COMPRESSIVE STRENGTH CHARACTERISTICS OF CONCRETE BASED ON SITE PRODUCTION PRACTICES

 $\mathbf{B}\mathbf{Y}$

OMUH Ignatius Owoicho

Matriculation Number: CUGP09221

FEBRUARY, 2016

COMPRESSIVE STRENGTH CHARACTERISTICS OF CONCRETE BASED ON SITE PRODUCTION PRACTICES

A PhD Thesis

 $\mathbf{B}\mathbf{Y}$

OMUH Ignatius Owoicho

MATRICULATION NUMBER: CUGP09221

SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN BUILDING TECHNOLOGY (BUILDING STRUCTURES), COVENANT UNIVERSITY, OGUN STATE, NIGERIA

FEBRUARY, 2016

DECLARATION

I, OMUH, IGNATIUS OWOICHO declare that the work referred to in this thesis was carried out entirely by me under the supervision of Prof. Timothy O. Mosaku (Main Supervisor) and Dr.Kolapo O. Olusola (Co-Supervisor) of the Department of Building Technology, Covenant University, Canaan- Land, and Department of Building, Obafemi Awolowo University, Ile-Ife. Therefore, no portion of the thesis has been submitted in support of an application for another degree or qualification of this or any other University or other institution of learning. All sources of scholarly information referred to in this thesis were properly acknowledged.

OMUH Ignatius Owoicho

CERTIFICATION

This thesis entitled COMPRESSIVE STRENGTH CHARACTERISTICS OF CONCRETE BASED ON SITE PRODUCTION PRACTICES carried out by OMUH Ignatius Owoicho under my supervision meets the regulations governing the award of the degree of Doctor of Philosophy (Ph.D.) in Building Structures of the Covenant University, Ota, Ogun State, Nigeria. I certify that it has not been submitted in part or full for the award of the degree of Ph.D. or any other degree in this or any other University and is approved for its contribution to knowledge and literary presentation.

Prof. Timothy O. Mosaku Main Supervisor

Sign

Sign

Sign

Dr. James D. Owolabi Head of Department

Dr. Kolapo O. Olusola

Co-Supervisor

DEDICATION

This work is dedicated to God Almighty, the Alpha and Omega, creator of all things who made this possible and who said "...apart from me you can do nothing" and my parents, Mr and Mrs Nicholas O. Omuh.

ACKNOWLEDGEMENT

It would be impossible to adequately mention the names of everyone who has supported and encouraged me on this journey. I'm afraid this will not do justice

First I want to appreciate my supervisors in the persons of Professor Timothy O. Mosaku and Dr. Kolapo O. Olusola for their unrelenting guidance and support. The seeds were sown by them and their wisdom and efforts are very well cherished

I sincerely appreciate the entire staff of Building Technology department in the persons of, Professor Olabosipo Fagbenle, Dr. Owolabi, Dr. Lekan M. Amusan, Dr, John O. Ameh, Dr. Ayodeji O. Ogunde, Dr. (Mrs) Tunji-Olayeni, Mr. Opeyemi Joshua, Mr. Raphael Ojelabi, Mr. Adedeji Afolabi, Mr. Benjamin Babalola, Mr. Fatai Ogunbayo, Mr. Adekule. Ajao, Mr. Ogundipe, Mr David. You all have given me invaluable support. Thank you for your kind criticisms, timely directions and assistance during my lab and field work.

I am particularly grateful to The Chancellor for his vision that has birthed this great institution. I wish to acknowledge the management and staff of Covenant University for providing me with a platform to carry out this research.

My sincere appreciation also goes to family who have been very helpful and on this journey - My Parents, Mr and Mrs Nicholas O. Omuh, My siblings; Veronica, Oche, Helen, Uncle Toyin and Rebecca, Uncle Yomi, Justina, Olekwu. I am also grateful to my friends; the Kukoyis, Peter and Ene Obande, Yemi and Joyce Joshua, Andrew Obande, Matthew Obande (in loving memory) you were all wonderful pillars of support.

Finally, I sincerely appreciate my loving wife, Linda and wonderful children, Gabby, Ehi, Owi, and Jesse for always being there for me and making home worth returning to. God bless you all.

