University Links: Home Page | Site Map
Covenant University Repository

Principal Components and Hierarchical Cluster Analyses of Trace Metals and Total Hydrocarbons in Gills, Intestines and Muscles of Clarias gariepinus (Burchell, 1822)

Isibor, Patrick Omoregie and Imoobe, T.O.T. and Enuneku, Alex Ajeh and Akinduti, P. A. and Dedeke, G. A. and Adagunodo, T. A. and Obafemi, Yemisi Dorcas (2020) Principal Components and Hierarchical Cluster Analyses of Trace Metals and Total Hydrocarbons in Gills, Intestines and Muscles of Clarias gariepinus (Burchell, 1822). Scientific Reports.

[img] PDF
Download (1MB)

Abstract

The aim of the study was to comparatively analyze the interrelationships among iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), lead (Pb), cadmium (Cd), chromium (Cr) and total hydrocarbons (THCs) in the gills, intestines and muscles of Clarias gariepinus collected from Osse River, Nigeria, between the periods of April, 2013 to September, 2014. The trace metals in the fish tissues were analyzed using Atomic Absorption Spectrophotometer (AAS, Philips model PU 9100), while total hydrocarbons were analyzed using High Performance Liquid Chromatograph (HPLC,Prominence Dual brand from HGE) equipped with a detector Shimadzu UV-Visible (UV-Vis Prominence SPD 20 A). The concentrations of trace metals and THCs in the tissues were subjected to principal component analysis (PCA), in conjunction with hierarchical cluster analysis (HCA), backed up by correlation analysis (CA). In the most prioritized component among the hierarchies of contaminants, characterized as principal component 1, results of communality extractions and rotated component matrices revealed the order of contaminants was Mn > Cu > Zn > Fe > Cr in the intestines, Cr > Cu > THCs > Mn > Fe in the muscle, while Pb > Cr > Fe > Mn was the order in the gills of the fish. Iron inhibited accumulation of the other trace metals in the gills, where its threshold of essentiality was maximal. Noteworthy is the fact that Mn and Cu were the most active components in the muscle and concurrently of excess concentrations in the tissue, which is the major edible part of fish, and constitutes its main body weight, hence holds its nutritional and economic values. High level of variability which occurred in the toxicant profile across the tissues of C. gariepinus is a function of uptake route, varied organ functions and specificity of tissue permeability of the compared organs. The study demonstrated variability in organ accumulation capacity and toxicant’s competitiveness irrespective of bioavailability. The study provides data useful for future ecotoxicological studies and safety of consumers of the fis

Item Type: Article
Subjects: Q Science > QC Physics
Q Science > QH Natural history
Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Engineering, Science and Mathematics > School of Physics
Faculty of Medicine, Health and Life Sciences > School of Biological Sciences
Depositing User: Mrs Patricia Nwokealisi
Date Deposited: 24 Nov 2020 15:43
Last Modified: 24 Nov 2020 15:43
URI: http://eprints.covenantuniversity.edu.ng/id/eprint/13750

Actions (login required)

View Item View Item