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a r t i c l e i n f o

Article history:
Received 9 March 2020
Received in revised form 30 April 2020
Accepted 16 May 2020

Keywords:
Supplementary cementitious materials
Recycling
Waste management, geopolymer concrete
Mix design proportions
Sodium silicate
Sodium hydroxide
Compressive strength
a b s t r a c t

The method of determining the quantities of geopolymer concrete (GPC) ingredients to attain the
required and specifiable characteristics is complex owing to the involvement of more variables compared
with Portland cement concrete (PCC) systems. Therefore, this study evaluated the hydraulic responses
and chemical resistance of GPC produced with supplementary cementitious materials (SCMs), ground
granulated blast furnace slag (GGBFS) and corn cob ash (CCA) at ambient curing conditions. Corn cob
was dehydroxylated at 600 �C and used as a partial replacement for GGBFS at 0, 20, 40, 60, 80, and
100%. The activators used were 12, 14 and 16 M concentration (M) of both sodium silicate (SS) and
sodium hydroxide (SH). The chemical compositions of individual and mixed binders were analyzed, while
the chemical moduli of each and blended binder were examined and evaluated based on the significant
reactive oxides, hence resulting in the evaluation of reactivity indexes (RIs). Moreover, the compressive
strength was predicted based on the RIs and mix design proportions (MDPs) of the blended concrete,
while the durability properties of each concrete sample were investigated. The results indicated that
the oxide compositions of GGBFS and CCA influenced the compressive strength of GPC produced.
Compared with the experimental results, the predictive compressive strengths based on the RIs and
the MDPs yielded a high precision with 95% ‘‘R2”. Furthermore, the incorporation of both GGBFS and
CCA increased the durability of GPC produced against sulfate attacks. Ultimately, the model equations
developed by this study can be beneficial in the refinement of mix designs of both GPC and conventional
concrete incorporating SCMs provided the oxide compositions of the elements are obtained.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Portland cement (PC) is the most commonly used binder in the
production of Portland cement concrete (PCC). However, the pro-
duction of Portland cement, apart from its negative impact on
the environment, requires a massive industrial process [1,2]. More-
over, the global production of PC is responsible for both annual
energy needs and yearly carbon dioxide (CO2) emissions of up to
3 and 9%, respectively [3–5]. The yearly utilization of PCC in the
construction industry is estimated to be 20 billion tons globally
[6]. Furthermore, the need for the construction of infrastructures
in fast-growing cities could emit 226 gigatonnes of CO2 by 2050
in the developing nations [6]. Following this trend, the carbon bud-
get of 800 gigatonnes of total CO2 emissions targeted by the Paris
Climate Agreement after 2017 would be challenging to achieve.

The growing awareness of the environmental impact associated
with the production of the PC cannot be over-emphasized. The
urgent need to reduce the emissions of CO2 in the construction sec-
tor has been a top priority for a significant number of studies via
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the reduction in the utilization of PC or the investigation on fully or
partially replaceable options for PC [7–9]. The commonly investi-
gated method for reducing the use of PC is by the partial or full
substitution of PC with SCMs. The SCMs are majorly industrial
wastes, fly ash, coal ash, volcanic ash (VA), silica fume (SF), meta-
kaolin (MK), and GGBFS; and agricultural residues, rice husk ash
(RHA), corncob ash (CCA), cashew nutshell ash (CNSA), palm oil
fuel ash (POFA), and bagasse ash (BA) [10–14]. Therefore, the prac-
tical and economical ways of improving concrete’s suitability and,
at the same time utilizing agro-industrial wastes is by the full or
partial replacement of PC with SCMs [10]. The partial or fully incor-
poration of SCMs in the production of green concrete, apart from
limiting the environmental impact of PCC, has been reported to
improve the workability [15,16], mechanical [17–21], durability
[22–25] and economical [26–28] properties of concrete. Moreover,
the use of SCMs does not only reduce the initial CO2 emissions of
PC production but also reduce the volume of PCC needed in the
construction industry and extend the service life of a building,
which is typically based on the criteria of durability [29]. In 2016
and 2017 alone, the global production of corn was 969.69 and
1071.51 million metric tons, respectively [17]. However, most of
the corncobs produced are disposed as waste, hence culminating
in environmental pollution; this justified the recycling of CCA for
GPC production.

The activity of any SCM can be evaluated using the concept of
reactivity indexes (RIs) after the establishment of the oxide compo-
sitions [10,30–36]. Furthermore, the reactivity of any SCM is influ-
enced by its oxide composition, mineralogical composition,
fineness, and specific surface area [10,36–40]. Besides, type, miner-
alogical, and chemical compositions of aggregates influence the
performance and reactivity of concrete [36,41,42]. However, a sin-
gle oxide cannot be used to quantify the reactivity of SCM. Hence
reactivity modulus (RM), hydraulic modulus (HM), and lime mod-
ulus (LM) are majorly applied to quantify the hydraulic or self-
cementitious properties. In contrast, both silica modulus (SM)
and alumina modulus (AM) are commonly used to determine poz-
zolanic properties [7,10,30–35].

Portland cement exhibits hydraulic reactions and possesses four
significant phases such as alite (Ca3SiO5) and belite (Ca3SiO4),
which give main strength and strong hydraulic results; aluminate
(Ca3Al2O6) and ferrite (Ca4Al2Fe2O10) offer minor strength and
weakly hydraulic reactions [35,36]. In the same vein, GGBFS pos-
sesses a similar mineralogical composition to PC; it majorly com-
prises calcium oxide (CaO), silicon oxide (SiO2), aluminium oxide
(Al2O3), and iron oxide (Fe2O3), which give its hydraulic or selfce-
mentitious properties [30,33]. As a result of high contents of mag-
nesium oxide (MgO) and aluminium oxide (Al2O3), the major
phases in slag materials are belite (Ca3SiO4), which gives main
strength and strong hydraulic reactions; gehlenite (Ca2Al[AlSi]
O7), which shows crystalline phases and gives low hydraulic prop-
erties, and generally inerts to water; akermanite (Ca2Mg[Si2O7])
and merwinite (Ca3Mg[SiO4]2) offer adsorption-active phases
[30,33]. Besides, inorganic ashes such as RHA, CCA, and CNSA sig-
nificantly contain lower content of CaO than either PC or GGBFS;
this, in general, limits the hydraulic or selfcementitious properties
of inorganic ashes [31,32]. The high contents of both SiO2 and
Al2O3 in some inorganic ashes show their potential in supporting
the pozzolanic reactivity [31,32]. Moreover, the significant phases
in inorganic ashes are mullite (Al6Si2O13), which inerts to water
and exhibits no hydraulic properties but only pozzolanic reactivity;
and quartz (SiO2), which provides the physical structure to resist
chemical attacks and withstand exposure to extreme thermal con-
ditions [31,32].

