’ts for WS, which form the basis of 

the best practices for Web Services development. These characteristics affect the design and 
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implementation of Web Services. The following sub-sections discuss the characteristics of Web 

Services and its associated best practices [44]. 

 

 Web Services Styles (WSBP1): There are two most common styles of Web Services, namely 

Remote Procedure Call (RPC) style WS and Document Style WS. The differences between 

these two styles are summarized in Table 2.1 below. 

 

 

  

The RPC-styled offers simplicity and better tooling support. The document-styled offers greater 

flexibility and decoupling of services [44]. 

 

 Web Services Interaction Mode (WSBP2): Web Services have four interaction modes [44]. 

They are: synchronous interaction (i.e. request and wait for response), asynchronous 

interaction (i.e. fire and forget), solicit-response interaction (i.e. the service sends a message 

followed by a correlated message from client), and notification interaction (i.e. the service 

sends a message). Any one of this mode will affect the way of designing and implementation 

Web Services. 

 Web Services Client Implementation-Interaction Mode (WSBP3): The client 

implementation will be determined by Web Services Interaction modes. If it is an 

asynchronous WS, an asynchronous WS client implemented using Java API for XML 

Messaging JAXM, for example, will be used. Otherwise, Java API for XML for Remote 

Procedure Call (JAX-RPC) will be used. 

 

 

 

Table 2.1: Web Services Styles [44] 
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 Web Services Client Implementation – Client Types (WSBP4): 

The client implementation is affected by the types of Web Services client. Particularly in Java–

based RPC service, there are three different types of Web Services client, namely static stub, 

dynamic proxy and dynamic invocation interface (DII) of web service clients for consuming a 

service. The three types of client offer different degree of client flexibility. For example, static 

stub is the least flexible as any changes to the service would require rebuilding of service 

client. DII is the most flexible as the client parses the service’s WSDL in constructing a SOAP 

message for service invocation. Any change to the end point service does not require 

rebuilding of client. 

 Right Level of Service Interface Granularity (WSBP5): The granularity of the service 

interface affects the design and implementation of web service. In addition, it also affects the 

performance of the service. The finer the granularity for service interface, the slower the 

performance as it is an overhead to the network and drop in web service performance. 

 Interoperability (WSBP6): Interoperability issues could be caused by different versions of 

SOAP standard implementation, different types of security algorithms for digital signature, 

encryption/decryption, and variation in supporting Web Services standards from multiple 

vendors. The adoption of primitive data type for parameters whenever possible. Avoid using 

customized SOAP serializer/deserializer and different types of encoding standards. 

 Binding Style (WSBP7): The use of RPC/encoded or Document/literal binding style is 

determined by the needs of data information being exchange between Web service client and 

the service. If it is data intensive or the exchanged information is a file, then document/literal 

binding is preferred. If the data information exchanged is relatively static, then RPC/encoded 

binding is preferred. 

 Request and Response Performance (WSBP8): Web Services itself is network intensive. It 

demands extra network bandwidth and CPU processing time and memory due to the needs for 

SOAP message serialization and de-serialization overhead. The common practices for 

optimizing the request and response performance are: (a) perform data caching in either client 

or server side, (b) decide Web Services operation granularity, (c) Use XML judiciously in 

document-centric Web Services by careful considering whether to use whole or segment of 

XML document. 
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 Security (WSBP9): There are various ways to secure the information sent between initial 

SOAP sender and ultimate SOAP receiver via numerous intermediary SOAP nodes. Different 

means of security can affect the way how Web Services are designed and implemented. The 

security means can be through: 

a.)  Transport Level Security (TLS). In this mean, it leverages on transport security 

mechanism. Only the initial SOAP sender and ultimate SOAP receiver are secured. 

Intermediary nodes are not secured. The two most common means are secure socket layer 

(SSL) or HTTPS. 

b.)  Message Level Security (MLS). In this mean, message can be secured throughout the 

whole SOAP message path. Standards such as XML Encryption, XML Signature, XML 

Key Management, WS-Security, etc. can be applied to secure the XML message. 

c.)  Infrastructural Level Security: In this mean, it leverages on the security mechanism 

provided by Web Services hosting platform. 

 Web Services Implementation Technology & Platform (WSBP10): What is the technology 

platform, such as J2EE or .NET based, to be used? What kind of application server is required 

to host services? The understanding these lead to better services interoperability. 

 Industry Standard Conformance (WSBP11): The conformance of industry standard, such as 

RosettaNet™ provided by the service determines the type of services. As it gives rise to the 

consideration of the requirement for well-formed XML document and document-styled Web 

service for the service. 

 Addressable Software Component (WSBP12): Every end point service is identifiable using 

universal resource locator (URL). To know whether service is available, an invocation test to 

the service URL would provide the availability status of the service. 

 Web Services Needs (WSBP13): Web Services Technology is applied to meet certain 

business needs and objectives. The considering factors include reuse business components, 

integrate different IT platforms and disparate islands of technologies, direct business-to-

business integration (B2Bi) between partners to facilitate information sharing. Understanding 

the basic needs would ascertain better drive of Web Services Technology to be applied 

appropriately. 

 Web Services Layering Architecture (WSBP14): The consideration for hierarchical 

abstraction for Web Services enables the decoupling relationship for services. This facilitates 
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layered hierarchy representing ordered grouping of functionality abstraction for domain-

specific application (upper layer), across domains application (middle layer), and deployment 

environment-specific application (lower layer). 

An Understanding of the best practices of Web Services helps in addressing SOA design and 

implementation issues. However, the best practices for Web services (i.e. the dos and don’ts of 

Web services) are essentially based on the characteristics of Web Services listed above. 

 

 

2.3  COMPONENT BASED DEVELOPMENT 

 
SOA application development involves developing software components for software reuse and 

wrapping software components as Web services for end user applications or other services 

consumptions [44]. The nature of these applications is centered on software components [44, 60].  

A component is popularly defined as “each reusable binary piece of code” [60]; it is an 

independent part of a system having complete functionalities. It is also described as a reusable 

software building block: a pre-built piece of encapsulated application code that can be combined 

with other components and with additional code to produce custom application [61]. Just like 

Patterns, a component drives the developers to use the predefined procedures and meet the 

specifications to plug it into the new components [60]. 

 

A software component therefore, is a unit of composition with contractually specified or defined 

interfaces and conforms to a prescribed behavior [44, 60]. It could also be referred to as an 

independently deliverable package of reusable software services. Software components are the 

reusable building blocks of SOA application [44]. The need for components arose as a result of 

inherent problems identified with Object-Oriented Development (OOD) [60]. In OOD, objects 

appeared are too complicated and provides limited functionality to be useful to many clients 

without giving room for plug-and-play, while components such as plug-ins provide a high-level 

feature that can be installed and configured by the users [60]. 

 

In SOA, software components are encapsulated as Services [10]. Therefore, SOA applications can 

be developed using one of the evolutionary software development approaches known as 

Component-Based Development (CBD). CBD enables development of software application by 
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assembling and use of existing components. It is a technology that facilitates the reuse of the 

existing components into new ones [60]. These components can be acquired by leveraging legacy 

systems, as commercial-of-the-shelf (COTS) systems  and some others are basically open source, 

from a third party developers or vendors, developing components in order to enable reusability. 

SOA however, provides a mechanism for integrating existing legacy applications regardless of 

their platform or language [10, 17]. This facilitates shorter time to market, reduced cost, and 

increased reuse [17] 

.  

CBD is a software development approach where the entire lifecycle of the software creation, 

development deployment and maintenance is centered on the start-to-finish concept of component 

lifecycle [44, 60]. The CBD process has five phases, namely Requirements, Analysis, Design, 

Implementation and Testing [60]. Artifact is produced at each phase which in turn is the inputs to 

different types of testing shown in Figure 2.14 below. Each component has its own lifecycle and it 

is related with the whole system lifecycle. Agile software development can be applied in 

component-based software development [62] and any of the agile software development 

methodologies such as extreme programming (XP) [63], IBM Rational Unified Process (RUP) 

[64], etc can also be applied to component-based software development.  

 

 

Figure 2.14: An Illustration of CBD Process [44] 



 

 

66 

Furthermore, there also exist some relationships between software component, Web services and 

SOA application. This is illustrated in the figure 2.15 below. This shows that the development of 

Web services is based on software component through public interfaces exposed for services 

consumption [44]. For instance, in the figure 2.15, Order Analyzer and Order Generator are 

software components derived from objects or classes. The Order Processor is a web service that 

uses components Order Analyzer and Order Generator to provide richer business functionality as 

building blocks for SOA application. 

 

 

 

Figure 2.15: Web Services CBD Development [44] 

 

Over the years, several component architectures have been proposed up to now, for CBD. 

Microsoft Corporation introduced the ActiveX technology which is categorized into the 

Component Object Model (COM), Distributed Component Object Model (DCOM) and Object 

Linking and embedding (OLE). Sun Microsystems also introduced the Enterprise Java Beans 

(EJB) [19] and Remote Method Invocation (RMI), Object Management Group (OMG) introduced 

Common Object Request Broker Architecture (CORBA); Microsoft, IBM and Lotus corporations 

introduced Simple Object Access Protocol (SOAP) [43]. Each of these architectures has been 

adopted over time to further facilitate application development through CBD. CBD also shifts the 

development emphasis from “programming software” to “composing software” [44, 60]. 
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2.3.1 Process Model of Component Based Development 

The Object Oriented Process model (OOPM) is the only process model that indicates the reuse of 

existing software parts until the advent of service orientation [65]. 

This process model however, can be modified to implement the reuse of component-based 

development. The main phases of process model are: Customer Communication; Planning; 

Analysis; Engineering, Construction and Testing; and Customer Evaluation. The engineering, 

construction and testing phase reflect the reuse of existing classes. The main phases of CBD 

process model are shown, in figure 2.18 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: The CBD Process Model [60] 

 

The analysis phase of the OOPM is modified according to the CBD process model. It is newly 

termed ‘Analysis and Component Selection’ phase. This is the phase where an analyst gathers the 

detailed requirements and tries to identify and select those components that can be reused. The 

relationships among the components are identified. The properties and behaviors of the 

components are identified as well [66]. The core objective of this modified phase is to reuse 

maximum components, rather than reinventing the wheel.  

