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 The operational performance of a three-phase induction motor is impaired by 
unbalanced voltage supply due to the generation of negative sequence 
currents, and negative sequence torque which increase motor losses and also 
trigger torque pulsations. In this study, data mining approach was applied in 
developing a predictive model using the historical, simulated operational data 
of a motor for classifying sample motor data under the appropriate type of 
voltage supply i.e. balanced (BV) and unbalance voltage supply (UB = 1% to 
5%). A dataset containing the values of a three-phase induction motor’s 
performance parameter values was analysed using KNIME (Konstanz 
Information Miner) analytics platform. Three predictive models; the Naïve 
Bayes, Decision Tree and the Probabilistic Neural Network (PNN) Predictors 
were deployed for comparative analysis. The dataset was divided into two; 
70% for model training and learning, and 30% for performance evaluation. 
The three predictors had accuracies of 98.649%, 100% and 98.649% 
respectively, and this confirms the suitability of data mining methods for 
predictive evaluation of a three-phase induction motor’s performance using 
machine learning.
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1. INTRODUCTION 

Three phase induction motors (TPIM) have found applications in various commercial and industrial 
operations [1] due to its low cost, low maintenance requirement, rugged design and non-complex 
construction. The importance of a TPIM was also emphasized by [2] that proposed a drive system for 
converting single phase to three phase for powering induction motors in rural areas where only single phase 
supply is available. A three-phase induction motor is a poly-phase equipment which requires a three phase 
supply to run. Three phase supply systems are theoretically designed to have a balanced and equal voltage 
magnitude per phase, but due to operational realities such as unreliable power supply [3], line disturbances, 
motor winding factors, the ratio of three phase to single phase loads [4], transformer faults, line transposition 
issues, unequal transformer tap settings, heavy commercial loads and so forth; the voltage magnitude of each 
phase of a three phase supply are unequal sometimes, and the line to line phase shift may also deviate from 
the normal 120. This abnormal supply condition is referred to as voltage unbalance [4], [5]. Voltage 
unbalance exists in most supply networks and it is quite severe in weak power systems [6]. 

The performance of a TPIM is impaired when operating under unbalance voltage conditions. 
Voltage unbalance stimulates increased motor losses which results in increased heat generation that may lead 
to early motor failure [7], [8]. Voltage unbalance reduces motor efficiency thereby increasing energy cost for 
the user [9], and by implication, the reduced efficiency increases the system load on the power plant which 
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unnecessarily depletes the energy reserve of the power plant [10]. Voltage unbalance creates a magnetic flux 
that opposes the main flux, and this causes power and torque oscillation at twice the frequency of the supply. 
Consequently, the opposing flux leads to the generation of negative sequence currents that trigger increased 
motor losses [11], and heat production which may result in local hot spots in the stator  
windings [7], [12], [13]. 

Using Fortescue Theorem an unbalance voltage can be resolved into three symmetrical sequence 
components, these are - the zero sequence, the positive sequence and the negative sequence components [14]. 
Given line voltages Va, Vb and Vc, these can be transformed into sequence components as shown in Figure 1. 
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Figure 1. (a) Zero sequence (b) Positive sequence and (c) Negative sequence voltage components 

 
 

By design, an induction motor can tolerate reasonable levels of voltage unbalance but when the 
unbalance becomes excessive the motor must be derated to prevent early damage due to voltage-unbalance 
induced harmonic currents [7]. In the study by [15], a Neural Network controller was proposed for reducing 
torque ripple and current harmonics. The derating factor of an induction motor is determined by analysing 
comparatively the performance of the motor under unbalanced and balanced voltage operational conditions, 
and it is calculated as the ratio of the mechanical output power during unbalance voltage to that under 
balanced supply [16], [17]. Power supply quality is a major induction motor performance determinant [18]-
[20], and as such, adequate effort must be put in place to manage power quality issues by using modern 
techniques [21] to guarantee quality power supply in order to ensure motor reliability and  
optimal performance. 

When an induction motor is operating either under balanced or unbalanced voltage conditions, the 
performance measurement parameters of the motor such as the rotor and stator currents, the negative and 
positive sequence torque, the electromagnetic power, the air gap power, the rotor and the stator copper 
winding losses, the real and reactive input power, the power factor etc. changes accordingly with the voltage 
supply conditions. In this study, the simulated operational data of a three-phase induction motor operating 
within the motoring slip range (0 < slip < 1) under balanced (BV) and unbalance voltage supply (UB = 1% to 
5%) is collected and processed for predictive modelling using data mining. A predictive model was 
developed using KNIME (Konstanz Information Miner) Analytics Platform to analyse the dataset toward 
developing a functional model that can determine the nature of the voltage supply whether balanced or not 
using the motor’s performance historical data. 