Demoulian et al. [43] reviewed and examined various indexes
which exhibited the best prediction with compressive strength. The
study revealed (CaO + MgO + Al2O3)/SiO2˃ 1 and CaO/SiO 2 � 1.4
as the best indexes. Behim et al. [33] investigated the reactivity
of GGBFS using the chemical indexes, caustic soda test (CST), and
slag activity index. It was discovered that the degree of reactivity
of GGBGS strongly depends on its degree of fineness; the slag
activity index increases with increasing fineness, hence recom-
mending slag fineness of more than 350 cm2/kg. Besides, CaO,
SiO2, Al2O3, Fe2O3, MgO, and SO3 can be used to evaluate the chem-
ical moduli of GGBFS. Also, unlike CST, slag activity index gave sat-
isfactory values. In another study, Donatello et al. [44] compared
strength activity index (SAI), frattini test (FT), and saturated lime
test (SLT), to access the pozzolanic activity of silica fume (SF),
metakaolin (MK), incinerated sewage sludge ash (ISSA), coal fly
ash (CFA), and silica sand. The results showed ISSA and SF as the
most reactive pozzolans after 1 day of SLT. However, MK, CFA,
SF, and ISSA exhibited highly pozzolanic results after 7 days of
SLT. Also, a strong correlation occurred between the SAI and FT
results (R2 = 86%), while SLT and SAI showed no correlation. More-
over, Xie and Visintin [10] developed a unified approach for mod-
elling the mechanical strengths of concrete incorporating SCMs
based on the mix design parameters and reactivity indexes. It
was discovered that the reactivity indexes could be evaluated
using the principal oxides, CaO, SiO2, Al2O3, Fe2O3, MgO, and SO3.
These principal oxides guide the self-cementitious and pozzolanic
reactions in the blended SCMs. It was also found that the water
binding material ratio and the reactivity of SCMs significantly
influenced the mechanical properties of the concrete mix. Oyebisi
et al. [25] investigated the performance of cashew nutshell ash as a
SCM in the production of concrete and modelled the compressive
strength based on the reactivity indexes and mix design parame-
ters of the blended concrete mix. It was found that the model of
compressive strength following the RIs and mix design parameters
of the mixed concrete, showed a significant relationship. Also, con-
crete mixed with CNSA resisted more sulfate attack than that of
PCC.

Many standards have established the procedures of assessing
the chemical indexes and hydraulic efficiency index of GGBFS
[45,46], and the pozzolanic activity of pulverized fly ash or natural
pozzolan [47–52]. ASTM C 989 [46] classifies GGBFS into three
grades based on the mortar strength of slag activity index: Grades
80, 100, and 120. The slag activity index for grade 80 using 50%
cement replacement by the mass of the binding materials must
be 80% strength minimum of the reference-cement mortar at
28 days. Also, grade 100 must exhibit a slag activity index of more
than 70 and 90% at 7 days and 28 days, respectively. The slag activ-
ity index for grade 120 must give a minimum of 90 and 110%
strengths of the reference-cement mortar at 7 days and 28 days,
respectively. Moreover, based on the caustic soda test in assessing
the hydraulic activity of slag, ASTM C 1073–18 [53] recommends
the compressive strengths ranging from 7 to 8 MPa and 12–
15 MPa after 6 h and 8 h of hardening, respectively. On the other
hand, BS 3892–1 [47] specifies a SAI greater than 0.80 as a positive
pozzolanic activity for fly ash or natural pozzolan for 30% cement
replacement after 7 and 28 days; in contrast, ASTM C 618 [52] rec-
ommends a SAI greater than 0.75 for 20% cement replacement
after 7 and 28 days. However, the combination of GGBFS and
CCA to GPC is a new development, as no study has been carried
out to examine the sulfate attacks and the effects of activity
indexes on the compressive strengths of slag-based GPC incorpo-
rating CCA.

This study aims to evaluate the oxide compositions of each
binding material using the x-ray fluorescence analyzer (XRF); this
guides in assessing the RIs of GGBFS-CCA based GPC using the RIs’
concept. The durability of GGBFS-CCA based GPC was also investi-
gated using the chemical attack systems. Finally, model equations
were developed to predict the compressive strength of GGBFS-CCA
based GPC following the RIs and MDPs.



Fig. 2. The cumulative particle size distribution of binding materials used.

Fig. 3. The particle size distribution of aggregates used.
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2. Materials and methods

2.1. Materials

The locally sourced materials, GGBFS and CCA, as shown in
Fig. 1, were used as SCMs for the production of GPC, while Portland
limestone cement (PLC) was used as a binder for the production of
PCC, and compared with GPC. Slag was ground to obtain GGBFS.
Corncob was dehydroxylated at 600 �C for 3 h to obtain CCA. The
SCMs were then sieved with BS 90 lm to obtain a similar fineness
with PLC. The pH of the binding materials was measured following
the procedure specified by BS 7755 [50]. GGBFS, CCA, and PLC
showed a pH value of 9.83, 5.92, and 9.21, respectively. The specific
gravity (SG) of the binding materials was determined following the
requirements stated by BS EN 196-3 [54]. The results indicated
2.90, 2.44, and 3.15 g/cm3 for GGBFS, CCA, and PLC, respectively.
Owing to these results, GGBFS met the SG limit of 2.90–3.15
g/cm3 specified by BS EN 15167-1 [45], while that of CCA con-
firmed the similar results obtained by Oyebisi et al. [11,21]. More-
over, the fineness of binding materials was determined using the
dry sieving method, and BS sieve 90 lm as stipulated by BS EN
196-3 [54]. The results showed 7.6, 8.0, and 7.5% for GGBFS, CCA,
and PLC, respectively, hence satisfying the 12% maximum fineness
specification stated by BS EN 196-3 [54]. Therefore, the materials
are suitable for use as binder and SCMs in concrete production.
Furthermore, Laser diffraction, Model Beckman Coulter LS100,
was used to analyze the particle size distribution of the binding
materials, as shown in Fig. 2 over the range size of 0.5–900 mm.
The results revealed a mean particle size of 20.68, 23.45, and
18.79 mm for GGBFS, CCA, and PLC, respectively. Besides, the speci-
fic surface area was carried out on the binding materials following
the procedure stated by BS EN 196-3 [54] using the Blaine method
at a standard porosity of 0.500. The results indicated 420, 625, and
375 m2/kg for GGBFS, CCA, and PLC, respectively.