Engineering, construction and testing phase of the OOPM matches the requirements of CBD 

process model. The newly components are designed, developed and tested. The integration and 



 

 

68 

system tests of newly developed as well as of the reused components are performed. The customer 

evaluation phase of OOPM also fits to the requirements of the CBD process model. 

 

Application development using CBD offers developers a number of benefits. As identified in [60], 

some of these benefits include:  

 Component Reusability  

 Interoperability 

 Upgradability  

 Saving the programmers from complexity  

 Development Time and Cost effectiveness  

 Makes programmers Efficient  

 Reliability  

 Improved Quality  

 

Component reusability is an important advantage of developing applications using CBD. It helps 

the developers to concentrate on adding more complex functionalities to the applications rather 

than focusing on developing basic components. These merits notwithstanding, there are also a 

number of issues around CBD in terms of reuse. These include: 

 Customization 

 Adaptability 

 Integration 

 Security 

 Efficiency 

 

Customization of an already developed component according to the requirements of new 

application is a major issue in CBD [60]. The developers also face a problem to adapt a component 

to a new platform if it were not developed for that platform. Also, the integration of a reusable 

component into new component is also a major problem faced by most of the developers. Security 

is another major concern for the developers who reuse the components available over the Internet. 
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There may be a virus inside that component and may pass all the information of the business 

organization to attacker, who uses such an application. Efficiency of the applications developed 

using CBD is also debatable. The component to be reused may have extra functionalities that may 

be a requirement when it was developed. The new application that does not require extra 

functionalities becomes less efficient because of the loading time of those functions. 

 

In all of the aforementioned, CBD is still more cost-effective; time saving and productive for the 

software application development, according to the state of art tools, and meets the tight deadlines 

of the market [49]. 

 

2.4  WEB 2.0 - Concept and Technologies 

The development of grid-enabled portal is also taking advantage of the increasing advancement in 

Web technology [19, 29]. Beyond just providing a medium of access to various distributed 

resources and services to users, portals are also developed to enable community user interactions 

and forum, social networking, etc. This new dimension to grid-enabled portal development is 

based on the Web 2.0 technology.  

 

Web 2.0 is a Web technology that results from the advancement of the Web from being a 

document delivery system to an application platform [20]. Sometimes it is called "Web as 

platform” [20]. It is a more socially interactive platform where users can network and collaborate 

for socio-economic benefits, giving various users an opportunity to contribute to the community as 

much as they consume [20].  

 

There are a number of Web-based services and applications that demonstrate the foundations of 

the Web 2.0 concept, and they are already being used within the grid portal context too. These are 

not really technologies as such, but services (or user processes) built using the building blocks of 

the technologies and open standards that underpin the Internet and the Web. These include blogs, 

social networks, wikis, multimedia sharing services, content syndication, podcasting and content 

tagging services [20].  
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2.5       INTRODUCTION TO UTILITY COMPUTING 

The term utility is used to make a description of certain services, such as electrical power services, 

water or natural gas, home telephone services, etc that are provided to meet the dynamic needs of 

various consumers [4]. The various consumers are charged for the resources based on usage rather 

than on a flat-rate basis. This approach, sometimes known as pay-per-use or metered services is 

becoming increasingly common in enterprise computing and is sometimes used for the consumer 

market as well, for Internet service, Web site access, file sharing, and other applications [4, 22].  

Utility computing is therefore a service provisioning model in which a service provider makes 

computing resources and infrastructure management available to the customer as needed, and 

charges them for specific usage rather than a flat rate. Like other types of on-demand computing 

(such as grid computing), the utility model seeks to maximize the efficient use of resources and/or 

minimize associated costs [4].  

It is a business model for computing in which resources (CPU power, storage space, etc.) are made 

available to the user solely on request [22]. The goal of the utility computing model is to maximize 

the efficient use of computing resources and minimize user costs [4, 22]. Users are able to dial up 

or dial down usage in real time, to meet the varying demands of business.  

A utility computing infrastructure consists of both hardware resources (servers, storage, network 

appliances) and software resources (operating system, middleware and applications) [4]. Utility 

services can also be in the following domain: m-Commerce, cyber e-Health, scientific applications, 

e-governance, etc. Another version of utility computing is carried out within an enterprise. In a 

shared pool utility model, an enterprise centralizes its computing resources to serve a larger 

number of users without unnecessary redundancy. This system has the advantage of a low or no 

initial cost to acquire hardware; instead, computational resources are essentially rented. 

A utility computing system is essentially characterized by dynamic adjustments of resource 

allocation for smooth service provision due to the dynamic nature of the customer requirements 

[23]. However, some of the factors guiding proper configuration and allocation of resources 

include: Performance Monitoring, Service Layer Agreement Goals, Business Objectives or Human 

Interaction. Utility computing services could be broadly applied on three levels, namely, 

infrastructure, application and business process [23]. 

http://searchcio.techtarget.com/sDefinition/0,,sid182_gci904040,00.html
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci212119,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci333804,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci903730,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci773157,00.html
http://en.wikipedia.org/wiki/Computational_resource
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2.5.1       Utility Computing Framework 

Utility computing framework can be used to automatically create and manage multiple utility 

computing services on a shared infrastructure [4]. The combined potential of utility computing 

offers a new approach to deliver a cost effective and efficient e-commerce on-demand or pay-as-

you-go kind of services to service consumers. However, this framework has also its risks and 

issues [4]. Utility Computing offers tremendous potential to develop a sustainable e-commerce 

framework. The extent to which the computing services have become scalable and economical is 

very large and hence, the economies of scale typical to the public utilities should also apply to 

utility computing [4, 5].  

Based on this premise, significant amount of work has been done in developing the technologies, 

both hardware and software, to adapt to such an architecture. The technologies like provisioning, 

virtualization, consolidation, etc have now made it possible to share the computing resources 

among various parties without affecting the throughput and reliability requirements for the 

respective parties [4].  

This work revolves around one of such conceptual framework for providing efficient and effective 

SMME e-Commerce on-Demand (SEConD) at low cost engaging the  utility computing paradigm 

to provide the technology component to be shared among various service offered by the SMME 

community [7]. This is the main thrust of GUISET research agenda [1, 7]. 

Utility computing is an IT Infrastructure management technique that allows computing resources 

to be available to a customer on demand [22]. The customers subscribe to the services of the utility 

provider and pay only for the quantum of the resources used. In a utility computing scenario, 

considerable flexibility has been achieved in terms of what can be offered. A utility computing set 

up is basically an IT infrastructure having servers, mass storage, computing resources, middleware 

and applications developed into a shareable model using the technologies like consolidation, 

virtualization and provisioning [4]. A typical utility computing framework is represented in a 

diagram depicting the major components in Figure 2.17. 
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Figure 2.17: Three Layers in a Utility Computing System [4] 

The framework has three basic layers; however the exact arrangement may vary from 

configuration to configuration and also the complexity and scale of the whole system.  

 

The Top Layer is the Application or Utility Services layer which will have the application 

instances subscribed by or required by the customer. Different customers may have totally 

different set of applications running for them.  

The Middle Layer typically runs a resource management logic that defines who is to use what 

resource, how much resource and for how long based on the customers’ subscription details or the 

Service Level Agreement (SLA) and the demand.  

The Bottom Layer utility computing system is the actual IT infrastructure that provides the 

computing power to the various services. The IT infrastructure is abstracted into “containers” 

wherein each customer has an independent application environment and has an independent view 

of the underlying infrastructure. This has been achieved due to the advancements in the Server 

Virtualization and Consolidation technologies [4]. The utility computing system typically runs 

from inside a data-center which is like a large container inside which the whole IT infrastructure is 

assembled as a single unit. 
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2.5.2    Utility Computing Approach to Service Delivery (Pay-As-You-Use) 

This is the most attractive feature of a utility computing model [67]. It allows the user of the 

computing services to pay according to the usage of the customer. This provision allows any 

customer to cut the costs on its IT spending as there is now no need to procure and maintain the 

complete capacity infrastructure [22, 67]. Customers can simply subscribe to the utility computing 

service provider and use the computing resources at will while paying only for as much as they 

use. Typical measures of usage include metered CPU hrs, memory space usage and other such 

metrics [67]. 

 

The utility computing community has developed a number of pricing models to address various 

needs of the customer. As highlighted in [67], some of them are:   

1. Fixed Price Model 

2. Cost Plus Model 

3. Subscription Model 

4. Pricing as a function of business revenue generated by the customer using the utility computing 

services. 

There is also a consideration of how to implement variable pricing mechanisms. Some of the 

options available are: 

1. Price rate is directly proportional to the usage. So the price rates increase as usage increases to 

discourage the wastage of computing resources. 

2. Price rate inversely proportional or discounts off as the usage level increase. Thus rewarding 

the customer on higher usage patterns and incentivizing the customer on using more computing 

resources. 

3. Subscription plus price slabs for different usage levels. 

Any of the above mentioned approaches to pricing can be implemented by the utility computing 

providers based on their business model and context. 

 

2.5.3   The Benefits of Utility Computing  

The Utility Computing based solution will deliver the computing power to all the participating and 

potential enterprises as a “utility” like electricity or water supply service. This shift in how the 
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computing power is sourced has significant and everlasting benefits for SMME e-commerce 

communities. The major benefits are [5]: 

1. Decrease in the total cost of capital expenditure: The enterprises join the community of utility 

service users are relieved from the need of procuring the entire IT infrastructure required for 

enabling their business processes. A utility computing service provider will provide the IT 

infrastructure required. 

2. Maximum Resource utilization: The under utilization of the IT resources is eliminated as the 

utility computing service provider will provide the infrastructure on a shared basis to other 

applications resulting in maximum utilization. 