TABLE OF CONTENTS

Title I	Page	i
Decla	ration	ii
Certif	ication	iii
Dedic	ation	iv
Ackno	owledgement	V
Table	of Contents	vi
List o	f Tables	xi
List o	f Figures	xiii
Abstra	act	XV
CHA	PTER ONE: GENERAL INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of Research Problem	6
1.3	Research Questions	7
1.3.1	Aim and Objectives	8
1.4	Significance of Study	8
1.5	Scope and Limitations of Study	9
CHA	PTER TWO: LITERATURE REVIEW	10
2.1	Historical Development of Concrete	10
2.2	Classification of Concrete	12
2.3	Constituents of Concrete	13
2.3.1	Cement and the Manufacture of Portland Cement	14
2.3.2	Aggregates	16
2.3.3	Water	17
2.4	Good Concrete and Concrete Margin	18
2.5	Characteristics of Concrete	29
2.6	Process of Concrete Production	23
2.6.1	Storage of Materials	24
2.6.2	Mix Proportioning of Concrete	24
2.6.2.	1 Standardized Prescribed Concrete	26

2.6.2.2 Prescribed Mix	27
2.6.2.3 Proprietary Concrete	27
2.6.2.4 Designed Concrete	27
2.6.2.5 Designated Concrete	28
2.6.3 Batching of Concrete	30
2.6.3.1 Volume Batching	30
2.6.3.2 Batching By Weight	31
2.6.4 Mixing of Concrete	32
2.6.4.1 Hand Mixing	32
2.6.4.2 Machine Mixing	33
2.6.4.3 Concrete Mixing Time	34
2.6.4.4 Effect of Prolonged Mixing Of Concrete	35
2.6.5 Compaction of Fresh Concrete	35
2.6.5.1 Immersion Vibrators or Poker Vibrator	37
2.6.5.2 Surface Vibrators	39
2.6.5.3 External or Form Vibrators:	40
2.6.5.4 Standard Vibration Time of In-Situ Concrete	40
2.6.6 Curing of Concrete	41
2.6.6.1 Methods of Curing Concrete	42
1. Formwork Retention	44
2. Introducing Impermeable Coverings	44
3. Application of Absorptive Coverings	45
4. Addition of Water to the Concrete	45
5. The Use of Curing Membranes	46
2.6.6.2 The Effect of Curing On Strength of Concrete	47
2.6.6.3 Some International Specifications for Curing	48
2.6.6.4 Effects of Inadequate or No Curing On Concrete	48
2.7 Properties of Fresh Concrete	49
2.7.1 Workability of Concrete	50
2.7.2 Measurement of Workability Of Concrete	51
2.7.3 Factors Affecting Workability	51
2.7.3.1 Water Content	51

2.7.3.2 Cement Content in Concrete	51
2.7.3.3 Aggregate Characteristics	52
2.7.3.4 The Particle Size of Coarse Aggregates	52
2.7.3.5 Aggregate/Cement Ratio	53
2.7.3.6 Fine Aggregate/Coarse Aggregate Ratio	53
2.7.3.7 The Shape and Texture of Aggregate Particles	53
2.7.3.8 The Use of Admixtures	53
2.7.3.9 Temperature and Time	54
2.8 Compressive Strength Test of Concrete	54
2.9 Concrete and the Nigerian Society	56
2.10 Summary and Gaps in Literature	59

CHAPTER THREE: THE	ORETICAL	AND	CONCEP	TUAL
---------------------------	----------	-----	--------	------

FI	RAMEWORK	61
3.1 Int	roduction	61
3.2 Th	eoretical Framework for Material Research	61
3.3 Th	e Concept of Quality in Concrete	63
3.4 Th	e Concept of Quality Control According to the Advanced Concrete	
	Technology Services (ACTS)	64
3.5 Co	nceptual Framework for This Research	67
CHAI	PTER FOUR: RESEARCH METHODS	69
4.1	Introduction	69
4.2	Sampling Technique, Sample Collection and Preliminary Analysis	
	of Samples	69
4.2.1	Sampling Method	69
4.2.2	Assessment of Site Concrete Practices and Sample Collection	70
4.2.3	Preliminary Laboratory Analysis of Samples	71
4.3	Instrumentation	71
4.4	Experimental Design	71
4.4.1	Field Study	71
4.4.2	Laboratory Studies	72

4.5	Experimental Procedures	73
4.5.1	Field Samples	73
4.5.1	Production of Laboratory Concrete Specimens	74
4.5.2	Workability Tests.	74
4.5.3	Casting and Curing of Test Specimens	74
4.5.4	Compressive Strength Test	74
4.6	Prediction of Concrete Compressive Strength	75
CHA	PTER FIVE: DATA ANALYSIS AND DISCUSSION OF RESULTS	76
5.1 In	troduction	76
5.2 Co	oncrete Production Practices on Some Selected Sites in	
La	agos and Ota.	77
5.2.1	Storage of Materials	77
5.2.2	Mix Proportioning of Concrete	78
5.2.3	Batching Of Concrete	79
5.2.4	Mixing Of Concrete	80
5.2.5	Compaction of Concrete	81
5.2.6	Curing Of Concrete	83
5.2.7	Testing For the Compressive Strength of Concrete	85
5.3	Strength Deviations of Concrete Produced on Selected Sites	88
5.3.1	Sites Visited and Locations	89
5.3.2	Mean Compressive Strengths and Standard Deviation of Concrete	89
Sa	mples Obtained From Sites within the Study Area	90
5.3.3	Target Mean Strength and Concrete Margin of Sites within the	
St	udy Area	94
5.4 Ef	fects of Mix Proportioning, Methods of Batching, Mixing,	
Co	ompaction, And Curing On the Concrete Compressive Strength	97
5.4.1	Statistical Analysis on the Main Effects of the Respective	
М	ethods on Compressive Strength of Concrete	98
5.4.2	Statistical Analysis on the Combined Effects of the Respective	
М	ethods on Compressive Strength of Concrete	101
5.5 Id	entifying the Most Appropriate Production Methods and Materials	