The alkaline solutions, SH pellets with 99% purity, and SS gel,
which comprises Na2O, SiO2, and H2O of 9.4, 30.1, and 60.5%
respectively, with SiO2/Na2O weight ratio of 3.20 and S.G. of
1.40 g/cm3 at 20 �C, were locally sourced and used as activators.
A 354, 400, and 443 g of SH pellets were measured and dissolved
in 646, 600, and 557 g of clean water conforming to BS EN 1008
[55] for the preparation of 12, 14, and 16 M activators, respectively
[56]. Before casting, the solutions were prepared 24 h earlier to
reduce the high rise in temperature owing to the reaction between
SH pellets and water. For better performance, the SH solution was
added to SS gel after 2 h using a SS/SH ratio of 2.5:1 [11,57–59].

The locally sourced aggregates (granites) were used and pre-
pared at saturated dry surface conditions before the mix design.
Grading was also conducted on the aggregates to obtain the
needed particle size distribution (PSD). Moreover, the aggregates
were characterized in line with the BS EN 12,620 [60]. The specific
Fig. 1. Binding materials used
gravity (SG) and water absorption (WA) of aggregates were deter-
mined following the procedure stated in BS EN 12,620 [60]. The
results showed the SG of 2.60 and 2.64 g/cm3; and WA of 0.7 and
0.8% for both fine aggregate (FA) and coarse aggregate (CA), respec-
tively. Besides, the moisture content (MC) was determined in con-
sonance with BS EN 12,620 [60]. The results indicated the MC of 0.3
and 0.2% for both FA and CA, respectively. Fig. 3 shows the PSD of
both FA and CA used; the aggregates satisfied the limits of BS EN
12,620 [60]. On the other hand, the mineralogical composition of
the coarse aggregate (granite) was identified with the aid of the
Petrological Microscope, Model RPI-3T. The sample was prepared,
polished in a glass ground plate using a carborundum, and
mounted on a clean glass slide with adhesive [41]. Also, the chem-
ical composition was analyzed using the XRF spectrometer
(a) PLC (b) GGBFS (c) CCA.



4 S. Oyebisi et al. / Construction and Building Materials 258 (2020) 119604
machine, Philips PW-1800. The results of mineralogical composi-
tion showed quartz, feldspar, mica, and iron oxide of 62.50,
20.45, 16.55, and 0.50%, respectively. Moreover, the chemical com-
position revealed SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O, Na2O,
P2O5, MnO, and LOI as 67.05, 14.40, 5.63, 3.90, 1.72, 0.02, 5.50,
1.16, 0.15, 0.05, and 0.52%, respectively. From these results, it is
inferred that the coarse aggregate is acidic granite because the con-
tent of SiO2 was in the range of 66–75% [41]. Besides, based on
alkalinity, the granite was classified as calcalkalinity in that (Na2-
O + K2O)2/(SiO2 – 43) was 1.85; this ranged between 1.2 and 3.5
for calcalkalinity [42]. XRF analysis was not performed on the FA
because it comprises SiO2 content, almost in its entirety [41,44].

2.2. Pozzolanic activity test methods

2.2.1. Strength activity index (SAI)
The SAI of CCA was determined in line with the BS 3892-1 [47].

The chemical composition of a pozzolanic material is important for
its evaluation as a potential SCM. However, the most significance is
its pozzolanic reactivity, because some pozzolanic materials or nat-
ural pozzolans may fail to exhibit this activity [34]. The SAI is com-
monly used to evaluate the pozzolanic characteristics of material:
the reaction of pozzolan with lime, hence forming cementitious
product [34]. Therefore, the SAI was determined for both 7 days
and 28 days compressive strengths (CS) on the average of three
samples using the relationship, as illustrated in Eq. (1) [47]. The
cement-reference mortar cubes showed the CS of 40.64 and
50.43 MPa at 7 and 28 days, respectively. Following the formula,
as illustrated in Eq. (1), the test pozzolan (CCA) exhibited a SAI of
0.85 and 0.91 at 7 and 28 days, respectively, thus showing consid-
erable pozzolanic activity because SAI is greater than 0.80 recom-
mended by BS 3892-1[47].

SAI;% ¼ P
C
� 100 ð1Þ

where P is the average CS of pozzolan-reference cement mortar
cubes (MPa)

C is the average CS of reference-cement mortar cubes (MPa).

2.2.2. Frattini test (FT)
The FT was carried out following the procedure stated in BS EN

195-5 [48]. FT is a commonly used direct and chemical titration,
which determines the dissolved Ca2+ and OH– concentrations in a
solution containing PC and the test pozzolan. However, every poz-
zolanic material with a strong acidic character does not show poz-
zolanic activity [34], and thus the evaluation of pozzolanic activity
of a given material is a prerequisite for its use in cement and con-
crete production. Therefore, the theoretical maximum concentra-
tion (TMC) of [CaO] was determined using the relationship, as
illustrated in Eq. (2) [48]. The sample, calcium concentration
[CaO], was compared with the TMC [CaO] and the result was deter-
mined as the difference between the two values, hence expressing
as a percentage of TMC removed, as shown in Table 1. Both SAI and
FT were selected because they have been standardized, and widely
used to determine the pozzolanic response of fly ash and metakao-
lin [44,47–49]. From Table 1, the results indicated that the poz-
zolanic activity of CCA is active with 51% lime removal.

TMC CaO½ � ¼ 350
OH½ � � 15

ð2Þ
Table 1
Eight days FT results for two test materials determined using Eq. (2).

Sample [OH] mmol l�1 [CaO] mmol l�1

Control 56.83 8.25
CCA 39.72 4.63
2.3. Hydraulic activity test (HAT) methods

2.3.1. Slag activity index
The method was carried out following the procedure in ASTM C

989 [46] for the GGBFS. The procedure is similar to that of SAI sta-
ted in BS 3892–1 [47] except for 50% cement replacement, C3A con-
tent ranging from 6 to 10%, and a maximum of 3% SO3 content
specified by the standards for the reference cement [45,46]. There-
fore, from the XRF results, PLC exhibits 2.03% SO3 content, hence
satisfying the maximum requirement of 3%. Besides, C3A was
quantified based on Bogue’s equation, as shown in Eq. (3) [36].
Based on the XRF result and in line with Eq. (3), the result exhibited
10% C3A, thus fulfilling the maximum specification of 10%. Finally,
the slag activity index was determined following the relationship,
as illustrated in Eq. (1).

