COMPOSITE MATERIALS FOR ECO-FRIENDLY FIRE RETARDANT BUILDING CEILINGS FOR TROPICAL REGION

DIRISU, JOSEPH OSEKHOGHENE 16PCM01441

SEPTEMBER, 2020

COMPOSITE MATERIALS FOR ECO-FRIENDLY FIRE RETARDANT BUILDING CEILINGS FOR TROPICAL REGION

By

DIRISU, JOSEPH OSEKHOGHENE Matriculation Number: 16PCM01441 B.Sc, Mechanical Engineering, Obafemi Awolowo University, Ile-Ife M.Sc, Mechanical Engineering, Obafemi Awolowo University, Ile-Ife

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN MECHANICAL ENGINEERING, IN THE DEPARTMENT OF MECHANICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA

SEPTEMBER, 2020

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Mechanical Engineering in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota.

Mr. John A. Philip Secretary, School of Postgraduate Studies

.....

Signature and Date

Prof. Abiodun H. Adebayo

.....

Dean, School of Postgraduate Studies

Signature and Date

DECLARATION

I, **DIRISU, JOSEPH OSEKHOGHENE (16PCM01441)**, declared that I carried out this research under the supervision of Prof. Sunday O. Oyedepo and Dr. Ojo S.I. Fayomi of the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

DIRISU, JOSEPH OSEKHOGHENE

.....

Signature and Date

CERTIFICATION

We certify that the thesis titled "Composite Materials for Eco-Friendly Fire Retardant Building Ceilings for Tropical Region" is the original research work carried out by DIRISU, JOSEPH OSEKHOGHENE (16PCM01441) in the Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Sunday O. Oyedepo and Dr. Ojo S.I. Fayomi. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) in Mechanical Engineering.

Prof. Sunday O. Oyedepo	
(Supervisor)	Signature and Date
Dr. Ojo S.I. Fayomi	
(Co-Supervisor)	Signature and Date
Prof. Joshua O. Okeniyi	
(Head of Department)	Signature and Date
Prof. Isaac K. Adegun	
(External Examiner)	Signature and Date
Prof. Abiodun H. Adebayo	
(Dean, School of Postgraduate Studies)	Signature and Date

DEDICATION

This work is dedicated to all who need God's help.

ACKNOWLEDGEMENTS

My profound gratitude goes to God for all-round sustenance throughout this research work. I want to appreciate the Chancellor, Dr. David O. Oyedepo, for the remote mentorship given to me towards a total man. I dove my hat to the Vice Chancellor, Prof. Aderemi A. Atayero, for providing a serene environment for research, learning, and faculty welfare especially supporting my research bench work carried out at the University of Johannesburg, South Africa. I appreciate the Deputy Vice Chancellor, Prof. Akan B. Williams, for his immense support for teaching and research. Greetings go to the Registrar, Dr. Oluwasegun J. Omidiora, in providing a serene atmosphere for research and study for faculty and staff.

The Dean of Postgraduate Studies, Prof. Abiodun H. Adebayo, is highly appreciated for tracking the progress of my work and giving support to my publications.

The Sub Dean of Postgraduate Studies, Prof. Obinna C. Nwinyi, is recognized for his contributions in making the structure of this thesis scholarly in its presentation. The Dean, College of Engineering, Prof. David O. Omole, will always be appreciated in my success story due to his pronto response to our documents meant for our progress in this pursuit to stardom. The Head of Department, Mechanical Engineering, Prof. Joshua O. Okeniyi, and the P.G Coordinator, Dr. Olugbenga A. Omotosho, are highly appreciated for contributing to my research progress.

I wholeheartedly appreciate my Supervisors, Prof. Sunday O. Oyedepo and Dr. Ojo S.I. Fayomi, who both acted as my academic fathers and mentors, even beyond my academic life. My advancement in quality thesis write up, and publication is all connected to their guidance. Their stretched efforts in making a well-groomed me are duly observed and down to heart appreciated. Prof. Esther T. Akinlabi made South Africa a haven of rest for me. She assisted immensely in the advanced characterization of my composite materials and connected me to her students, who were of great assistance to me. Her labour of love is so dear to my heart. All faculty and staff in the Department of Mechanical Engineering are appreciated for their love, concern, and prayers towards my progress. Engr. Joshua Jolayemi, in the Department of Civil Engineering, is recognized here for his assistance towards the success of this research.