3. Minimizing Resource Wastage: The shared approach to resource utilization will result in 

minimum wastage of the computing resource due to less idle time. 

4. Quality of Service: The utility computing approach has the provision to enforce penalties on 

the service providers if they fail to meet the performance criteria set in the contracts or the 

Service Level Agreements. This will ensure the consistency in the level of quality of the 

services offered. 

5. Integrative Approach: Utility computing offers a unique opportunity to develop an integrated 

e-commerce framework providing a powerful platform to provide end-to-end service options to 

the customers/users.  

6. Offsetting Human Resource need: The enterprises will be totally free from the responsibility of 

maintaining the IT infrastructure required for enabling their business. The human resource 

required for operations and maintenance efforts will be sourced by the service providers. 

7. Flexibility and Adaptability: Since such a model abstracts the users from the backend IT 

infrastructure, therefore it will be easier to change the backend IT configurations without 

affecting the end – user in a quick time. 

 

Utility computing cut across a number of application areas and boundaries. Some of these 

application areas include: computing service, network service, data center service, Web hosting 

services, e-mail services, groupware services, office suite services, payroll service, CRM service, 

ERP service, storage service, etc. One of the boundary areas include: strategic applications where 
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flexibility and customization are critical. The benefits that utility computing approach has to offer 

are multidimensional and well suited for the SMME e-commerce domain.  

 

 

 

2.6    OVERVIEW OF GRID-ENABLED PORTAL SYSTEMS 

There have been many Grid based portals for specific application [29]. In this section a 

classification of the categories of Grid portals and their development frameworks is reported. 

Again, portals are defined as graphical user interfaces that a user employs to interact with one or 

more infrastructural resources.  

Grid based portals can be classified into five (5) categories and two (2) development frameworks 

[8]. These five categories include: 

 

1. Portals providing a single access point for user support. e.g. Global Grid User Support System, 

GGUS [68] 

2. Portals providing a user-friendly access to services of a single grid; e.g. MD-web [69], the Grid 

Enabled Web eNvironment for site Independent User job Submission, GENIUS grid portal 

[70], and AccessGrid [71]. 

3. Portals providing access to services of multiple grids; e.g. The P-Grade Portal [72] 

4. Portals supporting grid enabling applications; e.g. LUNARC Application Portal [73].  

5. Portals supporting workflow. E.g. P-Grade [72]: (PG-web) specifically supports workflows, 

and Batch Object Submission System, BOSS [74]. 

 

The Portal development frameworks include: 

1. Frameworks for building grid portals; and 

2. Frameworks supporting grid accessibility via various media delivery channels. 

 

2.6.1 Grid-enabled Portal Development Frameworks  

Portal frameworks are development platform for portal development. They are design structures 

that contain various modules, methods and software features used for developing specific portal [8, 

10]. They provide a skeleton to plug and play various portlets [8]. 
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A. Frameworks for building grid portals 

EnginFrame (EF-web) [75] is a web-based innovative technology, by the Italian company Nice Srl 

[90], for grid enabling web portals. Grid-enabled web portals using EnginFrame can access 

services of various grids (including Globus [37], and gLite grid middleware [76]. The objective of 

EnginFrame is to facilitate the task of grid enabling web portals [85, 77]. The Genius portal 

(Genius-web) [70] is an example of a portal built using EnginFrame. However, there a number of 

open source portal frameworks which include: uPortal [78], Liferay [26], GridSphere [79], Grid 

Portal development Kit [80], etc. The most widely-used portal construction technology is the 

GridSphere JSR-168 compliant portlet container [18, 79]. The P-Grade (PG-web) [72] is an 

example of a portal built using GridSphere. 

B. Frameworks Supporting Accessibility via Alternative Delivery Channels 

Beside the above overview of grid portals and frameworks for grid enabling web portals and 

applications, several research efforts are underway to provide grid accessibility via alternative 

delivery channels including hand-held devices and mobiles [81, 82]. Most of the research focuses 

on re-engineering existing grid middleware to achieve this aim. This is mainly due to the fact that 

most grid services involve computational and resource intensive tasks that cannot be easily ported 

to end-user devices [30, 81, 82]. 

 

 

2.6.2 Evaluation of Grid-enabled Portal Development Frameworks 

With the popularity of portals today there are many open source portal frameworks available and 

list of these open source frameworks is all the time increasing. A thorough and non biased 

evaluation of some of these frameworks with respect to a broad range of criteria to accommodate 

the specialty of each framework and maximum consideration of user requirements was done as 

reported in [10, 25] and a summary is presented here in order to provide a guideline for portal 

developers to choose appropriate ones.  

These criteria were based on core and optional functionalities/requirements and they include in the 

order of perceived importance: (i) Their compliant with the development standards, JSR-168, and 

WSRP; (ii) Ease of Installation; (iii) Documentation Standard (iv) Online Support; (v) Portal 

Management; (vi) Portlet Resources; (vii) Performance and Scalability; (viii) Security; (ix) 

Technology Used; (x) Portal Features; and (xi) Server Dependency. Each Portal Framework was 
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given a score of 1 to 5 against each criterion, 5 being the most effective. The total score of each 

portal framework is shown at the end of the tabular comparison below, with a visual Bar Graph 

also following.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18: The Evaluation Result as Bar Chart [10] 
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Table 2.2: The Evaluation Result [10] 
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2.6.3    Review of Related Existing Works 

Several research projects including the HotPage user portal, the Gateway project, and UNICORE 

[31] have employed the concept of developing a web enabled access medium to the Grid [80]. 

These several projects had similar goals in trying to grant a uniform and easy access to Grid 

resources and services, though with differing technologies and design. Several grid-enabled portals 

have also been developed for specific applications [29].  

 

In this section, a review of a number of the works done so far are reported as used as theoretical 

baseline in this research work. The Grid Portal Development Kit addresses many of the same 

issues related to providing secure, web-based access to resources as the previous projects, but 

differs in three important ways. First, the core of GPDK resides in a set of generic, reusable, 

common components used for accessing the various Grid services that are supported by the Globus 

toolkit [37]. Second, a portal user is provided with a persistent, customizable profile that contains 

information that is stored securely on the portal and provides details on past jobs submitted, the set 

of computers they have access to, and any other information that is of interest to a particular user. 

Third, GPDK is designed to provide a complete development environment for building customized 

application specific portals that can take advantage of the core set of GPDK Grid service 

components and the Model-View-Controller, MVC architectural model [80, 83]. 

 

A core part of the design philosophy of GPDK was the separation of logic from presentation by 

adopting the Model-View-Controller, MVC design pattern [83]. This makes it easier to develop 

new functionality that could plug into the existing framework by following a prescribed recipe. 

The design is also based on providing multi-user access to Grid services and resources [80]. From 

the GPDK project came many lessons about building a framework and developing reusable 

components. Ultimately, while the GPDK template/demo portal could be enhanced to create a 

project specific portal, users had to become familiar with the source code in order to add the 

features they needed. Another major limitation was the lack of any reusability in the presentation 

layer. Developers would need to handcraft customized presentation pages to re-use the GPDK 

services provided to create a new portal instance. This further increase the development time and 

cost. 
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A similar design to the GPDK is the Astrophysics Scientific Collaboratory (ASC) portal [30], but 

it was ultimately specialized in its functionality and services to suit the needs of a particular user 

community. In both the GPDK and the ASC portal, an emphasis was placed on providing value-

added capabilities that would encourage users to perform their work via the portal. One of the 

lessons learned in putting the portal into use is that the portal is only as good as the services used; 

hence a major difficulty was managing the underlying, quick changing grid software libraries that 

are used.  

 

In trying to build support for the Grid user community, Novotny, et al. (2004), developed the 

GridSphere portal framework [11, 29] based on the many previous lessons and best practices 

learned from passed notable Grid portal projects such as the GPDK and the ASC portal. It was 

aimed at offering external developers a model for easily adding new functionality and hence 

increasing community collaboration.  

The GridSphere Portal Framework [11] is a portlet JSR-168 compliant portlet container that offers 

a set of base classes and tools for developing portlet application. It has been used as a development 

platform for a number of projects around the world such The UK GridLab project [10], the UK e-

Science projects [16], etc. The Grid portlet web application [43], released for the first time in June 

2005, builds on the core features in the GridSphere portal framework to provide developers with a 

framework for developing Grid-enabled portlets [11]. These portlets are built upon reusable Java 

Server Pages, JSP [84] based user interface components. 

 

GridSphere enables developers to quickly develop and package third-party portlets based web 

applications that can be run and administered within the GridSphere portlet container [13]. 

Although, GridSphere does not in itself contain any support for using Grid technologies, it only 

contains the core functionality necessary to develop a web portal. It is based on IBM’s WebSphere 

[51] and provides a “white-box” framework in which users can override base classes and ‘hook’ in 

their method. It therefore requires that developers and users have some knowledge of base 

framework classes and interfaces. The GridSphere adopted the portlet technology, but with no 

major emphasis on the implementation of the WSRP specifications [10, 25].  

A portlet-based Grid portal architecture was proposed in [14] by encapsulating one or more Grid 

services to a portlet. The aim was to make portals more flexible and easily configured to suit a 

Grid user’s need and improve the reusability of the grid portal. The work proposed a portlet-based 

Grid portal architecture for integrating existing technologies under a common interface. It 
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developed a prototype of the portlet-based Grid portal using Jetspeed-2 [85] as the portal 

framework which employs Pluto [48] as the portlet container. GT 3.2 was used as the underlying 

Grid infrastructure. The work adopted the JSR 168 specification for the Grid-based portal 

development but, yet to support the WSRP specification. 

 
2.7 OVERVIEW OF EXISTING METHODS 

SOA-based applications are built on a layered architecture [15]. A four-layered SOA architecture 

was presented in [86] in a bid to propose a systematic service oriented analysis and design (SOAD) 

process for developing highly adaptable services. Each layer of the architecture is defined with its 

own goal and their artifacts [86]. This is as depicted in the figure 2.19 below. 