C3A ¼ 2:65 Al2O3ð Þ � 1:69 Fe2O3ð Þ ð3Þ
The CS of GGBFS-reference cement mortar cubes to the cement-

reference mortar cubes with the mean particle size (dv50 = 20.68
mm) showed the slag activity index of 76.42 and 98.53% at 7 and
28 days, respectively, hence classifying as grade 100 because the
activity index is more than 70 and 90% at 7 and 28 days, respec-
tively [46].
2.3.2. Caustic soda test (CST)
This method was carried out by the procedure outlined in ASTM

C 1073-18 [53] by mixing 200 g NaOH solution with 800 g distilled
water, thus forming a litre of diluted solution. The diluted solution-
to-GGBFS ratio was fixed at 0.5 and used to prepare
40 mm � 40 mm � 160 mm prismatic samples. After 6 and 24 h,
all samples were demoulded and tested for CS. The results, average
of three test samples, indicated 7.63 and 14.52 MPa at 6 and 8 h,
respectively, hence satisfying the specifications of 7–8 MPa and
12–15 MPa after 6 and 8 h, respectively, recommended by ASTM
C 1073–18 [53]. The slag activity index and CST were adopted
because they have been standardized and offered satisfactory
results [33,43,45,46].
2.4. Materials characterization

The oxide compositions of binding materials, CCA, GGBFS, and
PLC, were analyzed using the XRF spectrophotometer machine,
Philips PW-1800. The results are shown in Fig. 4. The results reveal
that CCA satisfied the chemical pozzolanic requirements stipulated
by BS EN 450-1 [61] and BS EN 8615-2 [62] such that the addition
of SiO2, Al2O3, and Fe2O3 met 70% minimum requirement. The con-
tent of CaO within the range of 10–20% established by Al-Akhras
[63] was also met. Owing to these results, it can be deduced that
the CCA could exhibit a pozzolanic reaction and used as the SCM
in the production of blended GPC. On the other hand, GGBFS met
the BS EN 15167-1 [45]’s limit requirements of 32–40% for both sil-
ica (SiO2) and lime (CaO) contents. The chemical moduli of
(CaO + MgO/SiO2) � 1, (CaO/SiO2) � 1.4, and SiO2 + CaO + MgO
� 67% stipulated by BS EN 15167–1 [45] were also met. Also, the
oxide compositions obtained herein for GGBFS show similar com-
positions with the previous studies [15,16,57,58]. Therefore, an
inference is made that GGBFS utilized in this study could exhibit
both pozzolanic and self-cementitious reactivity, hence suitable
TMC [CaO] mmol l�1 [CaO] reduction (%)

8.37 0.70
14.16 50.72



Fig. 4. Chemical compositions of binding materials used.

S. Oyebisi et al. / Construction and Building Materials 258 (2020) 119604 5
for use. In the same vein, the PLC fulfilled the chemical require-
ments specified by BS EN 196-2 [64].

The microstructural behaviour of the binding materials, GGBFS,
CCA, and PLC, was examined using the SEM machine, JEOL
7000600, to establish the characteristics that influenced the RIs
of each binder. The SEM analysis was performed on a flat (general)
scan. For the analysis, the accelerated voltage was constant at
15 kV, while images were observed at 4000x magnification in a
high vacuum. The SEM micrographs, as shown in Fig. 5, reveal that
the internal structure of PLC, to a limited extent, was wrinkled, and
the particles were angular in shape with sharp needles. However,
the GGBFS particles revealed an amorphous structure. Moreover,
the internal structure of CCA showed that the particles were crys-
talline and spherical. Therefore, it is inferred that the particle
shapes of these binding materials influenced the reactivity of each
and blended binder produced [29,30].

2.5. Mix design quantities

The mix quantities were designed following the procedures sta-
ted by BS EN 206 [65]. The percentage replacement of GGBFS by
Fig. 5. SEM micrographs on binding ma
CCA was selected based on the applicable studies [16,19] to exam-
ine the replacement levels, which would meet the target strengths
for both structural and non-load bearing applications. Owing to
this, GGBFS was replaced with CCA at 0, 20, 40, 60, 80, and 100%
for the production of GPC and was respectively indicated as N1,
N2, N3, N4, N5, and N6, while the PCC (100% PLC) was indicated
as N0. The mix was designed to attain target strengths 30 MPa
and 40 MPa for grades M 30 and M 40 concrete, respectively.
Besides, the broad and wider use of M 30 and M 40 in construction
sector informed the selection of these concrete grades as mix
design proportions. The mix design quantities for both M 30 and
M 40 are shown in Tables 2 and 3, respectively.

2.6. Mix preparation, casting and curing

The dry constituents were prepared following the procedures
stated by BS 1881-125 [66] and BS EN 12390-2 [67]. The fresh con-
crete was poured into a standard cubical mould of 150 mm, ran-
domly compacted each in three layers, cured under 25 �C and
65% RH, and tested at 7, 28, 56, and 90 days.

2.7. Experimental tests and analysis

2.7.1. Mechanical test
The compressive strength (fc) was determined with the aid of an

INSTRON 5000R UTM following the procedures stated by BS EN
12390-4 [68] in a constant force regime under a loading rate of
0.6 MPa per second. For each mix ID, a total of three (3) samples
were crushed, and the average of the three values was obtained
and used for the analysis.

2.7.2. Reactivity indexes (RIs) of binding materials
The RIs of binding materials were evaluated using the principal

reactive oxides such as CaO, SiO2, Al2O3, Fe2O3, MgO, and SO3 fol-
lowing the establishment of their oxide compositions, which
reflect both self-cementitious and pozzolanic reactivity
terials. (a) PLC (b) GGBFS (c) CCA.



Table 2
Mix quantities for M 30 (in Kg/m3).

Mix ID PLC GGBFS CCA FA CA SH SS SS/SH

N0 390 0 0 675 1031 0 0 0
N1 0 390 0 675 1031 60 150 2.5
N2 0 312 78 675 1031 60 150 2.5
N3 0 234 156 675 1031 60 150 2.5
N4 0 156 234 675 1031 60 150 2.5
N5 0 78 312 675 1031 60 150 2.5
N6 0 0 390 675 1031 60 150 2.5

Water to binder (w/b) ratio = 0.54.
Binder to aggregate ratio (b/agg) ratio = 0.23.

Table 3
Mix quantities for M 40 (in Kg/m3).