Behind my success story is my beautiful and prayerful Queen Abosede Caroline Dirisu, the mother of my children. She supported me and bore the burden of family care to enable me to finish in record time. God alone will reward her abundantly.

My prayerful parents, supporting siblings, and lovely in-laws are appreciated for all supports received in my trying times and presently good time. Most significant appreciation goes to all who I unintentionally omitted in this acknowledgement.

TABLE OF CONTENTS

			Page
TITLE	E PA	GE	i
ACCE	РТА	NCE	iii
DECL	ARA	TION	iv
CERT	IFIC	ATION	v
DEDIC	CATI	ON	vi
ACKN	[OW]	LEDGEMENTS	vii
TABL	E OF	CONTENTS	ix
LIST (OF F	IGURES	xiv
LIST (OF T	ABLES	xvi
LIST (OF P	LATES	xvii
LIST (OF A	CRONYMNS AND ABBREVIATIONS	xviii
DEFIN		ON OF OPERATIONAL TERMS	xix
ABST	RAC		xxi
	TER	ONE: INTRODUCTION	1
1.1	Ва	ckground to the Study	1
1.2	Pro	blem Statement	9
1.3	Jus	tification of the Study	10
1.4	Aiı	n and Objectives of the Study	10
1.4	4.1	Aim of the Study	10
1.4	4.2	Objectives of the Study	11
1.5	Per	tinent Research Questions	11
1.6	Sig	nificance of the Study	11
1.7	Sco	ope of the Study	12
СНАР	TER	TWO: LITERATURE REVIEW	13
2.1	Ma	terials for Building Ceiling Production	13
2.2	Ov	erview of Thermal Properties of Materials for Building Ceiling	14
2.2	2.1	Review of Research Problem Definition and Formulation	16
2.2	2.2	Thermal Emission and Heat Transfer Characteristics of Ceiling Materials	17

2.2	2.3	Review on Heat Transfer Characteristics of Ceiling Materials	19
2.2	2.4	Review on Effect of Fire Propagation from Building Ceiling	21
2.2	2.5	Review on Fire Outbreak in Buildings	24
2.2	2.6	Review on Emission Characteristics of Building Ceilings	24
2.2	2.7	Emission Characteristics of Elemental Composition of PVC Materials	26
2.2	2.8	Review on the Trend of Technological Advancement of Building Ceilings	29
2.2	2.9	Performance Evaluation of Potential Ceilings' Materials	30
2.2	2.10	Flame Retardants	31
2.2	2.11	Review on Aluminium Dross as a Viable Additive Material in Composite	32
2.2	2.12	Review on Eco-friendly Building Ceiling Composites	34
2.2	2.13	Organic Eco-friendly Composites	35
2.2	2.14	Egg Shell Reinforced Metal Matrix	35
2.2	2.15	Kenaf Fibre	36
2.2	2.16	Review on Industrial and Agro-Waste Management and Utilization	36
2.2	2.17	Chemical and Thermo-Mechanical Properties of Coconut Shell Powder	37
2.2	2.18	Physical and Mechanical Characteristics of Coconut Fibre	38
2.2	2.19	Review on Chemical Properties of Coconut Fibres and its Applications	39
2.2	2.20	Review on the Morphological Structure of Cement	40
2.3	Sca	unning Electron Microscope (SEM)	41
2.3	3.1	X-ray powder Diffraction (XRD)	42
2.3	3.2	X-ray Fluorescence (XRF)	43
2.3	3.3	Emission Analyzer Equipment	43
2.3	3.4	Basic Operation of E-Instruments E5500 Emission Analyzer	44
2.3	3.5	Working Principle of Universal Testing Machine (UTM)	45
2.3	3.6	Combustion Calorimeter	47
СНАР	TER	THREE: MATERIALS AND METHODS	48
2.4	MA	ATERIALS AND DATA ACQUISITION	48