 

 

 

 

 

 

 
 

 

  

 

 
 
 
 
 
 Business Process Layer: As the top layer, it is to define business processes expected by 

service clients. Business process (BP) represents a cohesive unit of the service perceived by 

service clients, not by component engineers. Hence, it is defined independently from 

implementation technology and platforms. Typically, a BP is a larger grained than a use case 

and a method of objects, and it is defined with a service workflow among smaller grained 

activities. Hence, Business Process Specification includes workflows of participating activities.  

Figure 2.19: A Four-Layered SOA Architecture [86] 
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 Unit Service Layer: Activities of a business process are conceptual units of works, perceived 

by clients. It will eventually be performed by a software element, which was called a unit 

service, Unit Service. That is, an activity is fulfilled by running a unit service. The main 

distinction between them is that an activity is a conceptual unit perceived by clients and a unit 

service is its corresponding task defined from engineering perspective. Hence, the notion of 

unit service is a vehicle that bridges clients’ view to engineers’ view.  Another key value of 

introducing unit service is that it can be reused by more than one activity, i.e. more than one 

BP. That is, activities of the workflows can be analyzed, and a set of unit services also defined. 

Some unit services may be common among the business processes, and hence they are reusable 

among several business processes. 

 Service Interface Layer: In Service-Oriented Computing (SOC), the interfaces of services are 

specified separately from service components, and service providers publish the services in 

WSDL in UDDI service registries. Hence, the unit services identified should be bound to 

interfaces of the published services which fulfill the requirement of the unit services. 

Therefore, the Service Interface Layer contains the interfaces of services published by service 

provides, and it separates the unit services from the service components. By having this layer, 

unit services can be bound to any compatible interfaces, and the interfaces can be realized by 

and bound to any compatible service components. 

 Service Component Layer: This layer is to specify service components which implement the 

service interfaces. Some components are like the one in component-based development (CBD), 

and typically implemented with objects on OO/CBD platforms such as EJB. Other components 

can be simply wrappers of legacy applications. There is a difference between the two types on 

how components are implemented, but they both have to provide physical interfaces that 

conform to the published interfaces (in WSDL) of the Service Interface Layer. For example, 

we may implement service components in EJB and provide physical interfaces in the forms of 

EJB Home and Remote interfaces, which conform to the WSDL service interfaces. 

 

Service-Oriented Modeling and Architecture (SOMA) [15] focused on the techniques for the 

identification, specification, and realization of services, service flows, compositions and 

enterprise-scale components. To model the architecture, the work proposed a seven-layered 

architecture shown in the figure 2.20 below. 
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The core of the GUISET research framework is built around this reference architecture and a 

number of both on-going and completed research works at the center of excellence for Mobile e-

Services, Department of Computer Science, University of Zululand, RSA were situated within this 

architecture [15]. The various layers are highlighted below. 

   

 Operational layer (layer 1): This layer of the SOA architecture consists of various existing 

custom built application otherwise referred to as legacy systems, including existing Content 

Resource Manager (CRM) Enterprise Resource Planner (ERP) and other packaged 

applications, and older object-oriented system implementations, as well as business 

intelligence applications. The composite layered architecture of a SOA can leverage existing 

systems and integrate them using service-oriented integration techniques. 

 Enterprise Components Layer (layer 2): This is basically responsible for the realization of 

various functionalities and maintaining the quality of service, QoS of the exposed services. 

These special components are a managed, governed set of enterprise assets that are funded at 

Figure 2.20: A Seven-Layered SOA Architecture [15] 
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the enterprise or the business unit level. As enterprise-scale assets, they are responsible for 

ensuring conformance to service layer agreements, SLAs through the application of 

architectural best practices. This layer typically uses container-based technologies such as 

application servers to implement the components, workload management, high availability, and 

load balancing.  

The enterprise components layer is at the core of the GUISET architecture which aimed at 

developing components for the composition of product family members: a product instance 

determines the functionality that is exposed as web services to clients. Service Component 

Architecture, SCA and Case-Based Software Engineering, CBSE paradigms are both being 

explored to determine how the components are built in line with the SOA principles.  

 Service Layer (Layer 3): This layer houses the various services the business chooses to fund 

and expose. These services can be discovered or be statically bound and then invoked, or 

possibly choreographed into composite service. This service exposure layer also provides for 

the mechanism to take enterprise scale components, business unit specific components, and in 

some cases, project-specific components, and externalizes a subset of their interfaces in the 

form of service descriptions. Thus, the enterprise components provide service realization at 

runtime using the functionality provided by their interfaces. The interfaces get exported out as 

service descriptions in this layer, where they are exposed for use. They can exist in isolation or 

as a composite service. 

 Business Process Choreography Layer (layer 4) is otherwise called the Business Process 

Composition layer. Compositions and choreographies of services exposed in layer 3 are 

defined in this layer. Services are bundled into a flow through orchestration or choreography, 

and thus act together as a single application. These applications support specific use cases and 

business processes. Here, visual flow composition tools, such as IBM® Websphere® Business 

Integration Modeller or Websphere Application Developer Integration Edition, can be used for 

the design of application flow. 

 Presentation Layer (layer 5): This is often referred to as the Access Layer.  Although this layer 

is usually out of scope for most discussions around a SOA, it is actually gaining much 

relevance because there is an increasing convergence of standards, such as Web Services for 

Remote Portlets, WSRP version 2.0 [13], and Java Specification Request, JSR 168 [18], and 

other technologies, that seek to leverage web services at the application interface or 

presentation level. We envisage this layer as a future layer that we would need to take into 
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account for future solutions. It is also important to note at this point that SOA decouples the 

user interface from the components, and that an end-to-end solution would ultimately be 

needed from an access channel to a service or a composition of services [15]. This layer houses 

the portal frameworks and models that are the research focus of this work. 

 Integration Architecture (layer 6) enables the integration of services through the introduction 

of a reliable set of capabilities, such as intelligent routing, protocol mediation, and other 

transformation mechanisms, often described as the ESB [52]. WSRP [13] specifies a binding, 

which implies a location where the services is provided. On the other hand, an ESB provides a 

location independent mechanism for integration [52].  The integration layer house the core 

functionalities of the GUISET infrastructure for service integration. 

 Quality of Service, QoS layer (layer 7): provides the capabilities required to monitor, manage 

and maintain QoS such as availability, performance, responsiveness and security [52, 87]. This 

represent a background process through sense-and-respond mechanism and tools that monitor 

the health of the SOA applications, including the all important standards implementation of 

WS-management and other relevant protocols and standards that implement QoS for a SOA 

[52].   

 

SOA, from an abstract view is depicted as a partially layered architecture of composite services 

that align with business processes. The representation of this type of architecture is depicted in 

figure 2.22. The relationship between services and components is that enterprise-scale components 

(large-grained enterprise or business line components) realize the services and are responsible for 

providing their functionality and maintaining their quality of service [15]. Business process flows 

can be supported by choreography of these exposed services into composite applications. 

Integration architecture supports the routing, mediation, and translation of these services, 

components, and flows, using an ESB. The deployed services must also be monitored and 

managed for quality of service and adherence to non-functional requirements. 
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CHAPTER THREE 

 
3.0  REQUIREMENTS ANALYSIS AND DESIGN  

 

3.1  INTRODUCTION 

This chapter captures the formulative aspect of this work. It entails the elicitation and elucidation 

of the system requirements which drive the design choices, and the system design. A formal model 

of the portal system is built with the use Unified Modeling Language (UML) tools, particularly the 

portal use cases were modeled using a number of UML use case tools. 

  

3.2 THE SYSTEM REQUIREMENT ANALYSIS 

 

3.2.1 The GUISET Architecture 

 

GUISET is depicted a Mobile Grid-enabled Utility Computing Architecture [7]. It is built on the 

following motivation: 

 The need to leverage the success of handheld devices with mobile mode of utility computing. 

 Mobile Computing on fixed infrastructure e.g. Internet suspend/respond. 

 Software architectural support for handheld computing that enables composition of large, 

distributed, decentralized mobile systems. 

 Reference Architecture (see figure 3.1) that can be used as the basis for sharing domain-

specific applications. 

According to [7], GUISET is also envisioned as an infrastructure for enabling SMMEs: 

 Who? : Under-resourced SMMEs are targeted as the main beneficiaries of this technology; 

 How? : Operating overhead is to be reduced to the minimum; 

 Why? : To make the transformation of a small business to an e-business a priority; 

 What? : Acquire capability to use e-Commerce tools without owning them. 
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Figure 3.1: The Reference Architecture [7]. 

 

GUISET is designed as a three (3) layered architecture. It comprises of (i) Multi-modal Interface 

layer (ii) Middleware layer and (iii) Grid Infrastructure Layer. This is shown in the figure 3.2 

below:   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: The GUISET Architecture [7] 
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The Multi-modal interfaces layer houses the various application interfaces designed for accepting 

customer subscription. The interfaces run on a Grid client which can be a mobile device or laptop. 

Each client is a potential Grid service provider or resource. The services available are also 

advertised through these interfaces. This layer also provides a template for customer specification 

of service parameters. These templates are then passed to the utility broker for a SLA-driven 

validation of all completed templates.  

 

The Middleware Layer comprises the utility broker, enabling information bus for dynamic services 

selection. The utility broker component works with validated service specification templates. It 

initiates a negotiation process with customer until a mutual agreement is reached and a contract is 

established. It also invokes a subscription manager that enforces and manages updates to all 

existing contracts. The billing component of the broker collaborates with subscription manager to 

determine what and how services should be billed.  The SLA management dynamically increases 

or decreases user Quality of Service, QoS requirements automatically as dictated by policies or as 

the premium subscribers choose from time to time. 

The Grid infrastructure layer is the resource repository that stores all the services and resources. 

