SYNTHESIS AND CHARACTERIZATION OF TRANSITION METAL COMPLEXES AS POTENTIAL MATERIAL FOR DYE SENSITIZED SOLAR CELL

NLEBEMUO, TOCHUKWU MARTINS

(**12CC014252**)

OCTOBER, 2020

SYNTHESIS AND CHARACTERISATION OF TRANSITION METAL COMPLEXES AS POTENTIAL MATERIAL FOR DYE SENSITIZED SOLAR CELL

BY

NLEBEMUO, TOCHUKWU MARTINS

Matric No: 12CC014252

B.Sc. Industrial Chemistry, Covenant University, Ota

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN INDUSTRIAL CHEMISTRY IN THE DEPARTMENT OF CHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE.

OCTOBER, 2020

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of the degree of Master of Science in Industrial Chemistry in the Department of Chemistry, College of Science and Technology, Covenant University, Ota.

Mr. John A. Philip Secretary School of Postgraduate Studies

Signature and Date

Prof. Abiodun H. Adebayo Dean, School of Postgraduate Studies

Signature and Date

.....

DECLARATION

I, NLEBEMUO, TOCHUKWU MARTINS (12CC014252) declare that this research work was carried out by me under the supervision of Prof. Kehinde O. Ogunniran of the Department of Chemistry, Covenant University, Ota, Nigeria. I attest that this Dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data, scholarly information used in this dissertation are duly acknowledged.

NLEBEMUO TOCHUKWU MARTINS

.....

Signature & Date

CERTIFICATION

We certify that this Dissertation title "SYNTHESIS AND CHARACTERISATION OF TRANSISTION METAL COMPLEXES AS POTENTIAL MATERIAL FOR DYE SENSITIZED SOLAR CELL" is an original research carried out by NLEBEMUO, TOCHUKWU MARTINS (12CC014252) in the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Kehinde O. Ogunniran. We have examined and found the work acceptable as part of the requirements for the award of Master of Science (M.Sc) in Industrial Chemistry.

Prof. Kehinde O. Ogunniran	
(Supervisor)	Signature and Date
Prof. Olayinka O. Ajani	
(Head of Department)	Signature and Date
Prof. Toyin Arowolo	
(External Examiner)	Signature and Date
Prof. Abiodun H. Adebayo	
(Dean, School of Postgraduate Studies)	Signature and Date

DEDICATION

This work is dedicated to God the Father, the Son and the Holy Spirit.

ACKNOWLEDGEMENTS

First and foremost, I want to sincerely acknowledge Almighty God for His grace and aspirations granted unto me during the course of this Master's research.

My sincere appreciation goes to the Chancellor, Covenant University, Ota, Ogun State, Dr. David Oyepedo, the Vice-Chancellor, Covenant University, Prof. A.A.A. Atayero, the Deputy Vice-Chancellor, Covenant University, Prof. Akan B. Williams for their commitment and determination in making Covenant University a great University. I also want to acknowledge the Registrar, Covenant University, Dr. Oluwasegun Omidiora, Dean, School of Postgraduate Studies, Prof. Abiodun H. Adebayo, the Sub-Dean, Prof. Obinna C. Nwinyi and the Dean College of Science and Technology, Prof. Temidayo V. Omotosho for their contributions towards the success of this research.

My gratitude goes to my supervisor Prof. Kehinde O. Ogunniran for his guidance and support throughout the duration of this work. My gratitude goes to the H.O.D, Chemistry Department, Covenant University, for his immense care that enabled the smooth completion of this work and my Master's programme. I would like to acknowledge the Departmental Postgraduate Coordinator, Dr. Joseph A. Adekoya for his contributions at each stage during the course of this work.

My gratitude also goes to the faculty members of Chemistry Department, Covenant University for their advice and immense contributions towards the success of this research, especially Dr. Siyanbola, T.O, Dr. Ehi-Eromosele, Cyril, Mr Durudola, Mr. Emmanuel Jolayemi, Miss Elizabeth Owolabi, Mrs. Jonathan, Mrs. Owoeye and Mrs. Ayo-Ajayi.