Mix ID PLC GGBFS CCA FA CA SH SS SS/SH

N0 500 0 0 585 1031 0 0 0
N1 0 500 0 585 1031 60 150 2.5
N2 0 400 100 585 1031 60 150 2.5
N3 0 300 200 585 1031 60 150 2.5
N4 0 200 300 585 1031 60 150 2.5
N5 0 100 400 585 1031 60 150 2.5
N6 0 0 500 585 1031 60 150 2.5

Water to binder (w/b) ratio = 0.42.
Binder to aggregate ratio (b/agg) ratio = 0.31.
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[10,25,31–34,43,45]. The concept which guides the RIs is illus-
trated in Eq. 4–8 as RM, HM, LM, SM, and AM of each and mixed
binders, respectively.

RM ¼ CaOþMgOþ Al2O3

SiO2
ð4Þ

HM ¼ CaO
SiO2 þ Al2O3 þ Fe2O3

ð5Þ
Fig. 7. Principal reactive oxides of each and mixed binder for (a) M 30 and (b) M 40.Fig. 6. Compressive strengths for (a) M 30 and (b) M 40.
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LM ¼ 1:0CaO� 0:7SO3

2:8SiO2 þ 1:1Al2O3 þ 0:7Fe2O3
ð6Þ
SM ¼ SiO2

Al2O3 þ Fe2O3
ð7Þ
AM ¼ Al2O3

Fe2O3
ð8Þ
2.7.3. Prediction of compressive strength (fc) based on RIs, w/b ratio,
and b/agg ratio

Either RM, HM, or LM quantified the self-cementitious proper-
ties of each and mixed binding material while the pozzolanic activ-
ity was quantified by both SM and AM [7,10,24,25,31–35,69,70].
Owing to this, a linear relationship exists in the prediction of fc
and RIs. Thus, the regression was first modelled based on the com-
bination of RM, SM, and AM; HM, SM, and AM; and LM, SM, and AM
using the statistical software. Furthermore, in determining the fc of
blended concrete, the RIs of blended binders were integrated and
normalized with an inverse of water to binder (w/b) ratio; hence,
fc becomes a direct proportion to RIs, but an inverse proportion
to w/b ratio [10,24,25]. In this study, alkaline solutions were pre-
pared and used as activators in the dose of 12–16 M activators.
Therefore, the fit regression relationship between fc and w/b ratio
was first normalized and modelled in the range of 0.54–0.42 w/b
ratio for M 30-M 40 concrete, respectively. Predicting the parame-
ters in Minitab 17, the values of fc was set as a response (dependent
variable), while the values of RIs were selected as continuous pre-
dictors (independent variables).

The binder to aggregate (b/agg) ratio also contributed a vital
role to the evaluation and improvement of the concrete strength
apart from RIs and w/b ratio [10,25,36,71,72]. The fc of blended
binders was significantly improved when RIs, w/b ratio, and
b/agg were all used for the strength correlation [10,25]. It is note-
worthy to state that the volume ratio was used to model the b/agg
ratio against the weight ratio. For each mix, the volume fraction
was determined using its moisture content and specific gravity
to improve the binder-aggregate packing capacity [10]. Following
the incorporation of w/b ratio, the fit regression relationship
between fc and b/agg ratio was modelled in the range of
0.29–0.23b/agg ratio for M 30-M 40 concrete, respectively. Owing
to this, fc was predicted based on the RIs, w/b ratio and b/agg ratio
as illustrated in Eq. 9–11.

fc ¼ bþ a1RMþ a2SMþ a3AM
w=b

� �
b=agg

� �
ð9Þ
fc ¼ bþ a1HMþ a2SMþ a3AM
w=b

� �
b=agg

� �
ð10Þ
fc ¼ bþ a1LMþ a2SMþ a3AM
w=b

� �
b=agg

� �
ð11Þ

where b, a1, a2, a3 are the magnitudes of coefficients.
Fig. 8. RIs of each and mixed binders for. (a) M 30 and (b) M 40.
2.7.4. Durability test
The chemical resistance tests were performed on the selected

concrete samples following the procedures stated in Neville [36],
Singh et al. [73], and BS EN 16523-1 [74] using the solutions of
magnesium sulfate (MgSO4) at 5% concentration for sulfate attacks.
The concrete specimens were tested for both weight and strength
loss after 90 days immersion in MgSO4.
3. Results and discussion

3.1. Compressive strength (CS)

Fig. 6 indicates the CS of the GGBFS-CCA based GPC. The results
revealed that the CS increased with increasing GGBFS content in
the blended mix for both M 30 and M 40 at all levels of alkaline
activators. The reason for the increase in CS cannot be far-
fetched: during the dissolution process, the glassy phase of alumi-
nosilicate gel in GGBFS reacts with alkaline activators, hence
resulting in x-ray amorphous aluminosilicate gel (X-RAAG). The
X-RAAG, according to Chen and Brouwers [17], is responsible for
the cementitious matrix and hydraulic characteristics of the com-
posite mix, which effects higher mechanical strength in the GPC.
However, unlike 12 and 14 M activators, 16 M activator exhibited
the lowest CS; and this factor could be attributed to the fact that
OH– cation, at 16 M activation, has exceeded its saturation point,
consequently, unreacted OH– cation becomes hindrance to
strength gain rather than a benefit [15].

3.2. Principal reactive oxides of blended binders

Fig. 7 shows a decrease in CaO, Al2O3, and MgO contents with
increasing CCA content, while SiO2, Fe2O3, and SO3 contents
increase with increasing CCA content in the blended mix. The rea-
son for the increase could be attributed to the higher specific sur-
face area of CCA compared with GGBFS: this allows CCA to fill more
volume in the mix, hence increasing SiO2, Fe2O3, and SO3 contents,
which are predominantly present in CCA; and decreasing CaO,
Al2O3, and MgO contents, which are much greater in GGBFS, as
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shown in Fig. 4. Besides, the similar findings reported by Akinwumi
and Aidomoje [75] revealed that the reactive oxides, CaO, MgO, and
Al2O3 decrease with the increase in CCA content; in contrast, SiO2,
Fe2O3, and SO3 increase with increasing CCA content for the CCA-
PC blend. Meanwhile, Behim et al. [34] and Demoulian [43] stated
that GGBFS exhibits a similar mineralogical composition to PC, it
majorly possesses oxides of Ca, Si, Al, Mg, and Fe, and this gives
GGBFS its hydraulic and pozzolanic properties. Also, Xia and Vis-
intin [10] and Darquennes [30] opined that slag is said to exhibit
both self-cementitious and pozzolanic properties if the content of
CaO and SiO2 is higher than 30%. From the XRF results of GGBFS,
it is clear that the contents of both CaO and SiO2 are higher than
30%. On the other hand, Taylor [76] and Hewlett [77] reported that
the self-cementitious reaction of slag decreases as the crystalline
content in the blended mix increases. This demonstrates that the
reactivity of GGBFS depends on the increasing content of its amor-
phous structure, and the significant oxides which contribute to the
high phase of an amorphous structure are oxides of Ca, Al, and Mg
[78,79]. Thus, through close examination of microstructures of
binding materials, as shown in Fig. 5, it was evident that the con-
tent of the amorphous structure in GGBFS could gradually
decrease, while the content of the crystalline structure in CCA
might increase when GGBFS is replaced with CCA. Consequently,
as the content of CCA in the blended mix increases, CaO, Al2O3,
and MgO in GGBFS decrease, while SiO2, Fe2O3, and SO3 in CCA
increase; this affirms the findings from relevant studies such that
the reactivity of GGBFS increases with increasing CaO, MgO, and
Al2O3 contents but reduces as the contents of SiO2, Fe2O3, and
SO3 in the blended mix increase [80–83]. However, it was pointed
Fig. 9. Statistical data for RM, AM, SM, w/b ratio, and
out that GGBFS comprises small crystal material and is advanta-
geous to its reactivity [84–86]. Besides, Gruskovanjak et al. [87]
pointed out that the optimum content of the principal reactive oxi-
des of slag is more beneficial to its selfcementitious reactivity than
the content of the amorphous structure. Therefore, it is inferred
that the contents of CaO, Al2O3, MgO, SiO2, Fe2O3, and SO3 influence
the reactive potentials of GGBFS-CCA blended binders.