This single architecture is partitioned into two subsystems:  

1. The Web Infrastructure, and  

2. The Service Portal.  

The GUISET Infrastructure is based on SOA, and it is designed to provide the operating 

environment for prospective utility service customers willing form or join a user community. It 

enables the activation of GUISET membership; accepting the various SMME groups’ 

subscriptions. GUISET is envisioned as a shared infrastructure which will be implemented as a 

Business-to-Customer, B2C Web service portal core. The business side consists of owners and 

service providers or sellers, while the consumers’ side consist of the subscribers to services and 

resources.   

 

GUISET provides the technologies for end-to-end SLA, service composition, fault handling, trust-

based security services, context-aware adaptation and personalization of services. It is also 

envisage as creating a set of policies, SLA templates, and a simple web presence for each seller or 
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provider. Members of a seller group will then be matched to individual QoS specification signified 

by their membership status. 

 

The GUISET portal however is meant to provide the street level entrance into a bring-and-share 

mode of utility computing. It is the service portal into which future services can be plugged. It 

therefore forms the basic infrastructure for the various application projects.  

 

3.2.2   The Proposed GUISET Portal Framework 

Prior to this work, in [14] a portlet-based Grid portal architecture was proposed for integrating 

existing technologies under a common interface. GT 3.2 [37] was adopted as the underlying Grid 

system and a portal prototype was developed using JetSpeed 2 [85] which is JSR-168 compliant, 

as the portal framework. Unfortunately, the work did not satisfy the WSRP component of the grid-

enabled portal development standards and specification.  

 

This work therefore, proposed a modification of the above architecture in order to achieve a more 

standardized version of the portal architecture by introducing the WSRP component.  This 

illustrated in the figure 3.3 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: The Proposed Grid-enabled Portal Framework 
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The above architecture consists of the portlet-based grid-enabled portal layer and the underlying, 

enabling Grid technologies. The Portal layer consists of the WSRP-compliant portal framework 

[10], the portlet container and the various grid-enabled portlets for encapsulating one or more 

Grid services [25, 29]. The underlying Grid technologies which could also be referred to as the 

Grid tools, consists the Globus toolkit and Grid middleware. The Grid portlets interact with the 

Grid tools.  

 

The Grid portlets can access Grid resources either directly through Globus Toolkit or indirectly 

through Grid middleware. GT 3.x, GT 3.9 and GT 4.0 [37] are the popular versions of the Globus 

toolkit. GT 3.x is a reference implementation of the Open Grid Services Infrastructure (OGSI) 

[88], and it conforms to the Open Grid Services Architecture (OGSA) [40]. GT 3.9 and GT 4 are 

recent versions of Globus Toolkit, supporting Web Service Resource Framework (WSRF) [58, 59].  

 

Grid middleware is another underlying Grid technology or tool that can be introduced between the 

low-level Grid services offered by Globus Toolkit and the presentation layer such as Grid-enabled 

Portal [12]. This middleware can ease and reduces the development time and cost Grid-enabled 

Portal. One of such middleware is the GridPort [41, 82, 89]. Thus, developers can easily develop 

some of the Grid portlets by using GridPort to access Grid resources. Different composition of 

Grid portlets provides end-users with different functionalities. 

 

Grid portlets are managed by a portlet container [10], which runs portlets and provides them with 

the required runtime environment and manages their lifecycle. Pluto [48] is a widely used portlet 

container and is the reference implementation of the JSR-168 portlet specification. It supports 

portlets written with many different programming languages, including JSP, JSF, Perl, PHP, etc. 

Some portal frameworks use their own portlet containers, such as GridSphere [11] and uPortal 

[78]. 
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3.2.3  The Portal System Analysis 

System analysis is a problem solving technique that entails the decomposition of the studied 

system into its component parts with the view of studying the various functionalities and how 

those component parts interact to accomplish the system’s purpose [90]. It describes a set of 

activities that are aimed at understanding the system under study and this collectively defines the 

early phases of the system development.  

The portal system analysis however, seeks to identify and analyze the various components of the 

portal. The portal requirement analysis is also done here. This helps to enhance the system design 

choices.   

 

A. Informal Requirements (The Portal Scenarios) 

The portal is designed to provide a uniform access to various both service providers and 

subscribers to various services and resources on the Grid-based utility infrastructure. It is used to 

accommodate different business clusters e.g. SMMEs cluster of business owners and service 

providers that form the community of registered business entities.   

A typical scenario is described as follows and is also depicted in figure 3.4 below.  

The prospective utility service clients (providers or customers) such as Kabini B&B, Shebak C&D, 

Zhuklu A&A, etc. form or join a user community, based on similar business goals or common 

operating domains such as Tourism, Art & Craft, Fashion, Health, etc. Each community cluster is 

registered on the GUISET infrastructure as a distinct business entity strictly based on the business 

domain or type of goods and services offered. Each cluster is also associated with specific type of 

goods or services. This makes it possible to validate membership against the vision and mission of 

the cluster that the client selects to belong. Only SMMEs that qualify are allowed to belong to 

specific clusters, the unqualified applicants are channeled to appropriate clusters. 

Members (service providers) own their resources and they contribute them to a shared pool. 

However, customers need not own their hardware & software infrastructure, nor know where the 

services are deployed; they only need to join a user community to have access to GUISET utility 

services. The GUISET portal is meant for the registration of members – owners, suppliers, 

customers, subscribers, etc. The client’s access to the portal is a Web client and a generic client is 

included to enable both application and client requests for non-portal services. However, both the 
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GUISET portal and client have the capability to find and bind to services published in the registry. 

But portals look for WSRP services only which are portlets. 

Services exposed on the GUISET portal have either a Native Component or Portlets as their 

backend. Therefore, contributed services are exposed on a Hardware-As-A-Service Basis. So the 

Portal will be designed as an interface for: Community Enablement, Registration of SMMEs 

clusters, Support Membership Management, Administration of SMMEs subscription, Discussion 

forum, Links, etc. 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The GUISET Portal Scenario 
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B. The Portal Formal (Functional) Requirements Specification 

The GUISET portal is conceptualized as two separate web interfaces or sites. These are:  

1. GUISET Infrastructure Portal; 

2. GUISET Service-driven e-Commerce on-Demand (SEConD) Portal. 

While the latter is a sort of complementary portal interface which provides e-Commerce services 

on-Demand, the former which is the primary focus of this research work to be designed and 

implemented to meet the following requirements stated as follows: 

1. Secured registration of GUISET user communities (Business cluster); 

2. Supports membership management;  

3. Common/Uniform point of entry for service integration and provisioning (service provisioning 

using portal paradigm) - a “bring-and-share” mode of utility computing; 

4. Advertisement of available services or products; 

5. Administration of Users’ (SMMEs) subscription;  

6. Provides a template for customer specification of service parameters; 

7. Supports GUISET user community enablement: discussion forum, chat rooms, blogs, 

newsfeeds and service updates, download links, links to active GUISET services, help and 

support links, time and calendar, etc.    

The Portal Functionalities also envisaged are: 

 A Business to Consumer portal capabilities – product or service information and ordering 

capability available. 

 Portlets are provided for specific product or service categories. 

 Collaboration functionality is provided by the portal to create places of discussion of products 

or topics of interest. Customers subscribe to topics of interest so they can see when others of 

like interest are online for discussion.  

 Instant messaging could be used to exchange ideas with those online. 
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3.3     THE SYSTEM DESIGN 

The system design illustrates how the system will fulfill the objectives or requirements identified 

during the system analysis. It serves as the overall plan or model that consists of the specification 

about the system - its form and structure, deliverables, and functional components. The system 

design is based on the requirement and it is aimed at meeting the specification of the studied 

system. 

3.4.1 The Logical Design 

The logical design lays out the various functional components and structures of the system and 

their relationship to one another. In describes inputs and outputs, processing functions to be 

performed, business procedures, data models and controls.  

Apart from the portal data, the portal structure and deliverables required here are:  

1. Authentication Subsystem; 

2. Membership Management and User Profile Subsystem; 

3. Portlet Management Subsystem 

4. Content Management Subsystem; 

5. Collaboration Subsystem; 

6. Service Registry Management Subsystem.   

 

These are conceptually represented in figure 3.5 below.  

1. Authentication Subsystem 

The authentication subsystem is designed to ensure that only valid users have access to the system. 

It is responsible for authentication and authorization of the various users. Every request is verified 

that the user is authorized to perform the operation. It therefore employs one or more of the 

following services to achieve this objective: User Manager Service, Login & Logout Service, 

Proxy Manager Service, Role-based Access Control & Monitoring, Credential Management 

Service, etc. 

 

 

 

 



 

 

95 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: The Conceptual View of GUISET Infrastructure portal 

 

2. Membership and User Profile Management 

This subsystem is responsible for the management of users’ registration, and profile management. 

It administers the members’ subscriptions and services, accounting and billing. It employs one or 

more of the following services: User Registration & Membership Management Service, 

Membership Subscription Administration, etc.  

  

3. Portlets Management Subsystem 

This portlets management subsystem is responsible for the overall management of the various 

service portlets. It essentially houses the portlets containers and a portlet relies on its container for 

deployment, instantiation, initialization and destruction. A portal supports various portlet display 

modes such as: View mode [default], Help mode, Edit mode [setting changes] and Configure mode 

[administration]. It therefore also employs the one or more of the following services:  Portlets 

Management & Administration Service, Page Aggregation Service, Product/Service 

Categorization & advertisement. 
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4. Content Management Subsystem 

The content management system is responsible for the administration and management of the 

various portal contents – data, resources, services, products, etc. It is used by the tools by the tools 

or services to share resources with others. It employs one or more of the following services: Data 

Management, Resource/Service Verification & Management, Product Cataloging, etc. 

 

5.  Collaboration Subsystem 

The collaboration subsystem is designed to enable coordinated interaction and collaboration 

amongst the various user communities. It entails some of the following services: Discussion 

Forum, User Chat Rooms, Blogs and White Boards, Calendars, Messaging Services – shared 

Updates, News feed, e-mails, texts, alerts, etc. 

