
Contents lists available at ScienceDirect

Structures

journal homepage: www.elsevier.com/locate/structures

Implementation of new elements and material models in OpenSees software
to account for post-earthquacke fire damage

Seyed Javad Mortazavia, Iman Mansourib,c,⁎, Paul O. Awoyerad, M.Z. Nasere

a Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
bDepartment of Civil Engineering, Birjand University of Technology, Birjand, Iran
c Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
dDepartment of Civil Engineering, Covenant University, Ota, Nigeria
eGlenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, United States

A R T I C L E I N F O

Keywords:
Constitutive model
OpenSees
Fire
Thermal analysis
New material
New element

A B S T R A C T

Post-earthquake fire (PEF) damage in buildings is a hazard, which is usually not taken into consideration during
structural design in buildings. Past instances of PEF events have led to severe damage and loss of lives, often
higher than those experienced during the earthquake event. PEF is a complex phenomenon that requires special
treatment, one that can be pursued via OpenSees– an efficient structural modeling software. Despite recent
advancements in OpenSees, the latest edition still lacks constitutive thermal and mechanical models for spring
element, spring section, parallel material, and beam elements with hinges. For this, carrying out a global thermal
analysis of structures with the aforementioned element/member characteristics has been a daunting task,. To
overcome this knowldeg gap, this work presents the development of constitutive models to be used in OpenSees
to enable engineers from conducting a reaslitic and practical engineering simulation of a PEF event. A further
development of OpenSees, introducing a New UserMat function, has also been carried out. Lastly, a series of case
studies were explored using numerical implementations of the proposed models and validated based on hand
calculations and new OpenSees material development.

1. Introduction

In the aftermath of an earthquake event, structures are not only
damaged but turn vulnerable to following load actions; most notably
fire. For this, fire following an earthquake eventis often regarded as a
major concern in areas highly active for seismic occurrences. This is
particualry true knowing that the resulting interaction from the two
events are not covered in the design process [1–7].

For a start, fire resistance of buildings is often evaluated by adhering
to traditional provisions founded in ISO 834 [8] and ASTM-E119 [9].
Such provisions were developed via a primarily prescriptive approach
in which individual structural members are tested under standard fire
conditions. On the contrary, real (natural) fires merely follow standard
requirements. In fact, in an actual structure, structural members in-
teract together, and hence their behaviour differs from that in isolated
fire tests. In other words, standard fire tests do not often consider the
structural interactions of a member among all elements contained in the
whole structure [10,11].

Despite the increasing urbanization in regions vulnerable to seismic
activities, there is yet an increase in the potential damages associated
with a fire hazard. Overall, occupants and officials expect that their
structures should withstand in terms of stability and integrity, whether
due to earthquake, or fire of PEF event, to allow emergency teams to
evacuate affected occupants of such structures [12,13]. Limited works
are available on the structural response of system-level and frames
under the effect of PEF, mainly due to the limited regulatory require-
ments [14,15]. This has opened up the door to pursue a performance-
based design perspective. Thus, this research is carried out to further
ongoing research efforts such as that in full-scale fire tests at IIT
Roorkee in India, and with the support of the University of Edinburgh
[16], which focuses on experimentally modeling the resistance of an
earthquake (simulated seismic loading) damaged structures to the fire.
This motivated our work, wherein we used OpenSees (an open-source
structural software) for modeling behaviour of structures under earth-
quake and fire loading.

Unlike OpenSees, other software with the capability of modeling

https://doi.org/10.1016/j.istruc.2020.08.021
Received 23 May 2020; Received in revised form 23 July 2020; Accepted 6 August 2020

⁎ Corresponding author at: Department of Civil Engineering, Birjand University of Technology, Birjand 97175-569, Iran.
E-mail addresses: mansouri@birjandut.ac.ir (I. Mansouri), mznaser@cemson.edu (M.Z. Naser).
URL: http://www.mznaser.com (M.Z. Naser).

Structures 27 (2020) 1777–1785

Available online 11 August 2020
2352-0124/ © 2020 Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/23520124
https://www.elsevier.com/locate/structures
https://doi.org/10.1016/j.istruc.2020.08.021
https://doi.org/10.1016/j.istruc.2020.08.021
mailto:mansouri@birjandut.ac.ir
mailto:mznaser@cemson.edu
http://www.mznaser.com
https://doi.org/10.1016/j.istruc.2020.08.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.istruc.2020.08.021&domain=pdf

structural behaviour during an earthquake or fire also exist and these
fall under two categories [17]. The first, have been explicitly developed
for structural analysis of buildings subjected to fire under the effort of
prominent researchers such as SAFIR [18]. And the second, are com-
mercial software thatcan be used for modeling and analyzing the be-
haviour of fire-damaged structures. While such software were not
specifically developed to handle fire-related analysis, they still offer
numerous capabilities; including pre- and post-processing performance,
and intuitive interface.

Some of the popular commercial software, include ABAQUS,
ANSYS, and DIANA – which have been ascertained for their suitability
for thermal and mechanical analysis of structures.