4	2.5	ME	THODS	48
	2.5	.1	Sample Preparation	48
	2.5	.2	Drying of Materials for Ceiling Development	50
	2.5	.3	Design of Trial Mould and Mix of Aluminium Dross and Binder	52
	2.5	.4	Design of Mould for First Phase Building Ceiling Samples	52
	2.5	.5	Design of Building Ceiling Samples Using 3-D Printer	53
2	2.6	Des	ign of Experiment	54
	2.6	.1	Number of Runs for Ceiling Samples	54
	2.6	.2	Production of Ceiling Samples	56
	2.6	.3	Curing of Developed Samples	60
- 4	2.7	The	ermo-Mechanical Characterization of Aluminium Dross Ceiling Composites	60
	2.7	.1	Procedure to determining the Specific Gravity of base material, binder	60
	2.7	.2	Compressive Test of Developed Ceiling Composite using the UTM	61
	2.7	.3	Test for Specific Heat Capacity (SHC)	62
	2.7	.4	Experimental Procedure to Determine SHC	63
	2.7	.5	Test for Thermal Conductivity	63
	2.7	.6	Experimental Procedure to Determine Thermal Conductivity	63
2	2.8	Tes	t for Energy Content	64
	2.8	.1	Experimental Procedure to Determine the Calorific Value of Materials	64
	2.8	.2	SEM Procedure for Microstructural Characterization of Ceiling Composites	65
	2.8	.3	Procedure in Determining XRD/XRF on Rigaku Geiger-flex	66
2	2.9	Equ	ipment for Emission Characterization	67
	2.9	.1	Operating Procedure of Emission analyzer and Thermolyne Furnace 6000	67
CH	IAP	FER	FOUR: RESULTS	69
Z	4.1	Sun	nmary of the work	109
CH	IAP	FER	FIVE: DISCUSSION	110
-	5.1	TH	ERMAL AND COMBUSTION PROPERTIES OF DEVELOPED CEILING	111
	5.1	.1	Specific Heat Capacity of Additives	111

	5.1.2	Thermal Conductivity Comparison of Aluminium Dross Ceiling Composite	111
	5.1.3	Thermal Resistivity, Diffusivity, and Effusivity of Ceiling Composites	112
	5.1.4	Thermal Effusivity and Thermal Resistivity of Ceiling composites	113
	5.1.5	Specific Heat Capacity and Thermal Diffusivity of Developed Ceiling	113
	5.1.6	Thermal Conductivity and Thermal Diffusivity of Ceiling Composites	114
	5.1.7	Heat Flux of Aluminium Dross Building Ceiling Composites	114
	5.1.8	Thermal Rate of Cooling of Developed Ceiling Composites	114
	5.1.9	Heating Value of Ceiling Composites and its Additives	115
5.	2 Con	centration of Gas Emission and Temperature of Emission @0.01kg	116
	5.2.1	Sample 1: 0.6Aldr0.3Cmt0.05G0.05OBS	116
	5.2.2	Sample 2: 0.6Aldr0.32Cmt0.05G0.03OBS	116
	5.2.3	Sample 3: 0.6Aldr0.34Cmt0.05G0.01OBS	117
	5.2.4	Sample 5: 0.6Aldr0.32Cmt0.05G0.03UES	117
	5.2.5	Emission Comparison among Combusted Ceilings on Maximum Values	117
	5.2.6	Mass Loss Relationship after Combustion	117
	5.2.7	Combustion Cooling Rate	118
5.	3 Con	npressive Strength of Building Ceiling Samples	118
	5.3.1	Water Absorption Test of Aluminium Dross Ceiling Composites	118
5.	4 XR	F AND XRD ANALYSIS SELECTED CEILING COMPOSITES	119
	5.4.1	XRD Analysis of Ceiling 0.6Aldr0.34Cmt0.05G0.01OBS	120
	5.4.2	XRD Analysis of Ceiling 0.6Aldr0.32Cmt0.05G0.03UES	120
	5.4.3	XRD Analysis of Ceiling 0.3Aldr0.23Cmt0.3Si0.05G0.12CS	120
5.	5 SEN	M/EDS Analysis of Base Material and Binder without Additive	121
	5.5.1	Aluminium Dross	121
	5.5.2	Structural Properties of Aluminium Dross/Cement Composite	121
	5.5.3	Aluminium Dross and Bentonite	122
	5.5.4	SEM/EDS Analysis of 0.6Aldr0.3Cmt0.05G0.05OBS	123