 

6. Service Registry Management Subsystem 

There is a registry that serves as a service repository. This Subsystem is responsible for the 

administration and management of the service registry. It employs some of the following services: 

Look-Up & Binding Service, Service Deployment, Query-based Service Discovery, etc.  

These various services are designed and encapsulated in different portlets and will be accessible 

through the various portlet interfaces, that is, each service might have a user interface which will 

be a portlet.  

 

3.4.2 The Portal System Modeling 

Modeling is the art of building an abstract representation of a concrete entity [90]. It involves the 

creation of a model of a real life entity, process or situation. A model is a graphical representation 

of the functionality, or behavior of the system. Systems model play important role in system 

development [90]. It helps to give a pictorial representation of reality with respect to functionality, 

or behavior of the system that will satisfy the needs of clients or users.  

Modelling is an activity carried out with the aim of producing a correct, complete and consistent 

representation of the real world – or more precisely that part of the real world which is of interest 

to the designer of the target Information System, IS. A formal model of the portal system is built 

using the Unified Modeling Language, UML. UML is a modeling paradigm that provides a set of 

conventions and tools. These tools are used to describe a system in terms of its component (object) 

structures and the various interactions within the system and with the external system [90]. 
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The portal system is modeled using these available tools listed below: 

1. Use case Diagram 

2. Sequence Diagram 

3. Collaboration Diagram 

4. Class Diagram 

5. Activity Diagram 

 

3.4.2.1 Use Case Diagrams 

A use case diagram graphically depicts the interactions between the system, the external system 

and the client or user [90]. Use case diagrams play major roles in system design because they act 

as roadmaps in constructing the structures of the system; they also define who use the system and 

in what way is the clients expected to interact with the system. 

1. The Authentication Subsystem. 

The authentication subsystem is designed to ensure that only valid users have access to the system. 

The system administrator is responsible for authentication and authorization of the various users 

based on stipulated policies such as role-based access control (RBAC). The administrator also 

manages the various clients’ access credentials alongside their logs and session. This is illustrated 

in figure 3.6 below. 
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Figure 3.6: Authentication Subsystem 
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2. Membership and User Profile Management 

This subsystem is responsible for the management of users’ registration, and profile management. 

A valid client can setup a subscription request after viewing and selecting an available service. The 

administrator validates the client’s registration and subscription request after ensuring that the 

appropriate requirements have been met. This is illustrated in figure 3.7 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Membership and User Profile Management 
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3. Portlets Management Subsystem 

This portlets management subsystem is responsible for the entire management of the various 

service portlets. It essentially houses the portlets containers and a portlet relies on its container for 

deployment, instantiation, initialization and destruction. A valid client can subscribe for a desired 

available service as well as a service provider advertise services. The administrator however 

manages the various service portlets and ensures the proper administration of the client’s service 

subscription. This is illustrated in figure 3.8 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Portlets Management Subsystem 
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4. Content Management Subsystem 

The content management system is responsible for the administration and management of the 

various portal contents – data, resources, services, products, etc. A valid client can upload and 

advertise services for use. The administrator verifies and manages these services for advertisement. 

He does the service cataloguing and data management.  This is illustrated in figure 3.9 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Content Management Subsystem 
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5.  Collaboration Subsystem 

The collaboration subsystem is designed to enable coordinated interaction and collaboration 

amongst the various user communities. A valid user can join an existing user community based on 

interest or setup a new one, creating a user forum for similar business interest discussion. This is 

illustrated in figure 3.10 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Collaboration Subsystem 



 

 

103 

6. Service Registry Management Subsystem 

There is a registry that serves as a service repository. A valid client can engage in a service look-up 

and binding based on the available service description in the registry. The administrator manages 

the service registry and periodically updates its content based on the client’s requests and search. 

This is illustrated in figure 3.11 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Service Registry Management Subsystem 
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3.4.2.2   Sequence Diagram 

The sequence captures interaction among the various entities (actors) with the system. This is 

illustrated as follows: It begins with portlet registration by the portal administrator normally 

through a portal integration development environment, IDE e.g. WebSphere [51], and ends up with 

a portal being registered to a given portlet producer. The Figure 3.12 outlines the protocol.  

First, an introductory description of the producer is obtained through the “getServiceDescription( )” 

function. If registration is required then, the consumer must register with a producer before 

accessing any of the producer’s portlets. Once registered, the consumer queries again the producer 

but now, a detailed description of the available portlets is returned. With all this information, the 

portal IDE creates a WSRP consumer. This WSRP consumer is within the portal realm. 

Once registered, the portal is ready to engage the portlet in conversation to deliver its service. This 

is achieved through a two-step protocol as shown in figure 3.12 below. To begin with, the very 

first markup realizing the service is obtained through the “getMarkup( )” function. The returned 

markup is aggregated to other markup that built up the portal page which is finally rendered to the 

end user. Whenever the user clicks on a link of the portlet markup, the portal receives the HTTP 

request which is in turn, forwarded to the portlet producer by means of the 

“performBlockingInteraction( )” function till it finally reaches the portlet itself. As a result, the 

portlet can change its state. But no markup is returned to the consumer. This requires the consumer 

to issue a “getMarkup( )” function to recover the eventually new markup associated with this new 

state. 
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Figure 3.12: Sequence Diagram (WSRP Protocol) [28] 
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3.3.2.3  Activity Diagram 

The activity diagram depicts the workflow of activities within the system. It graphically represents 

the flow of performance of various actions by the system entities. The flow of the system activities 

is summarized in figure 3.13 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Activity Diagram 
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3.3.2.4   Collaboration Diagram 
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Figure 3.14a: Validate Subscriber’s Login Collaboration Diagram 
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Figure 3.14b: Service/Product Lookup Collaboration Diagram 
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Figure 3.14d: Validate Admin Login Collaboration Diagram 
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3.3.2.5 Entity Class Diagram 

The entity class diagram depicts the relationships among the various entity classes. This is 

illustrated in figure 3.15 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14g: Service/Product Request Collaboration Diagram 

Figure 3.15: Entity Class Diagram 
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3.4 THE USER INTERFACE DESIGNS 

A Graphical User Interface (GUI) is a medium through which the system users interact with the 

system. It is a medium through which the system users send in their request into the system, 

displays the outputs to the users alongside various options available to the user.  

 

Some of the various interfaces showing the different aspects of the system are as follows: 

 

1. The GUISET Portal Home Page. 

2. The Create User Account Interface. 

3. The Portal Administrator’s Registration Interface. 

4. The Secured User Login Interface (User Authentication). 

5. The Administrator’s Home Page. 

 

3.4.1 The GUISET Portal Home Page 

The GUISET portal home page is the first user interface displays at logon to both the existing users 

and the guest users. It presents the general overview of the portal system, showing the various tabs, 

links, and login section; create user account link, etc. The GUISET Portal home page is shown in 

figure 3.16 below. 

  

3.4.2 The Create User Account Interface 

Every prospective user that is not registered yet are redirected to the create user account page from 

the home page where the user’s details are supplied to the system in order to create a new user 

account. The create user account interface is shown in figure 3.17 below. 

 

3.4.3 The Portal Administrator’s Registration Interface 

The portal administrator’s registration interface is the medium through which the system 

administrator is first registered with the system before he can assume the responsibility of the 

overall administration and management of the entire portal system. The administrator’s registration 

interface is shown in figure 3.18 below. 
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Figure 3.16: The GUISET Portal Home Page 
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Figure 3.17: The Create User Account Interface 
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 Figure 3.18: The Portal Administrator’s Registration Interface 
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3.4.4 The User Authentication Interface 

The user authentication interface is a medium of achieving secured user login. The user 

(administrator, registered users, etc) is expected to login in with valid email address and password. 

In a case where the email address or password supplied by the user, the system issues a login error 

message. This is as shown in figure 3.19 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3.19: The User Authentication Interface 
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3.4.5 The Administrator’s Home Page 

The administrator’s home page is the user interface the administrator is taken to after he has 

successfully login into the system. The administrator is welcome to the home page from where he 

has access to several options through the various tabs and links. The administrator’s home page is 

shown in figure 3.20 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: The Administrator’s Home Page 
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   CHAPTER FOUR 

4.0        SYSTEM  IMPLEMENTATION  

4.1   THE GRID-BASED PORTAL DEVELOPMENT TOOLS USED 

A prototype of the portal system based on the proposed framework is built on Liferay 5.2.3 portal 

tool kit [10, 25, 26] bundled with Tomcat 6.0.18. Liferay is more than just a portal container; 

which comes with lot of helpful features like Content Management System (CMS) [91], WSRP 

compliant producer and consumer, Single Sign-On (SSO), support for Aspect-Oriented 

Programming (AOP) [61, 64], and many other latest technologies. Liferay has a very clean 

architectural design based on best practices of J2EE, which allows it to be used with a variety of 

containers ranging from lightweight servlets containers like Tomcat and Jetty, to fully fledged 

J2EE-compliant servers like Borland ES, JBoss, JOnAS, JRun, Oracle9iAS, Orion, Pramati, 

RexIP, Sun JSAS, WebLogic, and WebSphere [26, 51]. 

The Flexibility in its design allows implementation of business logic in any suitable and 

appropriate technology like Struts [92], EJB [19] etc., which in turn can be based on Hibernate 

[93], Java Messaging Service (JMS) [94], JavaMail and Web Services. Liferay makes it possible to 

give Portal Presentation to any type of Java application with no or minimum changes. The 

Customization of portlets and portal pages in Liferay and the layout management are very easy. 

Liferay Portal has a Web-based Graphical User Interface for user interaction to design the layout 

of Portal Pages without modifying any configuration files, which is similar to Stringbeans [10, 25]. 

Liferay Portal Enterprise comes with many useful portlets, and in fact Liferay portal has maximum 

utility portlets as compared to other open source Portal Frameworks, which are JSR 168 compliant 

and can be used in any portal framework with little changes.  