Combinations for Acceptable Strength Performance	105
5.5.1 Acceptable Strength Performance for Mix $1:1^{1/2}:3$	105
5.5.2 Acceptable Strength Performance for Mix 1:2:4	107
5.5.3 Acceptable Strength Performance for Mix 1:3:6	108
5.6 Model for Prediction of Concrete Compressive Strength Using the	
Different Production Methods as Predictors	110
5.6.1 Results of the Predictive Analysis Using GMDH Software Package	110
5.6.2 Results of the Predictive Analysis from SPSS Using Regression	116
CHAPTER SIX: SUMMARY, CONCLUSION, AND	
RECOMMENDATIONS	120
6.1 Summary of Findings	120
6.1.1 Concrete Production Practices on Some Selected	
Sites in Lagos and Ota.	120
6.1.2 Strength Deviations of Concrete Produced On Selected Site	122
6.1.3 Effects of Mix Proportioning, Methods of Batching, Mixing,	
Compaction, And Curing on the Concrete Compressive Strength	123
6.1.4 Identifying the Most Appropriate Production Methods and	
Materials Combinations for Acceptable Strength Performance	123
6.1.5 Model for Prediction of Concrete Compressive Strength	
Using the Different Production Methods as Predictors	124
6.2 Conclusions	126
6.3 Recommendations	127
6.4 Areas for Further Research	128
6.5 Contribution to Knowledge	129
References	130
Appendix A	140
Appendix B	142
Appendix C	144
Appendix D	146
Appendix E	149
Appendix F	152
Appendix G	154

LIST OF TABLES

Table	Page
2.1 Classification of Concrete in Accordance With Unit Weight	12
2.2 Concrete Classified in Accordance with Compressive Strength	13
2.3 Major Compounds of Ordinary Portland Cement	14
2.4 Compressive Strength Classes for Normal and Heavy Weight Concrete	25
2.5 The Different Designations of Concretes Given in BS 8500-1:2002	28
2.6 Recommended Concrete Mixing Time	35
2.7 Some International Specifications for Curing	48
2.8 Recommended Slump for Various Types of Works	50
3.1 Sources of Concrete Strength Variation	62
4.1 Experimental Design for the Different Simulations of Variable	
Combinations to Be Carried Out in the Laboratory	73
5.1: Storage practices observed on sites	76
5.2 Mix proportioning observed on sites	78
5.3 Batching of concrete observed on sites	80
5.4 Mixing of concrete observed on sites	81
5.5 Compaction of concrete observed on sites	83
5.6 Curing of concrete observed on sites	83
5.7 Testing for compressive strength of concrete observed on sites	85
5.8 Location of sites visited and the distribution of sites by location	89
5.9 Compressive Strength (N/mm ²) Of Concrete Produced at	
Different Building Sites in the Study Area	92
5.10 Standard Parameter for Assessing Quality Control of Concrete	
for fcu \leq 35 N/mm ²	93
5.11 Characteristics of Concrete Produced at 15 Building Sites in	
the study area	95
5.12 Analysis of Variance results for the independent effects	
of methods of Batching, Curing, Mixing, and Compaction	
and Mix ratio on the compressive strength of concrete.	98
5.13 Estimates means of the main effects of Curing methods on	
the compressive strength of concrete	98

5.14 Estimates means of the main effects of Mix ratio on the	
compressive strength of concrete	98
5.15 Estimates of means of the main effects of Compaction methods	
on the compressive strength of concrete	99
5.16 Estimates of means of the main effects of mixing methods on the	
compressive strength of concrete	99
5.17 Estimates of means of the main effects of Batching methods	
on the compressive strength of concrete	99
5.18 Summary of the Model	116
5.19 Analysis of Variance Result on the Combined Effect of the	
Predictors on the Compressive Strength of Concrete	116
5.20 Regression coefficients for prediction of compressive strength	
of concrete	117