5.	5.5	SEM/EDS Analysis of 0.6Aldr0.32Cmt0.05G0.03OBS	123
5.	5.6	SEM/EDS Analysis of 0.6Aldr0.34Cmt0.05G0.01OBS	123
5.	5.7	SEM/EDS Analysis of Aluminium Dross Composite Sample 4	124
5.	5.8	SEM/EDS Analysis of Aluminium Dross Composite Sample 5	124
5.	5.9	SEM/EDS Analysis of Aluminium Dross Composite Sample 23	124
5.	5.10	SEM/EDS Analysis of Aluminium Dross Composite Sample 24	125
5.	5.11	SEM/EDS Analysis of Aluminium Dross Composite Sample 25	125
5.	5.12	SEM/EDS Analysis of Aluminium Dross Composite Sample 26	125
5.	5.13	SEM/EDS Analysis of Aluminium Dross Composite Sample 1	126
CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS		127	
6.1	SUN	MMARY	127
6.2	CON	NCLUSIONS	127
6.3	CON	NTRIBUTIONS TO KNOWLEDGE	130
6.4	REC	COMMENDATIONS	130
REFE	RENC	CES	132
APPE	NDIX		157

LIST OF FIGURES

Fig	ure Title of Figures	Page
1.1	Chemical Composition of Aluminium Dross, Sohaili et al. (2019)	3
1.2	Different types of ceiling composites	5
1.3	Systematic illustration of the structural components of composite materials	7
2.1	Chemical Composition of Aluminium Dross	33
2.2	Aluminium Dross Production	34
2.3	Showing the components and schematics of SEM	42
2.4	Rigaku equipment for XRD and XRF Characterization	43
2.5	E5500 Portable Industrial Flue Gas & Emissions Analyzer	45
2.6	Components of Universal Testing Machine	46
3.2	(a) Flowchart for Processing of Aluminium dross (b) Flowchart for the CS, OBS, ES	49
3.3	(a) Protea Laboratory Hot Air 250°C Oven (b) Sieve Shaker	50
3.4	Trial Mould for Composite Production	52
3.5	The flow chart for the Production and curing of Aluminium dross ceiling composite	60
3.6	Combustion Calorimeter and Accessories	65
4.1	Specific Heat Capacity of Developed Ceiling Composites	70
4.2	Thermal Effusivity of Ceiling samples	72
4.3	Thermal Effusivity and Thermal Resistivity	73
4.4	Thermal Diffusivity and Specific Heat Capacity	73
4.5	Thermal Conductivity and Thermal Diffusivity	74
4.6	Heat Flux of Ceiling Samples	74
4.7	Relationship between Heat flux and Thermal Conductivity	75
4.8	Cooling Rate per Ceiling Composite Sample	75
4.9	Mass Loss Relationship amongst Combusted Samples	85
4.10) Combustion Cooling Rate for all Selected Ceiling Samples	85
4.11	Temperature-Time cooling curve of (a) Sample 1 (b) Sample 2	86
4.12	2 XRD peak point for ceiling, 0.6Aldr0.3Cmt0.05G0.05OBS	88
4.13	3 XRD peak point for ceiling 0.6Aldr0.34Cmt0.05G0.01OBS	88
4.14	4 XRD peak point for ceiling 0.6Aldr0.32Cmt0.05G0.03UES	89
4.15	5 XRD peak point for ceiling _{0.3} Aldr _{0.23} Cmt _{0.3} Si _{0.05} G _{0.12} CS	89
4.16	6 (a) Micrograph of Aluminium Dross (b) Image of Aluminium Dross	96
4.17	7 (a) Micrograph of Aluminium Dross and Cement	97
4.18	3 (a) Micrograph of Aluminium Dross and Bentonite	98