 
 

2. NATIONAL ELECTRICAL MANUFACTURES ASSOCIATION (NEMA) 
The dataset deployed in this study was generated using NEMA MG1 (1993) definition of voltage 

unbalance. According to NEMA, voltage unbalance is defined as: 
 

max. deviation from average line voltage
 =  × 100%

average line voltage magnitude
Voltage unbalance 

    (1) 
 

     (2) 
 

ab Lavg bc Lavg ca Lavg

Lavg

Max [|V -V  |,|V -V  |,|V -V |] 
× 100%

V
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       (3) 
 
The operational motor performance dataset depicts a 415V three phase induction motor having the 

following per unit parameters Xm = 2.41Ω, Xs = 0.12Ω, Xr = 0.12Ω, Rr = 0.084Ω, Rs = 0.073Ω with a base 
impedance of 3.304. The voltage variations considererd are the balanced voltage (BV), 1% unbalance 
(1%UB), 2% unbalance (2%UB), 3% unbalance (3%UB), 4% unbalance (%UB), and 5% unbalance (5%UB) 
supply conditions, in line with NEMA recommendation of 5% maximum unbalance. The per phase 
equivalent circuit diagram of a typical TPIM is presented in Figure 2. 

 
 

Is
IrRs

jXM

jXS jXr

IM

Vs

Rr

1
 r

s
R

s

 
 
 

Stator Copper 
Loss

Rotor Copper 
Loss

(PConv)

 
 

Figure 2. Per phase equivalent diagram of a TPIM 
 
 

3. RESEARCH METHOD 
Data mining is a field of study that encompasses both statistics and machine learning, and it is a 

subfield of computer science that enables intelligent extraction of useful information [22, 23], patterns and 
knowledge [24] from dataset towards creating models that represent the knowledge acquired from the dataset 
thereby making such knowledge reusable for making decisions on similar cases. The KNIME Analytics 
Platform was deployed to achieve the motor supply-status predictive modelling. KNIME is the open source 
software with capacity to handle large volume of data; equipped with extensive tools and resources. KNIME 
has found application in various aspects of data mining projects handled by more than 6000 professionals 
globally [25], [26]. 

KNIME is the modular data integration and processing platform that enables users to visually create 
data flows for data analysis and exploration [27]. In the study by [26], a model for predicting the internal 
faults of an oil-immersed power transformer using historical fault data was developed using KNIME. The 
model developed using probabilistic neural network achieved an accuracy of 80%. Data processing and 
analysis is significant in developing a data mining workflow, the motor parameters for the six voltage supply 
scenarios were appropriately sorted and prepared for supervised learning using KNIME workflow. 
 
 
4. DATA BASED PREDICTIVE MODELLING OF THREE PHASE INDUCTION MOTOR 

VOLTAGE STATUS USING KNIME 
In the study [28], an Artificial Neutral Network (ANN) model was trained to detect voltage 

unbalance in the motor’s operational dataset using the historical voltage dataset as a target for training the 
feed-forward network ANN model. The accuracy of the ANN model was assessed using the mean square 
error. The use of ANN and adaptive neuro-fuzzy inference system for predicting the parameters of an 
induction motor was proposed [29]. Also, an online fault detection and performance evaluation simulation 
was developed [30] using the phase currents, the voltage and the motor speed for assessment. Likewise, the 
feasibility of using naive bayes data mining algorithm for identification and classification of motor bearing 
faults was demonstrated [31], while in the study [32] fuzzy logic was applied for identifying short and open 
circuit TPIM faults. 

In this study, a KNIME workflow shown in Figure 3 was developed for data mining the operational 
motor performance dataset toward enabling a prediction of the nature of the voltage supply i.e. whether 
balanced or unbalanced. For comparative analysis, three predictive algorithms were applied, and these are – 
Probabilistic Neural Network (PNN), Naïve Bayes Predictor and Decision Tree Predictor. The motor 
operational dataset contains the motor slip, the negative and positive sequence current and torque, the rotor 
and stator current per phase, the total rotor and stator resistive copper losses, the real, reactive and apparent 
input power, the air gap power and the electromechanical power. The voltage supply status for each sample 

ab bc ca
Lavg

(V +V +V )
Where  V =  

3



                ISSN: 2088-8694 

 Int J Pow Elec & Dri Syst, Vol. 10, No. 1, March 2019 :  93 – 103 

96

case was classified as BV, 1%UB, 2%UB, 3%UB, 4%UB, and 5%UB in the dataset. 246 data samples for 
each of the parameters was shared in the ratio 7:3 using stratified sampling; 70% for training and 30% for 
predictive evaluation. 