LIST OF FIGURES

Figure	Page
2.1 The Setting of Fresh Cement Paste	15
2.2 Manufacturing Process of Portland cement	16
2.3 Loss of strength through incomplete compaction	36
2.4 Influence of Moist Curing on the Strength of Concrete with a	
Water/Cement Ratio of 0.5	42
2.5 Map of Lagos Metropolis Showing Spatial Distribution of Collapsed	
Buildings	58
3.1 Fundamental Approach of Materials Research 1	61
3.2 Fundamental approach of materials research 2	62
3.3 The Concept of quality in Concrete Production and Management.	63
3.4 The Plan, Do, Check and Act cycle for Ensuring Quality.	64
3.5 The Quality Control Concept that is being implemented by ACTS.	65
3.6 Conceptual Framework for the Study of Concrete Production from Design to	
Production.	68
5.1 Methods of Curing of concrete observed on sites	84
5.2 Number of curing days for different concrete elements	85
5.3 Frequency of Number of concrete samples collected from each batch mixed	86
5.4 Concrete Hydration Period before compressive strength test	87
5.5 Inspectors of the compressive strength test results on	
the sites in the study area.	88
5.6 Comparison between the Target Mean Strength and the Characteristic	96
5.7 Effects of Curing Methods and Mix Ratio on the Compressive	
Strength of Concrete.	102
5.8 Effects of Compaction Methods and Mix Ratio on the Compressive	
Strength of Concrete.	103
5.9 Effects of Mixing Methods and Mix Ratio on the Compressive Strength	
of Concrete.	104
5.10 Effects of Batching Methods and Mix Ratioon the Compressive Strength	
of Concrete.	104
5.11 Comparison between the Mean Compressive Strength	

and the expected Characteristic Strength of mix $1:1^{1/2}:3$ Concrete.	106
5.12 Comparison between the Mean Compressive Strength and the expected	
Characteristic Strength of mix 1:2:4 Concrete.	108
5.13 Comparison between the Mean Compressive Strength and the expected	
Characteristic Strength of mix 1:3:6 Concrete.	109
5.14 Simulation plot result of compressive strength against the specimen	
numbers showing the actual data, model fit and predicted values.	111
5.15 Accuracy measures of the model created with GMDH	112
5.16 Scatter plot of the residuals as obtained with GMDH software package	114
5.17 Histogram showing the occurrences of the residual values	115
5.18 Normal P-P Plot of Regression Standardized Residual for	
dependent variable of Concrete Strength	119

ABSTRACT

Concrete is the most common construction material in the world today. It is used as a material in structural elements of most buildings of the world and most building failures including collapse are associated with failure of concrete either as produced or as assembled. The variations in strength of concrete is as a result of several factors that could be the varying quality of materials, the variation in the mix proportion and the varying production processes that include batching, mixing, compaction, and curing. This study was aimed at appraising the characteristic strength of concrete from some selected construction sites in Lagos Metropolis and Ota with a view to ascertaining its conformance with specified standards and also to assess the concrete production practices employed on these sites. The research sought to know if the applied concrete margins were adequate for the concrete practices in Nigeria or if they need to be modified for design strength. This was accomplished through assessment of concrete production practices on some selected sites, identifying the possible strength deviations of concrete produced on site in relation to the expected design strength. The study also evaluated the effects of mix proportioning, methods of batching, mixing, compaction, and curing on the concrete compressive strength, identified the most appropriate production methods and materials combinations that can be employed for acceptable strength performance in structural concreting work. A model was developed to predict the compressive strength of concrete made with different combinations of mix proportioning, batching, mixing, and compaction investigated. A total of 15 sites were visited with 300 concrete cube samples collected. Compressive strength test was performed on the collected samples. Using three mix ratios of 1:2:4, 1:3:6, $1:1^{1}/_{2}:3$, 288 concrete cube specimen were produced simulating the different site conditions under a controlled environment in order to determine the effects of batching, mixing and compaction, and curing on the final compressive strength of the concrete specimen. The results showed that there was variation between the compressive strength obtained from the respective site and the design strength. It was observed that the production methods of mix ratio, batching, mixing, compaction, and curing had a significant effect on the compressive strength and the interaction of all the different production processes had a combined effect on the compressive strength. The result showed that though some of the sites appeared to have attained the specified strength, the expected margin was not attained. It was recommended that the mix ratio, the methods of batching, mixing, compacting, and curing the concrete should be specified by the engineer. Batching by volume, which is common practice on Nigerian construction sites, should be replaced with absolute volume which will consume less materials and produce proportions of aggregates that are close to proportions measured out by weight batching.

Keywords:

Characteristic strength, batching, mixing, compaction, curing, site practices