I also want to appreciate my friend, Ononiwu Fortune for his support and contributions in enabling the completion of this work especially during the NMR and IR analysis.

My heartfelt gratitude goes to my Parents, Mr. and Mrs. Martins Nlebemuo for their prayers and care from inception and during the course of this research. I am Also, grateful to my siblings, Jessica, Vivian and Ebuka for their prayers, support and care.

TABLE OF CONTENTS

CONTENT	PAGE
COVER PAGE	
TITLE PAGE	i
ACCEPTANCE	ii
DECLARATION	iii
CERTIFICATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
TABLE OF CONTENT	vii
LIST OF FIGURES	xii
LIST OF TABLES	xiv
LIST OF SCHEMES	XV
ABSTRACT	xvi

CHAPTER ONE

1.0 INTRODUCTION	1
1.1 Background of the study	1
1.2 Statement of the Problem	5
1.3 Research Questions	5
1.4 Aim and Objectives	6
1.5 Justification of the study	6
1.6 Scope of the study	7
CHAPTER TWO	8
2.0 LITERATURE REVIEW	8
2.1 Solar Technologies	8
2.1.1 Silicon-Based Solar cells	9
2.1.1.1 Monocrystalline Silicon (mono-Si) Solar cells	9

1

2.1.1.2 Polycrystalline Silicon (poly-Si) Solar cells	10
2.1.1.3 Amorphous Silicon (a-Si) solar cells	11
2.1.2 Gallium Arsenide (III-V) Solar Cells	12
2.1.3 Cadmium Telluride/Cadmium Sulphide Thin Film Solar Cells	14
2.1.4 Copper Indium Gallium (di)Selenide (CIGS)Thin Film Solar Cells	16
2.1.5 Perovskite Solar Cells	20
2.2 Dye-Sensitized Solar Cells	23
2.2.1 TiO ₂ -Based n-Type Dye-Sensitized Solar Cells	26
2.2.2 NiO-Based p-Type Dye-Sensitized Solar cells	28
2.3 Principle of Operation and Electron Transfer Process for TiO based Dye-Sensitize	ł
Solar Cells	30
2.4 Principle of Operation and Electron Transfer Process for NiO based Dye-Sensitize	d
Solar Cells	32
2.5 Materials Employed as Dye-Sensitizer for Solar cell Application	34
2.6 Natural Substances Used as Dye Sensitizers	36
2.7 Synthetic Substances Used as Dye Sensitizers	37
CHAPTER THREE	42
3.0 MATERIALS AND METHODS	42
3.1 General Conditions	42
3.1.1 List of Reagents Used	42
3.1.2 Physico-Chemical and Spectral Data	42
3.1.3 Structural and morphological studies	43
3.1.3.1 Scanning electron microscopy	43
3.1.3.2 Transmission electron microscopy	43
3.1.3.3 X-ray diffraction analysis	43
3.1.3.4 Thermogravimetric analysis	43
3.2 Synthetic procedures	43
3.2.1 Synthesis of (E)-2-((2-(2,4-dintrophenyl) hydrazono) methyl) phenol	43
3.2.2 Synthesis of (E)-1-(2,4-dinitrophenyl)-2-(thiophen-2-ylmethylene) hydrazine	44
3.2.3 Synthesis of (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) pyridine	44