4.19	Aluminium dross + bentonite particle area results	99
4.20	(a) Micrograph of _{0.6} Aldr _{0.3} Cmt _{0.05} G _{0.05} OBS, Sample 1	100
4.21	(a) Micrograph of 0.6Aldr0.32Cmt0.05G0.03OBS, Sample 2	101
4.22	(a) Micrograph of Sample 3 (b) Image of Sample 3	102
4.23	(a) Micrograph of Sample 4 (b) Image of Sample 4	103
4.24	(a) Micrograph of Sample 5 (b) Image of Sample 5	104
4.25	(a) Micrograph of Sample 23 (b) Image of Sample 23	105
4.26	(a) Micrograph of Sample 24 (b) Image of Sample 24	106
4.27	(a) Micrograph of Sample 25 (b) Image of Sample 25	107
4.28	(a) Micrograph of Sample 26 (b) Image of Sample 26	108

LIST OF TABLES

Table	Title of Table	Page
2.1	Responses of Matter to Temperature Rise	22
2.2	Heat Flux Phenomenon	22
3.1	Input factors and range to vary for the design of experiment	55
3.2	Four Level Design using Box-Benhken factorials	55
3.3	Experimental Materials Requisite	57
3.4	Nomenclature of Developed Ceiling Materials	57
3.5	Percentage weight of mixture ratio for the 27 Ceiling Samples	58
4.1	Specific Heat Capacity of Additive Material for Ceiling Composite	69
4.2	Thermal Conductivity of Developed Ceiling Samples	70
4.3	Supplementary Thermal Properties	71
4.4	Calorific Value of Ceiling Samples and Ceiling Composite Additives	76
4.5	Data on the Concentration of Gas Emission during Combustion, Sample 1	77
4.6	Data on the Concentration of Gas Emission during Combustion Sample 2	78
4.7	Data on the Concentration of Gas Emission during Combustion for Sample 3	79
4.8	Data on the Concentration of Gas Emission during Combustion Sample 5	81
4.9	Maximum and Minimum Gaseous Emission of Combusted Ceiling Composite	s 83
4.10	Compressive Strength of Building Ceiling Samples	86
4.11	Data for Water Absorption Test of Building Ceiling Samples	87
4.12	Elemental Composition of Aluminium Dross	89
4.13	Elemental Composition of Aluminium Dross and Cement Composite	90
4.14	Dross and Bentonite Elemental Composition	91
4.15	Elemental Composition of Sample 1, 0.6Aldr0.3Cmt0.05G0.05OBS	91
4.16	Sample 2 Elemental Composition	92
4.17	Elemental Analysis of Sample 3	92
4.18	Elemental Composition of Sample 4	93
4.19	Elemental Composition of Sample 5	93
4.20	Elemental Composition of Sample 23	94
4.21	Elemental Composition Sample 24	94
4.22	Elemental Composition of Sample 25	95
4.23	Elemental Composition of Sample 26	95
4.24	Summary of the work	109

LIST OF PLATES

Plate	Title of Plate	Page
2.1	(a) Coconut (b) Coconut shell (c) Coconut fibre	39
3.1	Grinding Mill Machine	49
3.2	(a) Aluminium Dross (b) Cement powder (C) Bentonite Clay(d) OBS	51
3.3	(a) Eggshell (b) Coconut Shell	51
3.4	Mould for Ceiling Sample Production (b) Aluminium Dross Composite	53
3.5	MakerBot Replicator (b) Sample Mould by MakerBot 3D Printer	54
3.6	Developed aluminium dross ceiling composites 27 samples	56
3.7	Pycnometer	61