3.3. Ris of the blended mix

In assessing the RIs of each mixed binder, Eq. 4–5 was used, and
the results are shown in Fig. 8. It was revealed that the RM, HM,
LM, and AM decreased with increasing CCA content, while the
SM increased with increasing CCA content in the blended mix for
both M 30 and M 40. The reason for a decrease in RIs as the CCA
content increase in the mix is associated with the decrease in
hydraulic/self-cementitious properties of GGBFS content as more
CCA is added, because CCA exhibits pozzolanic activity rather than
hydraulic reactivity, which gives material its self-cementitious
characteristics. Besides, it was evident from the results that CaO,
Al2O3, MgO, SiO2, Fe2O3, and SO3 influenced the RIs of the blended
binders. The RM, HM, and LM of the blended binders increased
with increasing CaO, Al2O3, MgO contents, while the SM and AM
of the blended binders increased as the contents of SiO2 and
Al2O3 increased, respectively. In contrast to HM, the RM of the
blended binders met the minimum requirement of 1.0 specified
by BS EN [62]. However, the LM of the blended binders was not sat-
isfied with the minimum range of � 0.66 � 1.02, recommended by
BS EN [61]. This can be attributed to the fact that the ratio of the
b/agg ratio (a) 7 (b) 28 (c) 56 and (d) 90 days.
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lime content to the silica, aluminate, and ferrate contents is low in
GGBFS-CCA blended binders compare with PC binder incorporating
SCMs. Statistically, the RM, HM, LM, and AM of the blended mix
increase from 25 to 78%, 19–77%, 19–77%, and 11–26% as the per-
centage replacement of CCA by GGBFS increases from 20 to 100%
for both M 30 and M 40, respectively. The self-cementitious prop-
erties of blended binders increase with an increase in CaO, Al2O3,
and MgO contents, thus resulting in stronger hydraulic reactions
[33,88]. Owing to these, the decrease in RIs may be attributed to
the reduction in principal reactive oxides, CaO, Al2O3, and MgO
as a result of the increase in CCA content in the blended mix. How-
ever, there was a decrease in SM of the blended mix from 44 to 10%
as the percentage replacement of CCA by GGBFS rose from 20 to
100% for both M 30 and M 40, respectively. Meanwhile, as shown
in Fig. 7, CCA, being a pozzolan, exhibits higher content of silica
(SiO2) compare with that of GGBFS. Therefore, this result confirms
the findings reported by Mathhes et al. [86] that SM increases with
increasing SiO2 content, hence resulting in stronger pozzolanic
properties. On the other hand, the reactivity of GGBFS depends
on its amorphous structure, thus influencing its RIs [85,86]. This
assertion confirms the SEM micrographs, as shown in Fig. 5 (b)
and (c) for GGBFS and CCA, which respectively display amorphous
and crystalline structures.

3.4. Prediction of compressive strength (fc) based on RIs, w/b ratio, and
b/agg ratio
3.4.1. Prediction of fc based on RM, AM, SM, w/b ratio, and b/agg ratio
Following the Eq. (9), the results of the statistical data are pre-

sented in Fig. 9 (a)-(d) for 7, 28, 56, and 90 days, respectively. From
Fig. 10. Statistical data for HM, AM, SM, w/b ratio, an
Fig. 9, it is observed that some data points of SM significantly devi-
ated from the regression line; this may be asserted to the diversity
of chemical compositions of mixed binders, aggregate texture,
shape, and volume, and mix design proportions; this assertion con-
firms the findings reported by Xie and Visintin [10] and Neville
[36] that differences in the oxide composition of blended binders,
aggregate types, and methods of mix design affect the data results,
hence influencing the reactive potentials of blended concrete
incorporating SCMs. Moreover, it was noticed that the compressive
strength of GGBFS-CCA based concrete increases with increasing
RM and AM but decreasing SM; this may be attributed to the
higher contents of CaO and Al2O3 in GGBFS, which increases RM
and AM, thus resulting in a stronger self-cementitious reaction.
However, the higher content of SiO2 in CCA increases its SM, hence
leading to a pozzolanic reaction rather than a hydraulic reaction.
Besides, it confirms the findings of a similar study reported by
Gruskovnjak et al. [82] that the RM and AM increase as the CaO
and Al2O3 contents increase, while SiO2 content reduces, thus
resulting in high reactivity. However, the higher contents of SiO2

and low contents of CaO and Al2O3 result in low reactivity. On
the other hand, a blended mix with high contents of CaO, Al2O3,
andMgO exhibits high self-cementitious properties in the presence
of alkaline activators [80,81,84,86].