3.2.4 Synthesis of Manganese Acetate complexes with the ligands	44
3.2.4.1 Synthesis of Manganese (<i>E</i>)-2-((2-(2,4-dintrophenyl) hydrazono) methyl)	
phenol complex	44
3.2.4.2 Synthesis of Manganese (E)-1-(2,4-dinitrophenyl)-2-(thiophen-2-	
ylmethylene) hydrazine complex	45
3.2.4.3 Synthesis of Manganese (<i>E</i>)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl)	
pyridine complex	46
3.2.5 Synthesis of Zinc chloride complexes with the ligands	46
3.2.5.1 Synthesis of Zinc (<i>E</i>)-2-((2-(2,4-dintrophenyl) hydrazono) methyl) phenol	
complex	46
3.2.5.2 Synthesis of Zinc (<i>E</i>)-1-(2,4-dinitrophenyl)-2-(thiophen-2-ylmethylene)	
hydrazine complex	47
3.2.5.3 Synthesis of Zinc (<i>E</i>)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl)	
pyridine complex	48
3.2.6 Synthesis of Strontium chloride complexes with the ligands	48
3.2.6.1 Synthesis of Strontium (<i>E</i>)-2-((2-(2,4-dintrophenyl) hydrazono) methyl)	
phenol complex	48
3.2.6.2 Synthesis of Strontium (E)-1-(2,4-dinitrophenyl)-2-(thiophen-2-	
ylmethylene) hydrazine complex	49
CHAPTER FOUR	50
4.0 RESULTS	50
4.1 Chemistry	50
4.1.1 Reaction scheme for (E) -2- $((2-(2,4-dintrophenyl) hydrazono) methyl)$ phenol	50
4.1.2 Reaction scheme for (E) -1- $(2,4$ -dinitrophenyl)-2- $($ thiophen-2-ylmethylene $)$	
hydrazine	50
4.1.3 Reaction scheme for (E) -3- $((2-(2,4-dinitrophenyl) hydrazono) methyl)$ pyridine	50
4.1.4 Reaction scheme for Manganese (E)-3-((2-(2,4-dinitrophenyl) hydrazono)	
methyl) phenol complex	51
4.1.5 Reaction scheme for Manganese (E)-1-(2,4-dinitrophenyl)-2-(thiophen-2-	
ylmethylene) hydrazine	51

4.1.6 Reaction scheme for Manganese (E)-3-((2-(2,4-dinitrophenyl) hydrazono)	
methyl) pyridine complex	52
4.1.7 Reaction scheme for Zinc (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl)	
phenol complex	52
4.1.8 Reaction scheme for Zinc (E)-1-(2,4-dinitrophenyl)-2- (thiophen-2-ylmethylen	e)
hydrazine complex	53
4.1.9 Reaction scheme for Zinc (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl)	
pyridine complex	53
4.1.10 Reaction scheme for Strontium (E)-3-((2-(2,4-dinitrophenyl) hydrazono)	
methyl) phenol complex	53
4.1.11 Reaction scheme for Strontium (E)-1-(2,4-dinitrophenyl)-2- thiophen-2- yl	
methylene) hydrazine complex	54
4.2 Physico-chemical properties of the synthesized compounds	54
4.3 Ultraviolet-visible spectra data of the synthesized compounds	55
4.4 Infrared spectra data of selected synthesized compounds	55
4.5 ¹ H-NMR spectra data for selected synthesized compounds	56
4.6 The TGA, XRD, SEM and TEM Characterization Techniques	58
4.6.1 Thermogravimetric analysis (TGA) for $Mn(H_1L)$ and $Mn(H_2L)$	58
4.6.2 X-ray diffraction spectra (XRD) for Mn(H1L) and Mn(H2L)	59
4.6.3 Scanning electron micrograph (SEM) for $Mn(H_1L)$ and $Mn(H_2L)$	59
4.6.4 Transmission electron micrograph (TEM) for Mn(H ₁ L)	63
4.7 Band Gap application Study using UV–Visible absorbance spectra	64
CHAPTER FIVE	66
5.0 DISCUSSION	66
5.1 Chemistry and Characterization	66
5.1.1 Physico-chemical properties of the synthesized compounds	66
5.1.2 UV-Visible spectroscopy of the synthesized compounds	67
5.1.3 Infrared Spectroscopy of some selected synthesized compounds	68
5.1.4 ¹ H-NMR Spectroscopy of some selected synthesized compounds	68
5.2 Structural and morphological studies for $Mn(H_1L)$ and $Mn(H_2L)$	69