LIST OF ACRONYMNS AND ABBREVIATIONS

Aldr	Aluminium dross
ARM	Aluminium Rolling Mill
Cmt	Cement
CS	Coconut Shell
CSH	calcium silicate hydrate
EDS	Energy Dispersive Spectrometry
EU	European Union
3	thermal effusivity
G	Carbon Graphite
GDP	Gross National Product
k	thermal Conductivity
OBS	Oil Bean Stalk
Ppm	part per million
r	thermal resistivity
SEM	Scanning Electron Microscopy
SG	Specific Gravity
SHC	Specific Heat Capacity
Si	Silicate
UES	Uncarbonized Egg Shell
WHO	World Health Organization
XRD	X-ray powder Diffraction
XRF	X-ray Fluorescence
α	thermal diffusivity
ρ	density

DEFINITION OF OPERATIONAL TERMS

Additive	a substance added to something in small quantities to improve or preserve it
Base material	Parent material apart from the additive and reinforcement
Binder	any material or substance that holds or draws other materials together to
	form a cohesive whole mechanically, chemically, by adhesion or cohesion.
Calorific value	the total energy released as heat when a substance undergoes complete
	combustion with oxygen under standard conditions
Combustion	a high-temperature exothermic redox chemical reaction between a fuel and
	an oxidant, usually atmospheric oxygen, that produces oxidized, often
	gaseous products, in a mixture termed as smoke
Composite materials	material made from two or more constituent materials with significantly
	different physical or chemical properties that, when combined, produce a
	material with characteristics different from the individual components
Compressive strength	the capacity of a material or structure to withstand loads tending to reduce
	size, as opposed to which withstands loads tending to elongate
Cooling rate	the change in the temperature divided by the change in time
Density	the degree of compactness of a substance
Eco-friendliness	not harmful to the environment
Emission	the production and discharge of something, especially gas or radiation
Flame	a hot glowing body of ignited gas that is generated by something on fire
Flame retardant	a substance that prevents or inhibits the outbreak of fire
Heat flux	Heat flux or thermal flux, sometimes also referred to as heat flux density,
	heat-flow density or heat flow rate intensity is a flow of energy per unit of
	area per unit of time
Microstructure	the fine structure (in a metal or other material) which can be made visible
	and examined with a microscope
Morphology	The shape and size of a line, an area, or a volume; the texture or topography
	of a surface; the habit of a crystal; the distribution of phases in a material
Noxious	harmful, poisonous, or very unpleasant
NO	Nitric oxide (a toxic gas)
NO ₂	Nitrogen dioxide (a toxic gas)
NO _x	Oxides of nitrogen (a toxic mixture of nitric oxide and nitrogen dioxide
	gases)

Particulate matter	The sum of all solid and liquid particles suspended in air many of which are
	hazardous. This complex mixture includes both organic and inorganic
	particles, such as dust, pollen, soot, smoke, and liquid droplets.
Pozzolanic material	Pozzolanic materials are silica or silica-alumina-based materials and can be
	incorporated in concrete as partial substitution of cement. A pozzolanic
	material may be defined by its ability to react with calcium hydroxide.
PPM	Parts (of pollutant) per million (volume basis-dry)
Reinforcement	the action or process of reinforcing or strengthening
SO ₂	Sulfur dioxide (a toxic gas)
Specific gravity	Relative density, or specific gravity, is the ratio of the density of a substance
	to the density of a given reference material
Specific heat capacity	the amount of heat energy required to raise the temperature of a substance
	per unit of mass
Та	Ambient (room) temperature
Tg	Gas temperature
Thermal conductivity	measure of its ability to conduct heat
Thermal diffusivity	measures the rate of transfer of heat of a material from the hot end to the cold
	end
Thermal effusivity	the thermal effusivity, thermal inertia or thermal responsivity of a material is
	defined as the square root of the product of the material's thermal
	conductivity and its volumetric heat capacity
Thermal insulation	the process of reduction of heat transfer between objects in thermal contact
	or in range of radiative influence. Thermal insulations consist of
	low thermal conductivity materials combined to achieve an even lower
	system thermal conductivity
Thermal resistivity	a heat property and a measurement of a temperature difference by which an
	object or material resists a heat flow. Thermal resistance is the reciprocal of
	thermal conductance.
Volatile organic	any compound of carbon, excluding carbon monoxide, carbon dioxide,
compounds	carbonic acid, metallic carbides or carbonates, and ammonium carbonate,
	which participates in atmospheric photochemical reactions'
Water absorption	the amount of water absorbed under specified conditions