The fit regression model was used for the correlation of fc based
on the RIs (RM, AM, and SM), w/b ratio, and b/agg ratio at the glo-
bal trend of 95% confidence interval (CI) and prediction interval
(PI). Thus, the regression equations are illustrated in Eq. 12–15
for 7, 28, 56, and 90 days, respectively. From the regression analy-
sis, the coefficients of determination (R2) are 94.55, 93.63, 93.51,
and 95.43% fit to predict the data at 95% CI and PI for 7, 28, 56,
and 90 days, respectively.
d b/agg ratio (a) 7 (b) 28 (c) 56 and (d) 90 days.
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f C�7days ¼
71:80AM � 13:49SM � 21:70RM

w
b

� �
b

agg

� �

þ 10:45 ð12Þ

f C�28days ¼
56:80AM � 10:68SM � 1:30RM

w
b

� �
b

agg

� �

þ 17:74 ð13Þ

f C�56days ¼
64:90AM � 12:12SM � 5:90RM

w
b

� �
b

agg

� �

þ 18:09 ð14Þ

f C�90days ¼
94:40AM � 16:88SM � 21:10RM

w
b

� �
b

agg

� �

þ 16:65 ð15Þ
3.4.2. Prediction of fc based on HM, AM, SM, w/b ratio, and b/agg ratio
Fig. 10 (a)-(d) indicate the statistical data for HM, AM, SM, w/b

ratio, and b/agg ratio at 7, 28, 56, and 90 days, respectively. It was
noticed that some data points of SM were out of the regression line
due to the difference in oxide compositions of the blended binders,
the volume and chemical compositions of aggregates, and mix pro-
portions. Also, the compressive strength of GGBFS-CCA based con-
crete increased with increasing HM and AM but decreasing SM. The
reason for a higher strength as a result of an increase in HM and
AM cannot be far-fetched: GGBFS exhibits higher content of CaO
and Al2O3, compare with CCA, hence resulting in stronger hydraulic
reaction, but this hydraulic reaction decreases when replaced with
CCA, which predominantly contains a higher content of SiO2. This
supports the findings reported in various studies that the hydraulic
response of slag reduces with increasing silica content 76–79].
Fig. 11. Statistical data for LM, AM, SM, w/b ratio, an
Therefore, it is inferred that the HM of GGBFS-CCA blended binder
increases with higher contents of CaO and Al2O3 and the lower
content of SiO2 in the mix.

The fit regression model was used for the correlation of fc based
on the RIs (HM, AM, and SM), w/b ratio, and b/agg ratio at the 95%
CI and PI, and the regression equations are illustrated in Eq. 16–19
for 7, 28, 56, and 90 days, respectively. From the regression analy-
sis, R2 is 93.06, 93.71, 93.54, and 95.34% fit to predict the data at
95% CI and PI for 7, 28, 56, and 90 days, respectively.

f C�7days ¼
55:20AM � 10:39SM � 20:30HM

w
b

� �
b

agg

� �

þ 10:44 ð16Þ

f C�28days ¼
41:10AM � 8:42SM þ 15:70HM

w
b

� �
b

agg

� �

þ 17:58 ð17Þ

f C�56days ¼
48:30AM � 9:14SM þ 12:00HM

w
b

� �
b

agg

� �

þ 17:92 ð18Þ

f C�90days ¼
63:00AM � 11:15SM þ 2:40HM

w
b

� �
b

agg

� �

þ 16:42 ð19Þ
3.4.3. Prediction of fc based on LM, AM, SM, w/b ratio, and b/agg ratio
The statistical data for LM, AM, SM, w/b ratio, and b/agg ratio

are presented in Fig. 11 (a)-(d) for 7, 28, 56, and 90 days, respec-
tively. It was observed that some data points of SM were out of
the global trend due to the diversity in oxide compositions, the
d b/agg ratio (a) 7 (b) 28 (c) 56 and (d) 90 days.
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volume of aggregates, and mix proportions of the blended binders.
Moreover, the compressive strength of GGBFS-CCA blended con-
crete increases with increasing LM and AM but decreasing SM; this
may be attributed to the fact that GGBFS exhibits higher content of
CaO and Al2O3 compared with CCA, hence resulting in a stronger
reactive component. Still, this reactive component decreases when
replaced with CCA, which majorly contains a higher content of sil-
ica. Therefore, it is inferred that the LM of GGBFS-CCA blended bin-
der increases with higher contents of CaO and Al2O3 and the lower
content of SiO2 in the mix.

The fc, RIs (LM, AM, and SM), w/b ratio, and b/agg ratio was pre-
dicted using the fit regression model at the 95% CI and PI, and the
regression equations are illustrated in Eq. 20–23 for 7, 28, 56, and
90 days, respectively. From the regression analysis, R2 is 94.60,
93.66, 93.51, and 95.35% fit to predict the data at the global trend
for 7, 28, 56, and 90 days, respectively.

f C�7days ¼
58:600AM � 11:24SM � 56:20LM

w
b

� �
b

agg

� �

þ 10:54 ð20Þ

f C�28days ¼
48:10AM � 9:02SM þ 22:20LM

w
b

� �
b

agg

� �
þ 17:61 ð21Þ

f C�56days ¼
51:70AM � 9:67SM þ 15:80LM

w
b

� �
b

agg

� �
þ 17:95 ð22Þ
Fig. 12. Comparison of experimental results with predicted valu
f C�90days ¼
69:40AM � 12:36SM � 15:30LM

w
b

� �
b

agg

� �

þ 16:53 ð23Þ
3.4.4. Comparison of experimental results with predictive values
Figs. 12 and 13 illustrate the statistical comparison and trend

between the compressive strengths of experimental results and
that of predictive models for M 30 and M 40, respectively. It was
observed that both experimental and predictive results exhibited
similar values and patterns of compressive strength. In contrast
to HM, both LM and RM showed the best fit at all levels of curing
time for both M 30 and M 40. These observations confirm the find-
ings reported in similar studies such that LM yields the best fit for
PC blended with cashew nutshell ash (CNSA) [25], while RM yields
the best fit for blended concrete incorporating SCMs [10]. Despite
the similar values and trends, it was observed that LM of the
GGBFS-CCA blended binders was lowered compared with the min-
imum requirements (�0.66 � 1.02) recommended by BS EN 197-1
[89]; HM was less than 1 compared with the minimum require-
ment (˃ 1) specified by BS EN 197-1 [89], but RM satisfied the min-
imum requirement (˃ 1) specified by Behim et al. [33], Demoulian
et al. [43], and BS EN 15167-1 [45]. The variations in LM and HM
may be attributed to the difference in chemical compositions of
blended binders in that BS EN 197-1 [89]’s recommendation was
based on the PC mixed binders such that the ratio of CaO to SiO2

in the blended mix was high compared with GGBFS-CCA blended
binders reported in this study. Therefore, it is inferred that RM
es for M 30 at (a) 7, (b) 28, (c) 56, and (d) 90 days curing.



Fig. 13. Comparison of experimental results with predicted values for M 40 at (a) 7, (b) 28, (c) 56, and (d) 90 days curing.
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yields the best fit for GGBFS-CCA blended binder, and this can be
used in the validation of blended binders incorporating SCMs.
3.4.5. Validation of predictive models
Fig. 14 shows the validation of the predictive model based on

the RIs (RM, AM, and SM), w/b ratio, and b/agg ratio with other
similar predictive models at 28-day curing.