Liferay supports WSRP specification as long as both WSRP consumer and WSRP producer are a 

Liferay portal instance and like most of the other Portal Frameworks, Liferay uses a default 

database, Hypersonic 1.7, which is fine for development purposes. Liferay can also be used with 

any database with minimum efforts due to the use of Hibernate [93] in its design. Liferay has JSP 

portal tag libraries and lot of utility classes in different packages to assist programmer in 

developing the portlets/portals.  
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4.2  THE PORTAL PROTOTYPE AND USER INTERFACES 

The portal prototype is a proof of concept built by using Liferay 5.2.3 portal tool kit and some the 

various GUIs through which different users interact with the system are highlighted below. 

 

4.2.1 The Enterprise Portal Configuration Panel Interface 

The portal configuration panel is a medium through which the GUISET portal parameters are set. 

Some of these parameters include authentication parameters such as SSO, email parameters, 

default user credentials and associations, portal display parameters, etc. This is shown in figure 4.1 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The Enterprise Portal Configuration Panel Interface 
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4.2.2   The Portal Authentication Setting Interface 

The portal authentication parameters are set through this interface. These parameters include: 

Lightweight Directory Access Protocol (LDAP), Central Authentication Service (CAS), Open 

Single Sign-On (SSO), etc. This is shown in the figure 4.2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The Portal Authentication Setting Interface 
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4.2.3 The Portal Single Sign-On (SSO) Setting Interface 

This presents the setting of one of the authentication parameters, the Open SSO. The associated 

parameters are set as shown in figure 4.3 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The Portal Single Sign-On Setting Interface 
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4.2.4     The Create Membership Account Interface  

The create membership account interface presents a new prospective member the medium through 

which a new membership account can be create. The new user is expected to supply valid data in 

order to have an account opened. This is shown in figure 4.4 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The Create Membership Account Interface 
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4.2.5    The User Membership Registration Interface 

The new user after successfully creating a membership account can then loon to the portal from 

where the detailed membership registration of the user can be completed. The various options 

available to the user through this interface are shown in figure 4.5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: The User Membership Registration Interface 
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4.3  THE SYSTEM REQUIREMENTS 

The system requirements consist of the various tools required from the point of design and 

development to the eventual deployment of the portal system. These requirement are presented in 

tabular form in the tables below. 

 

TABLE 4.1: The Software Requirements 

Requirements Software 

Operating System Microsoft Windows XP, Windows Vista, etc. 

Grid-enabled Portal Tool Kits  Liferay 5.2.3 bundled with Tomcat 6.0.18 

Database Management System Liferay  Default Database, Hypersonic 1.7   

Model Design Tools (UML Modeling) Microsoft Office Visio 2007 

Underlying Grid System Globus Tool kits 4.0 

    

    

  TABLE 4.2: The Web Client Software Requirements 

Requirements Software 

Operating System Microsoft Windows  XP, Vista, etc. 

Internet Browser Internet Explorer 6+; Mozilla Firefox 4; 
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4.4  THE HARDWARE REQUIREMENTS 

The Hardware requirements are also presented in tabular form in the table 4.3 below. 

 

TABLE 4.3: The Hardware Requirements 

Minimum Requirement 

Pentium IV, 2.5GHz, CPU 

Minimum of 1GB, Random Access Memory (RAM)  

Minimum 14” Color Monitor 

Minimum 32 Bit Video Graphics Adapter (VGA) 

Minimum 32 Bit Sound Card 

Modem or Ethernet Card 

Keyboard and Mouse 

Uninterruptible Power Supply (UPS) 
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4.5  THE EVALUATION 

One of the key objective of the research work is the evaluation of the grid-enabled portal prototype 

for GUISET.  The objective of the evaluation however, is to find out if the portal prototype fulfills 

the minimum requirements to be suitable for the utility context. In a broader sense, we categorize 

the evaluation into two types namely analytic and emperical evaluation.  Analytic evaluation deals 

with modeling and analysis of system functional requirements empirical evaluation deals with data 

collection techniques such as questionnaires and interviews from system users during the 

evaluation process.  

 

4.5.1  Functional Requirements 

A most critical question to ask is which, if any, of the traditional and the identified relevant 

requirements in this study does the grid-enabled portal prototype satisfy? An attempt to answer this 

question was made by drawing a chart and noting what requirements are met or not. Below is list 

of important items from the design requirements document and noting whether the portal meets 

these requirements. 

Table 4.4:  The Security Requirements 

A. SECURITY REQUIREMENTS 

SCOPE REQUIREMENTS YES/NO/PARTIAL 

1. Secured Login  Single Sign-On to Portal & Portal 

Services 

Yes 

2. Authentication  

  

        and Authorization 

 Valid user details required to access 

the portal 

 Resources Information protected 

from unauthorized user access. 

 System Information Protected from 

Unauthorized user access. 

Yes 

 

Yes 

 

Yes 

3. Privacy  User Information protected from 

unauthorized access. 

Yes 
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4. User Interaction 

and 

Communication 

 Well Secured Transaction No 

5. Credential 

Management 

 Integration with Liferay’s in-built 

Security. 

 Locally Stored Proxy Certificates 

Yes 

 

No 

 

 

 

Table 4.5: The Membership & User Profile Management Requirements 

 

 

 

 

 

 

 

 

 

 

B. MEMBERSHIP & USER PROFILE MANAGEMENT  REQUIREMENTS 

SCOPE REQUIREMENTS YES/NO/PARTIAL 

1. User/Member 

Registration 

 User Account Creation. 

 Member Registration. 

Yes 

Yes 

2. Membership 

Subscription and 

Accounts. 

 Management of Members’ Accounts 

& Subscriptions. 

No 

3. Accounting & 

Billing 

 Accounting & Billing Service of 

Members. 

No 



 

 

126 

Table 4.6: The Users’ Collaboration Requirements 

 

 

4.5.2  The Usability Evaluation 

The usuability evaluation of the grid-enabled portal prototype was designed in a way that it can be 

achieved as effectively as possible. A set of relevant criteria for evaluating the usability of a grid-

enabled portals were identified in literature. These criteria are itemized in section 4.5.3. 

 

A total of twelve (12) users consisting of seven (7) final year undergraduate students and five (5) 

postgraduates students were selected from the Department of Computer and Information Sciences, 

College of Science and Technology, Covenant University, Nigeria to carry out the evaluation.  

 

The selected participants were taken through a pre-experiment orientation, by being given various 

explanations on grid and utility computing concepts, the workings of grid-enabled portals and how 

to use them to achieve specified tasks. The participants were also taken through a brief work-

through training on what the various requirements and expectations are. The purpose of conducting 

this was to make sure that participants have no difficulties to understand all steps of each task. This 

C. USERS’ COLLABORATION  REQUIREMENTS 

SCOPE REQUIREMENTS YES/NO/PARTIAL 

1. Collaboration & User 

Community Enablement 

 Online Chat 

 User Group Creation & 

Management. 

 Discussion Forum & user 

Communities. 

 Bulletin Boards & Blogs. 

 Shared Updates, News feeds, 

Calendar, etc 

Yes 

Yes 

 

Yes 

Yes 

Yes 

2. Messaging  E-mails, Texts & Alerts 

 Videoconferencing 

No 

No 
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really helped to make the task description simpler and easily understandable. After a substantial 

level of understanding of each participant was ascertained, they were then assigned a set of tasks to 

perform on the portal before they filled the usability evaluation questionnaires.   

 

The stastitics on the background of the participants is presented in the table below: 

 

Table 4.7: The Background of Participants 

 Background of Participants No. of 

Participants 

Very 

High 

High Medium Low Poor  

Level of Understanding of 

Grid-based Technologies. 

12 8.33% 25% 41.67% 16.67% 8.33% 

Level of Experience with Use 

of Grid-enabled Portals 

12 8.33% 25% 33.33% 25% 8.33% 

Table 4.7: The Background of Participants 

 

4.5.3  Questionnaire Results 

The questionnaire is designed by the author on the base of finding from usability test and 

guidelines for usability evaluation of the web sites provided by IS&T Department, MIT [95].  The 

result of the usability evaluation is presented in the table 5.5 below. 
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Table 4.8: The Participants’ Response 

 

Key: A: Strongly Agree B: Agree C: No comments D: Disagree E: Strongly Disagree 

 

 

 
S/N 

 

Criteria 

 

Question

s 

  

No. of 

Response

s 

 

Strongl

y      

Agree 

(A) 

 

  Agree 

(B) 

 

 

Indifferen

t 

(C) 

 

 

Disagre

e 

(E) 

 

Strongl

y 

Disagre

e 

(E) 

1. Simplicity i, ii 12 25% 33.33% 25% 8.33% 8.33% 

2. Satisfaction iii, iv 12 25% 25% 25% 16.67% 8.33% 

3. Aesthetics v, vi 12 25% 33.33% 16.67% 16.67% 8.33% 

4. Memorability vii, viii 12 25% 33.33% 25% 8.33% 8.33% 

5. Hypertext 

Structure 

ix, x 12 16.67% 25% 25% 25% 8.33% 

6. Security xi, xii 12 41.67% 33.33% 16.67% 8.33% 0% 

7. Resourcefulnes

s and Job 

Management 

xiii, xiv 12 8.33%  25% 25% 25% 16.67% 

8. Accounting xv, xvi 12 0% 16.67% 16.67% 41.67% 25% 

9. Collaboration xvii, xviii 12 41.65% 33.33% 16.67% 8.33% 0% 

10. Messaging xix, xx 12 8.33% 25% 25% 33.33% 8.33% 

 AVERAGE   21.67% 28.33

% 

21.67% 19.16% 9.17% 
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Key: 1: Strongly Agree 2: Agree 3: No comments 4: Disagree 5: Strongly Disagree 

 

Figure 4.7: Overall Result of the Evaluation 

 

The graphical representation of the above result is shown in figure 5.1 below. On x-axis, each 

criterion is described by numeric values from 1 to 10. Y-axis shows the percentages of responses. 

Response of each criterion is represented by alphabetic values from A to E depicting from strongly 

agree to strongly disagree. 