ABSTRACT

The emission of noxious elements from building ceiling fire is increasingly becoming a source of concern globally. Hence, there is the need to develop eco-friendly flame-retardant building ceilings from composite materials to forestall the unwanted toxic emissions. This study aims at developing a bio-degradable hybrid aluminium dross ceiling utilizing varying material percentages using the moulding process. Box-Behnken factorial design from Minitab 17 was used to analyze the effect of the variables and runs on the performance properties. The developed ceiling samples were characterized by optical microscope, scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) for structural examination. X-ray Diffraction (XRD) analysis was used for phase quantification. The calorific values and thermal properties were examined by the combustion calorimeter and automated Lee's Disc apparatus, respectively. The mechanical properties were identified using a universal testing machine (UTM) for compressive test and E550 combustion gas analyzer for emission characterization. The results showed that aluminium dross carbon graphite developed from 0.3Aldr_{0.25}Cmt_{0.3}Si_{0.05}G_{0.1}CS exhibited the highest specific heat capacity (SHC) of about 7771.94 Jkg⁻¹K⁻¹compared to eggshell and oil bean stalk ceiling composite materials. An increase of 90% was noted against the control. The thermal studies showed that there was an excellent thermal conductivity of all the developed composites in the range of 0.0075 Wm⁻¹K⁻ ¹-0.1458 Wm⁻¹K⁻¹. _{0.3}Aldr_{0.2}Cmt_{0.3}Bt_{0.05}G_{0.15}OBS shows outstanding improvement with the lowest value of 0.0075Wm⁻¹K⁻¹ and desirable highest thermal resistivity of 133.9 m²K⁻¹W⁻¹. Thermal absorptivity revealed $o_3Aldr_{0.25}Cmt_{0.3}Si_{0.05}G_{0.1}CS$ with value of 0.42 $10^{-8} m^2 s^{-1}$ as lowest among developed ceilings and 0.3Aldr0.2Cmt0.3Bt0.05G0.15CS has required highest thermal effusivity value of 669.2 Jm⁻²K⁻¹s^{-1/2}. Combustion studies revealed that heat flux is not desirable in ceiling application; therefore, the least hazardous heat flux value is $_{0.3}$ Aldr_{0.23}Cmt_{0.3}Bt_{0.05}G_{0.12}OBS at 12.6 W/m². All the developed composite ceilings and binders show non-combustible characteristics. There is an absence of volatile organic compounds (VOC) and noxious constituents from the fabricated 0.3Aldr0.2Cmt0.3Bt0.05G0.15OBS. More importantly, quasi negligible SO₂ level and CO₂ exist; however, 0.3Aldr_{0.25}Cmt_{0.3}Si_{0.05}G_{0.1}OBS recorded maximum CO and NO levels, an indication of toxic affluence. The low mass losses of all of the composite materials, especially for 0.3Aldr0.2Cmt0.3Si0.05G0.15UES retard significantly due to its activities by the retardant constituent. The highest crushing force of 6.6 kN and crushing strength 3.4 MN/m² was attained for 0.3Aldr0.2Cmt0.3Bt0.05G0.15OBS developed product due to the compact arrangement of the inter-molecular hybrid formation of the composite formed. The flame retardant nature of all produced composite is evidenced in their elemental composition, as there is an absence of flammable element and presence of stable insulating compounds providing retardance to flame occurrences. These suppressions in the flame inclination of the reinforced materials are noticed within the boundaries of the ceiling crystals from the structural examination. The intermetallic phase from the diffraction intensities shows the presence of a significant second bond interstitial solid-phase across the matrix, especially for 0.6Aldr0.34Cmt0.05G0.01OBS ceiling material. This research will help in enhancing the flame retardant influence of eco-materials in building applications. The result has shown that the existing ceiling materials would be replaced with this flame-retarding ceiling material since it is more stable and fire-resistant.

Keywords: Building ceilings; Calorimeter; Eco-materials; emission; Flame retardant; Thermal conductivity