Fig. 14 indicates similar data points and trend lines for both
experimental values and predictive values for both M 30 and M
40. However, both Xie and Visintin [10] and Oyebisi et al. [25]’s
models deviated from both experimental and predictive data
points. For Xie and Visintin [10]’s model, there was 41–70%
decreased in strength as the percentage replacement of GGBFS by
CCA increased from 20 to 100% compared with the predictive mod-
els for both M 30 and M 40. In the same vein, there was an average
of 30 and 75% decreased in strength for Oyebisi et al. [25]’ model as
the percentage replacement of GGBFS by CCA increased from 20 to
100% compared with the predictive models for M 30 and M 40,
respectively. The reason for these differences may be attributed
to the diversity of oxide compositions of blended binders, type
and chemical compositions of aggregates, mix design proportions,
fineness, and specific surface area of the blended binders
[10,36–42]. Besides, comparing the model data of this study such
as GGBFS-CCA blended binder, w/b of 0.54 and 0.42, b/agg volume
of 0.23 and 0.29, and target strengths of 30 MPa and 40 MPa with
other models’, Oyebisi et al. [25]’s model was only based on M 25
target strength of PC-CNSA blended binder with w/b and b/agg
ratios as 0.618 and 0.194, respectively, hence contributing to the
lowest predictive strength in Fig. 14 (b) compared with Fig. 14
(a). On the other hand, Xie and Visintin [10]’s model was based
on the generated data of various SCMs (fly ash, SF, MK, BA, POFA,
RHA, and VA) with ratios of w/b and b/agg volume as 0.25–0.90
and 0.045–0.359, respectively, and target strengths ranging from
0 to 120 MPa.
3.5. Chemical attacks

The presence of solid salts in a solution reacts with the hydrated
cement paste and attacks the concrete. Ordinarily, solid salts do
not attack concrete [36]. Fig. 15 (a) and (b) present the weight loss
for both M 30 and M 40, respectively, while Fig. 16 (a) and (b) pre-
sent the strength loss for both M 30 and M 40, respectively follow-
ing the immersion of concrete samples in 5% MgSO4 solution for
90 days. After 90 days of immersing concrete samples in sulfate
solution, the effect of MgSO4 solution was superior to that of Na2-
SO4 solution [90–92]; this justified the selection of MgSO4 solution
for this study. The weight loss in GPC samples, as shown in Fig. 15
(a) and (b) for both M 30 and M 40, ranged from 3 to 5% and 2–4%,
respectively, compared with 15 and 14.32% weight loss in PCC after
90 days of exposure of concrete cubes in 5% MgSO4 solution. On the
other hand, the strength loss in GPC samples from Fig. 16 (a) and
(b) varied from 7 to 10% and 6–8% against 17.98 and 16% in PCC
samples for both M 30 and M40, respectively. These results con-
firm the findings reported in similar studies in that the weight loss
and strength loss of GPC samples vary from 2 to 4% and 2–10%,
respectively, compared with 10–20% and 15–29% weight loss and
strength loss in PCC samples after 90 days of exposure in 5%
MgSO4, respectively [73,90–94]. However, Wallah and Rangan



Fig. 15. Weight loss of cubes immersed in 5% MgSO4 for (a) M 30 (b) M 40.

Fig. 14. Validation of developed models for (a) M 30 and (b) M 40.
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[92] and Hardjito et al. [93] also reported that a 5% MgSO4 solution
has no significant effect on the compressive strength and weight
loss of GPC after 90 days of exposure. The PCC deterioration may
be attributed to the critical consequence of magnesium sulfate
attack on C-S-H, thus forming expansive gypsum and ettringite
that induce expansion, spalling and cracking in the concrete
[36,73]. In contrast to PCC, GPC, in general, do not have Ca(OH)2
and mono-sulpho-aluminate in the matrix to cause expansion
[36,74]. Therefore, it is inferred that GGBFS-CCA blended GPC
resists more sulfate attack than PCC.

4. Conclusion

The study examined the GGBFS-CCA-based GPC, and its effects
on the reactivity indexes and the sulfate attack were evaluated.
Both experimental and statistical methods were used in the course
of the study, and the results were compared with PCC. Consequent
upon the findings and in line with research aims, the following sets
of conclusions are made:

i. The reactivity of GGBFS-CCA blended binder increases with
increasing CaO, MgO, and Al2O3 contents owing to the
increase in GGBFS content, but the reactivity decreases with
increasing SiO2, Fe2O3, and SO3 due to an increase in CCA
content.

ii. The RM, HM, and LM of GGBFS-CCA blended binder increases
with increasing CaO, MgO, and Al2O3 contents due to the
GGBFS hydraulic response, while the SM and AM increase
with increasing SiO2 and Al2O3 contents owing to the CCA
pozzolanic response.

iii. The RM, HM, LM, and AM of GGBFS-CCA blended binder
increases by 10.6, 11.6, 11.6, and 3% with a 20% increase in
GGBFS content, respectively, for both M 30 and M 40.
iv. The SM of GGBFS-CCA blended binder decreases by 6.8%,
with a 20% increase in GGBFS content for both M 30 and M
40.

v. Compressive strength of GGBFS-CCA GPC increases with
increasing RM, HM, LM, and AM.

vi. RM yields the best fit for predicting the compressive
strength of slag-based GPC, incorporating CCA compared
with HM and LM. Besides, a strong correlation exists
between the experimental results and proposed model
equations.

vii. There is no remarkable improvement in R2 as the curing age
increases.

viii. Slag-based GPC incorporating CCA provides good sulfate
resistance superior to that of PCC.

The concept of RIs in predicting the compressive strength of the
GGBFS-CCA blended mix is attainable, and the study affirms the
efficiency of the fit regression model in Minitab 17 in predicting
the compressive strength based on the RIs and the MDPs. This
study benefits future research by focusing on three prospective
solutions. First, the proposed model equations can be useful in
the prediction and application of strength design proportions for
GPC incorporating SCMs under ambient curing conditions provided
the chemical compositions are obtained. Second, the application of
SCMs, GGBFS and CCA, can be advantageous in high sulfate envi-
ronment. Third, the recycling of both GGBFS and CCA would lessen
the environmental, economic, and societal threats posed by the PC
production; improve the concrete properties, and reduce the con-
struction cost and solid wastes, hence driving sustainability.



Fig. 16. CS loss of cubes immersed in 5% MgSO4 for (a) M 30 (b) M 40.
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