 

 

 

 

 

 

 

 

Key: A: Strongly Agree B: Agree C: No comments D: Disagree E: Strongly Disagree 

Figure 4.6: Graphical Representation of Participants’ Response 
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This figure 5.2 depicts the overall response of the participants concerning the questionnaires. An 

average value of 21.67% participants is strongly agreed according to the questionnaire results. 

28.33 % participants are agreed and the 21.67% was indifferent in the questionnaires. Average 

19.16% participants are disagreed and 9.17% participants are strongly disagreed according to the 

results. 
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               CHAPTER FIVE 

5.0  SUMMARY, RECOMMENDATIONS AND CONCLUSION 

This chapter gives a summary of this work. A number of recommendations for future works in this 

area were made and consequently the conclusion.   

 

5.1   SUMMARY   

The research work investigated and identified the relevant additional requirements that can be 

catered for in the design and development of grid-enabled portals for utility computing contexts. 

 

The portal prototype implemented for GUISET serves as an interface meant to provide an enabling 

operating environment for every prospective utility service providers and customers willing to 

form or join any user business cluster or community [7]. It provides a street level entrance into a 

bring-and-share mode of utility computing [7] for every member or prospective member of the 

business community. GUISET is not an application but, an infrastructure that accommodates 

various services as a suite of service-oriented on-Demand Applications such as applications 

developed elsewhere by different service providers which could be e-Commerce, e-Agriculture, e-

Health, e-Tourism, e-Government, etc [7]. GUISET therefore aims at technologically enabling the 

business activities of SMMEs by facilitating an affordable access to relevant technologies on a 

pay-as-you-use basis. 

 

In the course of carrying out this work, an exploration of various key concepts was done. Key 

concepts such as: portlet-oriented architecture, service-oriented architecture (SOA), and its 

approaches to portal development, component-based concepts and approaches, web 2.0 etc. An in 

depth evaluation of existing grid-based portal tool kits was report and this helped to inform the 

choice of Liferay 5.2.3 portal tool kit [10, 25, and 26] bundled with Tomcat 6.0.18 as the tool with 

which a prototype of the portal system was built. The implementation of the GUISET portal offers 

a usable prototype that facilitates the realization of ODC platform for improved wealth creation 

and affordable access to scarce and expensive computing, particularly among SMMEs and rural-

based businesses. 
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An evaluation of the grid-enabled portal prototype was conducted using a set of benchmark 

requirement standards, and also the usability evaluation of the portal prototype in a controlled 

experiment by a group of experienced users.  

 

5.2  RECOMMENDATIONS AND FURTHER WORKS 

This research work is part of a bigger on-going research endeavor embarked on by the Center of 

Excellence for Mobile e-Service, Department of Computer Science, University of Zululand, South 

Africa, which aims at building an evolutionary system - GUISET infrastructure. In this work not 

all identifiable additional requirements for design of grid-enabled portals have been considered. 

The scope of this work is limited to those that do not require the expensive third party 

infrastructure and usage access rights such e-Billing and e-Payment. Therefore, only a selected set 

of additional requirements have been considered and not all that is possible. 

These requirements include: Content Management requirements, Portlets Management 

requirements, Service Registry Management requirements and a number of the unrealized 

requirements as specified in the functional requirements evaluation in 4.5.1 These can be further 

catered for in future works. 

 

The GUISET portal is conceptualized as two separate web interfaces or sites [7]. These are:  

3. GUISET Infrastructure Portal; 

4. GUISET Service-driven e-Commerce on-Demand (SEConD) Portal. 

The former is the primary focus of this research work. However, the latter represents the 

complementary portal interface which provides e-Commerce services on-demand. It is 

conceptualized as a portal use case into which future services can be plugged. It would serve as a 

common or uniform point of entry for service integration and provisioning - a “bring-and-share” 

mode of utility computing; advertisement and deployment of available services and products, 

service categorization and cataloging.  It would provide a template for customer specification of 

service parameter – service lookup and binding. The administration of membership (SMMEs) 

accounts subscription and billing aspect of the portal would be addressed.  

Other portal functionalities also envisaged are: Business-to-Consumer portal capabilities - product 

or service information and ordering capabilities. Portlets are provided for specific product or 
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service categories. These portlets are activated as needed by the portlet container (one portlet for 

each category of products or service information). Services exposed on the GUISET portal have 

either a Native Component or Portlets as their backend. Therefore, contributed services are 

exposed on a Hardware-As-A-Service Basis. 

Thus, as the research work continues, it is intended that each of these requirements would be 

achieved afterwards as new research findings would be exploited to make the system fully 

realizable. 

 

5.3  CONCLUSION  

As the Grid & Utility Computing technologies mature, small, micro and medium enterprises 

(SMMEs) and organizations would be able to meet their IT infrastructure needs thereby reducing 

their investment on IT infrastructure. The GUISET Infrastructure is based on adopting the utility 

approach of service-oriented architecture (SOA) for service delivery; and it is conceptualized to 

support SMMEs providing a Grid-based Utility Infrastructural Services that can be requested on-

Demand and paid for per every usage.  

 

GUISET is not an application as it were, but, an infrastructure that accommodates various services 

as a suite of service-oriented on-demand applications such as applications developed elsewhere by 

different service providers which could be e-Commerce, e-Agriculture, e-Health, e-Tourism, e-

Government, etc. However, as a grid-based utility infrastructure, GUISET is meant to provide an 

enabling operating environment through a portal system for every prospective utility service 

provider and customers willing to form or join any user business cluster or community.  

 

The GUISET portal therefore is an interface meant to provide a street level entrance into a bring-

and-share mode of utility computing for every member or prospective member of the business 

community.  Therefore, it is believed that this work will have an indelible impact towards bringing 

the entire GUISET architecture alive. This will eventually enhance the various SMMEs that would 

be part of the infrastructure. 
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A. The Registered User General Home Page 

Whenever a newly registered member logs into the portal, the general home page is displayed, to 

welcome the member. The member is presented with various options through the tabs and portlets 

from which he can decide whatever choices to make. 
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B.    The Administrator’s Assign Roles Interface 

One of the responsibilities of the portal administrator is the management and assigning of 

appropriate roles to different users. The various roles alongside their respective description are 

shown below. 
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C.    The Registered Enterprises Interface 

The registered enterprises interface presents a view of the registered enterprises on GUISET portal. 

It also presents a medium for the administrator to add more enterprises to the system.  
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D.    The Registered Users’ Interface 

The registered users’ interface presents a view of the registered users on GUISET portal, showing 

the various organizations they belong to. It also presents a medium for the administrator to add or 

assign more users to the registered organizations. 
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E.    Enterprise’ Personalized Web Pages 

Aside the general home page for the registered members, every enterprise is presented with the 

medium on the GUISET through which a personalized website can be built easily and with 

minimum development cost. For example, a sample personalized website for one of the registered 

enterprises, Dominion Inc. is shown below. The user also has the opportunity to add various 

application encapsulated as portlets as desired. 
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F.    A User’s Personal Community Page 

Every registered member belonging to an enterprise is designed to have a personalized community 

page. The user can belong to a number of user communities where he can share common interests 

with other members and also relates with other communities. With the personal community page, 

the user has a various options on how he relates with the communities he belongs to.  
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G.   User Groups Interface 

A user group is a special group which may have a set of associated users based on similar 

characteristics. The various existing user groups are presented through this interface, For instance, 

Enterprise Owners, Enterprise Administrators, etc. 
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H.       A Sample User Group- Enterprise Administrators 

A sample existing user groups called Enterprise Administrator is made up of some or all the 

administrators from the different enterprises.  
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QUESTIONNAIRE FOR EVALUATION 
This questionnaire is designed to evaluate the usability level of the GUISET Portal infrastructure. Your objective and 

sincere response would be highly appreciated. Kindly Tick (√ ) as appropriate. 

Section A: 
1. Level of Understanding of Grid-based Technologies: Very High ( ); High ( ); Medium ( ); Low ( ); Poor ( );   

2. Level of Experience with Use of Grid-enabled Portals: Very High ( ); High ( ); Medium ( ); Low ( ); Poor ( );                    

Section B: 
 

S/N 
 

Questions 

Strongly 

Agree 

   (A) 

 

Agree 

  (B) 

 
Indifferent 

      (C) 

 
Disagree 

    (E) 

Strongly 

Disagree 

    (E) 

1. Simplicity 

i. The GUISET Portal is understandable and very easy to 

use. 

     

ii. The Portal generally is simple to browse without any 

difficulty. 

     

2. Satisfaction 

iii. The GUISET Portal requires few steps to complete any 

task. 

     

iv. The Portal saves my time in accomplishing any task.      

3. Aesthetics 

v. The GUISET Portal has well designed pages easy to 

navigate. 

     

vi. The Portal highlights most important contents on the main 

page. 

     

4. Memorability 

vii. How to Use the GUISET Portal can easily be remembered.      

viii. I would like to revisit the portal as often as I could.      

5.  Hypertext Structure 

ix. Information about GUISET Portal services is well 

structured. 

     

x. There’re active links to various portal features & Services.      

6. Security 

xi. The portal supports single sign-on to GUISET information 

and services 

     

xii. The Portal denies you unauthorized access to user and 

resource information on the grid infrastructure. 

     

7. Resourcefulness & Job Management 

xiii. The GUISET portal provides adequate information and 

access to available resources and services. 

     

xiv. User Job requests are well managed and executed.      

8. Accounting 

xv. The GUISET portal properly manages & administers 

users’ accounts and subscription. 

     

xvi The Billing & QoS requirements are well taken care of.      

9. Collaboration 

xvii The GUISET supports user groups, forums and 

communities 

     

xviii The Portal allows for shared updates, news, alerts  and 

RSS feeds 

     

10. Messaging 

xix The GUISET portal supports online messaging: e-mails, 

chats, etc 

     

x The Portal is multimedia-enabled: Videoconferencing, 

Teleconferencing, etc. 
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