 
 

 
Figure 3. Supply voltage status predictive KNIME workflow 

 
 

5. RESULTS AND DISCUSSION 
The descriptive statistics of the values of the motor parameters are presented in Table 1. The data 

mining workflow implemented, developed various statistical properties for each of the parameters and using 
the uniqueness of each, a representative model was automatically computed which depicts the relationship 
between the voltage status and the motor parameters. 

 
 

Table 1. Descriptive Statistics of the Motor Parameter 
 Min Max Mean Std. deviation Variance Skewness Kurtosis 
Slip 0 1 0.5 0.2964 0.0879 0 -1.2014 
Iseqpos (A) 35.0894 259.10 195.95 63.17 3990.38 -1.09 0.08 
Iseqneg (A) 0 8.06 3.92 2.68 7.20 0.00 -1.26 
Ira (A) 20.1059 246.78 186.64 61.28 3755.21 -1.15 0.29 
Irb (A) 20.1059 252.87 187.57 63.07 3977.90 -1.14 0.25 
Irc (A) 14.1331 246.68 181.77 62.35 3887.90 -1.13 0.24 
Isa (A) 35.0894 259.21 197.04 62.58 3916.74 -1.10 0.13 
Isb (A) 35.0894 265.61 198.69 63.53 4036.38 -1.07 0.05 
Isc (A) 27.708 259.10 192.23 63.41 4020.59 -1.08 0.07 
Pr - Total (W) 336.5783 50706.82 31813.92 15866.79 251754986.50 -0.62 -0.95 
Ps -Total (W) 890.9139 48617.81 30675.13 15047.41 226424640.37 -0.61 -0.95 
Pin (W) 14354.0474 106461.27 92125.81 22812.30 520400920.13 -2.07 3.35 
Pin (VAR) 20739.4616 157732.27 104919.53 43619.64 1902672799.81 -0.58 -1.01 
Pin (VA) 25222.2906 186399.71 140907.65 45407.87 2061874313.23 -1.09 0.08 
Airgap Power 13463.1335 75872.50 61450.68 13577.87 184358466.84 -1.56 2.89 
Elect Mech Power 0 54920.08 29636.76 17886.50 319926709.18 -0.08 -1.37 
Pos Seq T (Nm) 85.709 482.84 392.89 86.83 7539.95 -1.63 3.05 
Neg Seq T (Nm) -0.2643 0.00 -0.07 0.07 0.01 -0.82 -0.48 
pf 0.5329 0.86 0.68 0.11 0.01 0.28 -1.32 

 
 
The statistical variations of the motor’s rotor, stator and sequence currents in ampere for all the 

voltage supply modes, both balanced and unbalanced are shown in Figure 4. The box plots reveal the 
minimum, the lower quartile, the median, the upper quartile and the maximum values for each of the current 
parameters. In Figure 5, the real (W), reactive (VAR), apparent (VA), air gap (W) and electromagnetic power 
(W) of the motor is displayed as a box plot.  
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Figure 4. A box plot showing the magnitude spread of the motor currents 
 
 

 
 

Figure 5. A box plot showing the magnitude spread of the motor’s power components 
 
 
In Figure 6, the statistical spread of the values of the rotor copper losses and the stator copper losses 

in watt is presented as a box plot. The rotor losses increased from 336.58W to 50706.82 W with increasing 
slip and voltage unbalance, while the total stator winding copper losses increased from 890.91W to 
48617.81W. Figure 7 presents the variation in the magnitude of the positive and negative sequence  
torque in Nm. 

The variation of the negative sequence torque in Nm for the BV, 1%UB, 2%UB, 3%UB, 4%UB and 
5%UB voltage conditions is displayed in Figure 8. The box plot reveals that at 5%UB there is a significant 
increase in the magnitude of the negative sequence torque as compared with the value when the voltage was 
balanced. Similarly, Figure 9 presents a box plot of the sequence current (A) for the BV, 1%UB, 2%UB, 
3%UB, 4%UB and 5%UB voltage conditions. The sequence current has the maximum value at 5% voltage 
unbalance condition. 

The changes in the rotor winding copper losses for the BV, 1%UB, 2%UB, 3%UB, 4%UB and 
5%UB voltage conditions is displayed in the box plot of Figure 10. Figure 11 details the variations in the 
stator winding copper losses for the balanced voltage (BV) and the unbalanced (1%UB to 5%UB)  
voltage conditions. 
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Figure 6. A box plot of the rotor and stator winding copper losses 
 
 

 
 

Figure 7. A box plot showing the magnitude spread of the positive and negative sequence torque 
 
 

 
 
Figure 8. A box plot showing the negative sequence torque in Nm from balanced to 5% unbalanced voltage 
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Figure 9. A box plot showing the negative sequence current in Nm for balanced to 5% unbalanced voltage
 
 

 
 