5.2.1 Thermogravimetric analysis (TGA) for Mn(H1L) and Mn(H2L)	69
5.2.2 X-ray Diffraction analysis (XRD) for $Mn(H_1L)$ and $Mn(H_2L)$	69
5.2.3 Scanning electron micrograph studies (SEM) for $Mn(H_1L)$ and $Mn(H_2L)$	70
5.2.4 Transmission electron micrograph studies (TEM) for $Mn(H_1L)$ and $Mn(H_2L)$	70
5.3 Diffuse reflectance spectroscopy (DRS) studies	70
CHAPTER SIX	72
6.0 CONCLUSION AND RECOMMENDATION	
6.1 Summary	72
6.2 Conclusion	72
6.3 Contributions to Knowledge	72
6.4 Recommendation	73
REFERENCES	
APPENDIX	98

LIST OF FIGURES

Figu	s Title of Figures P	age
1.1	Schematic diagram of the basic parts of a dye-sensitized solar cell	2
1.2	Classification of photovoltaic technologies with their market share in percentage.	4
1.3	A chart showing the conversion efficiency recorded still date	5
2.1	A Chart Showing the Global Market Share of different solar cell types	9
2.2	Schematic Diagram of the Labelled Structure of Amorphous Silicon (a-Si) Solar cell	11
2.3	A Schematic Diagram of the Labelled Structure of GaAs Solar Cell	13
2.4	Schematic Diagram of the Structure of a Conventional (a) and Modified (b) CdTe/CdS	5
	blar Cell	16
2.5	A Schematic Diagram of a Labelled CIGS Solar Cell	17
2.6	A Schematic Diagram of Superstrate (a) and Substrate (b) Configuration of a Labelled	l
	Perovskite Solar Cell	20
2.7 A	Schematic Diagram of an Electron Flow Process in n-Type Dye-Sensitized Solar Cell	31
2.8	A Schematic Diagram of a Hole Flow Process in p-Type Dye-Sensitized Solar Cell	33
2.9	Structures of Some Natural Dye Sensitizers	37
2.10	Structures of N3, N719, and N749 dyes	39
2.11	Structures of some ruthenium complex photosensitizers	41
4.1	The TGA graph of Compound Mn (H ₁ L)	58
4.2	The TGA graph of Compound Mn(H2L)	58
4.3	The Diffractogram for Compound Mn(H1L)	59
4.4	The Diffractogram for Compound Mn(H2L)	59

4.5a	The SEM image of Compound Mn(H ₁ L) at 14.55mm	60
4.5b	The SEM image of Compound Mn(H1L) at 10.00mm	60
4.5c	The SEM image for Compound Mn (H ₁ L) at 15.07mm	61
4.6a	The SEM image for Compound Mn(H ₂ L) at 18.24mm	61
4.6b	The SEM image for Compound Mn(H ₂ L) at 18.10mm	62
4.6c	The SEM image for Compound Mn(H ₂ L) at 17.63mm	62
4.6d	The SEM image for Compound Mn(H₂L) at 18.20mm	63
4.7	The TEM image for Compound Mn(H1L)	63
4.8	The HR-TEM image for Compound Mn (H ₁ L)	64
4.9a	UV–Visible diffuse reflectance spectrum for Mn(H1L)	64
4.9b	UV–Visible diffuse reflectance spectrum for Mn(H ₂ L)	65
4.9c	UV–Visible diffuse reflectance spectrum for Mn(H ₃ L)	65

LIST OF TABLES

Tables	Title of Tables	Page
4.1	Table of Physico-Chemical properties of the synthesized compound	54
4.2	Ultraviolet-Visible Spectra Data for the synthesized compounds	55
4.3	Infrared spectra Data of the synthesized compounds	56
4.4	1H-NMR Spectra Data for the synthesized compounds	55