Figure 10. A box plot of the rotor copper losses with increasing unbalance voltage 
 
 

 
 

Figure 11. A box plot of the stator copper losses with increasing unbalance voltage 
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5.1. The naïve bayes predictor results 
Using the Naïve Bayes predictor an accuracy of 98.649% was achieved. The scatter plot of the 

classified samples as shown in Figure 12. The confusion matrix of the Naïve Bayes predictor is presented in 
Table 2. Out of the total 73 samples randomly selected for performance evaluation, only one sample was 
misclassified. Figure 13 shows the ROC curve for the 100% correctly predicted BV samples while Figure 14 
presents the RC curve for the 2% unbalance voltage prediction which has 94.2% accuracy due to the 
misclassification of a sample. 

 
 

 
 

Figure 12. Scatter plot of the classified samples 
 
 

Table 2. Confusion Matrix of the Naïve Bayes Predictor 
 BV 1%UB 2%UB 3%UB 4%UB 5%UB 

BV 12 0 0 0 0 0 
1%UB 0 12 0 0 0 0 
2%UB 0 0 11 1 0 0 
3%UB 0 0 0 12 0 0 
4%UB 0 0 0 0 12 0 
5%UB 0 0 0 0 0 14 

 
 

  
Figure 13. ROC curve showing the accuracy of the 

balanced voltage sample classifications
Figure 14. ROC curve showing the accuracy of the 

2%UB sample classifications 
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5.2. The decision tree predictor results 
The confusion matrix of the Decision Tree predictor is presented in Table 3. All the 74 samples 

randomly selected for performance evaluation were accurately classified as shown by the diagonal elements 
of Table 3. 

 
 

Table 3. Confusion matrix of the decision tree predictor 
 BV 1%UB 2%UB 3%UB 4%UB 5%UB 

BV 12 0 0 0 0 0 
1%UB 0 12 0 0 0 0 
2%UB 0 0 12 0 0 0 
3%UB 0 0 0 12 0 0 
4%UB 0 0 0 0 12 0 
5%UB 0 0 0 0 0 14 

 
 

5.3.  The PNN predictor results 
Voltage supply status prediction using trained Probabilistic Neural Network node was also 

performed, the confusion matrix of the PNN predictor is presented in Table 4. Of all the 73 samples 
randomly selected only one was misclassified. 

 
 

Table 4. Confusion matrix of the PNN predictor 
 BV 1%UB 2%UB 3%UB 4%UB 5%UB 

BV 12 0 0 0 0 0 
1%UB 0 12 0 0 0 0 
2%UB 0 0 12 0 0 0 
3%UB 0 0 0 12 0 0 
4%UB 0 0 0 0 11 1 
5%UB 0 0 0 0 0 14 

 
 

5.4. Summary of model predictions 
The comparative performance of the three predictors is presented in Table 5. The decision tree 

predictor had the highest performance with accuracy of 100% for the BV, 1%UB, 2%UB, 3%UB, 4%UB and 
5%UB voltage samples considered. The accuracy of the model is significantly high because a lot of motor 
operational parameters were considered in the model. All the simulated parameters may not be readily 
available or easy to measure in practical studies, and as such, the expected accuracy for experimentally 
generated dataset will be quite lower. 

 
 

Table 5. Comparison of the performance of the three data mining predictors 
 Naïve Bayes Decision Tree PNN Predictor 

Correct Classified 73 74 73 
Accuracy 98.649% 100% 98.649% 

Cohen’s Kappa (k) 0.984 1 0.984 
Wrong Classified 1 0 1 

Error 1.351% 0% 1.351% 

 
 

6. CONCLUSION 
In this study, data mining was applied to acquire knowledge from the dataset generated from the 

simulated operation of a three phase induction motor under balanced and unbalanced voltage supply. A 
predictive KNIME model was developed and three data mining algorithms; the Naïve Bayes, Decision Tree 
and PNN Predictor were trained using 70% of the total samples which were randomly selected. The 
knowledge acquired from the training was applied in predicting the type of supply that produced the 
remaining 30% of the motor operational data samples. The three predictors had accuracies of 98.649%, 100% 
and 98.649% respectively which indicates that the model was adequately able to acquire sufficient 
knowledge from the operational motor dataset, and this enabled the correct prediction of the type of voltage 
supply classified as balanced (BV), and unbalanced (1%UB, 2%UB, 3%UB, 4%UB and 5%UB) voltage 
supply. The model developed was exported using the PMML writer and this creates an opportunity for reuse 
even on other platforms. The predictive accuracy achieved in this work is indicative of the suitability of data 
mining approach for motor performance monitoring. This study opens up further research opportunities for 
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deploying similar data mining models on practical motors for voltage quality monitoring using real time 
motor operational data. 
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