LIST OF SCHEMES

Scheme	es Title of Schemes	Page
4.1	Synthesis of (E)-2-((2-(2,4-dintrophenyl) hydrazono) methyl) phenol	50
4.2	Synthesis of (E)-1-(2,4-dinitrophenyl)-2-(thiophen-2-ylmethylene) hydrazine	50
4.3	Synthesis of (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) pyridin	51
4.4 Sy	nthesis of Manganese (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) phenol comp	plex51
4.5 Synt	thesis of Manganese (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) pyridine comp	plex51
4.6 Synt	thesis of Manganese (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) pyridine comp	plex52
4.7 Syn	thesis of Zinc (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) phenol complex	52
4.8 Synt	thesis of Zinc (E)-1-(2,4-dinitrophenyl)-2-(thiophen-2-ylmethylene) hydrazine com	plex53
4.9 Syn	thesis of Zinc (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) pyridine complex	53
4.10 Sy	nthesis of Strontium (E)-3-((2-(2,4-dinitrophenyl) hydrazono) methyl) phenol comp	olex53
4.11 Sy	nthesis of Strontium (E)-1-(2,4-dinitrophenyl)-2- thiophen-2yl methylene	54

ABSTRACT

Novel dye sensitizer materials in Dye-sensitized solar cell need to be found to meet the demand for cleaner energy. This study explores the potential of new metal complexes as possible dye sensitizers. The metal complexes were successfully synthesized using wet chemistry method. The ligands were prepared using 2,4 Dinitrophenyl hydrazine to react with salicylaldehyde, 2-thiophenecarboxaldehyde and 3-pyridinecarboxaldehyde separately in ratio (1:1). The three ligands formed were then reacted with three different metal salts each namely manganese acetate, zinc chloride and strontium chloride in ratio (3:1). The physicochemical properties were gotten by calculation and observation. Selected synthesized compounds (both ligands and metal complexes) were characterized with spectroscopic techniques. The UV-visible spectroscopy of Mn (H₁L), Mn (H₂L) and Mn (H₃L) showed maximum absorption wavelengths at 386 nm, 380 nm and 377 nm respectively. The FT-IR spectroscopy for selected compounds showed peaks around 3631.08 cm⁻¹, 1614.14 cm⁻¹, 1513.63 cm⁻¹ and 913.13 cm⁻¹ for O-H of alcohol, C=N of hydrazone, N-O of nitro and metalligand bond respectively. The ¹H-NMR spectroscopy for selected compounds showed signals between 7.05 ppm-8.50 ppm which suggests that the compounds have aromatic systems. Furthermore, structural and morphological studies were carried out on Mn (H_1L) and Mn(H₂L) using techniques such as TGA, XRD, SEM and TEM. The thermograph for Mn (H₁L) and Mn (H₂L) showed a loss of water molecules between 100 °C -120 °C, there was a gradual loss of the ligands between 120 °C-650 °C and finally a total loss of the ligand between 650 °C-800 °C leaving only the metal. The diffractograms of Mn (H₁L) and Mn (H₂L) showed sharp and intense peaks indicating fine crystalline rhombohedral phase as all peaks were well matched with database in JCPDS (file number: 77-1858). The degree of crystallinity for Mn (H1L) was calculated from the diffractogram to be 89.7% while that of Mn (H2L) was calculated to be 32.0%. The SEM photographs of Mn (H₁L) and Mn (H₂L) showed that Mn (H₁L) crystal-like morphology at the surface agreeing with the high degree of crystallinity from the diffractogram, while Mn (H₂L) had an irregular surface morphology. The TEM photograph of Mn (H₁L) showed the crystal-like nature within the material. The band gap energy for Mn (H₁L), Mn (H₂L) and Mn (H₃L) was estimated with DRS to be 2.47 eV, 2.48 eV and 2.33 eV respectively.

Keywords: Transition metal complexes, Dye sensitized solar cell, X-ray diffraction analysis, diffuse reflectance spectroscopy.