These days resilience of communities during natural events has
become an issue of concern in the world. For instance, in the event such
as reported in this study (post-earthquake fire), there is a variety of
issues relating to economic and social losses. The occurrence of a fire
outbreak after an earthquake event is not rampant, however, its oc-
currence can be catastrophic. Forensic investigation on post-earthquake
fire-affected site like that under extreme loading involves checking the
intensity, location, and characteristics of primary and secondary ha-
zards, and properties and response of structural elements.
Unfortunately, the currently available design processes only are focused
on prescriptive methods.

Currently, available performance-based design methods are
achieved by advanced calculation models, like those in SAFIR.
However, these complex models may require a very high level of
technical expertise, user-input, and computational skill from designers
[19]. These approaches are, therefore, not feasible in most structural
cases, so they reserved for complex structures like that of China Central
Television (CCTV) building in Beijing [19]. To develop a simple and
efficient performance-based design approach has been overwhelming
[20]. There is an intermediate level software program that is based on a
slab panel method (SPM) by Clifton [21] that is suitable for analysis of
slab subjected to fire. Walls [22] articulated the need for frames to be
analyzed by Fire Beam Element (FBE) methods, which is a simple de-
sign approach fire-affected buildings. However, the inability of FBE to
handle global analysis and structural continuity related problems re-
quires investigation.

Hence, there is a need for development of a probabilistic approach
that considers structures exposed to elevated temperatures and risk of
fire ignition. For this, we need a powerful tool for structural fire ana-
lysis.

Due to the problems of unavailability of affordable software
packages, the complexity of modeling realistic fire occurrence, and the
transfer of heat within structures, the cases of fire occurrence and re-
sponse of structures is not well explored globally. As such, there is a
need for modern and practical solutions. One such solution is OpeSees.

OpenSees, which is interpreted as an Open System for Earthquake
Engineering Simulation, is a program developed to handle the struc-
tural and geotechnical analysis of frames subjected to earthquakes. The
software program has been initiated by the Pacific Earthquake
Engineering Research (PEER) Center, to be employed to solve problems
in the performance-based earthquake engineering field. Due to its open-
source nature, different software developers regularly upgrade the
program; which has aided the advancement of the OpenSees to solve
complex problems.

The current study developed models of PEF-affected structural sys-
tems in OpenSees. our efforts are motivated by the notion that
OpenSees is fast, stable, and efficient in solving large nonlinear models.
Further, OpenSees is an open-source software framework, and hence
provides an attractive solution to a problem that share a magnitude of
PEFs. One should still that the current version of OpenSees fire does not
include the thermal springs. Therefore, with the incorporation of a
software code addition (written primarily in C++) for simulation ap-
plications in earthquake engineering using finite element methods, this
study opens the door to the possibility of a more accurae and realistic

thermal evaluation of a variaety of structural systems in which springs
elements are essential. For instance, spring elements are often used in
the mathematical modeling of many systems, in which structural
members are modeled as springs that are assembled in parallel and/or
series configurations to represent a structure's equivalent stiffness.
Other applications of spring elements entail panel zone, link beam in
eccentrically braced frames, gusset plate connections, and post-ten-
sioned beam-column connections.

1.1. Theory and framework design

1.1.1. OpenSees program methodology
OpenSees, a powerful open-source structural analysis software

package, is based on four main modules, which enable its performance
as a structural analysis tool [23,24]. Finite element models are per-
formed in the OpenSees Modelbuilder module. The procedures and
specifications for the analysis are done in the analysis module. The
selected quantities to be monitored during the analysis are tracked in
the Domain, and meanwhile, the output results are specified by the
recorder object. The modules are interrelated from the perspective of
object-oriented programming standards on which OpenSees is based. As
a result, there is a more versatile relationship between the objects in the
program, and this makes the program to be more efficient and mod-
ifiable.

When the program is running, the Domain object exhibits the role of
the central operator, and this module is also known to be responsible
for object storage after the Modelbuilder object has created it. Also,
access to the objects at different levels of the analysis for the Analysis
and Recorder objects is provided by the same module. The information
of the structure being analyzed is constructed and stored by the
Modelbuilder. The module also defines the element properties and
constraints adopted for the modeling. The analysis object does the
analysis calculations, and subcomponents needed for the structural
analysis operations are stored in the analysis module. The sub-compo-
nents do the following: handling constraint, numbering DOF, model
analysis, algorithm solution Algorithm, Integrator, System of Equations,
and Solver. The recorder object monitors present parameters in the
model, and this during the analysis, and the data are sorted in a set of
user-defined files. This module documents the overall behaviour of the
system during the analysis.

1.2. Programming strategy

The object-oriented programming technique, coupled with the C+
+ programming language, has been employed in OpenSees to form the
necessary objects required for the operation of the modules. C++
language has been utilized owing to the fact it the most widely available
object-oriented language. This programming language has a significant
support base. In general, object-oriented programming entails object
creation comprising of several modules that interact within a set fra-
mework.

Various independent object classifications, with similar perfor-
mance, are found in OpenSees platform, this also contributes some
procedural methods, or functions. A final product, which is capable of
potential changes in source codes, is obtained during implementation of
the object-oriented techniques as the framework for OpenSees is con-
structed.

The OpenSees programming technique during modeling requires
data to be abstracted within the programmed objects. The data ab-
straction entails decomposition of the data, algorithms, or calculations
into a simplified procedure to showcase the essential behaviour of the
related data. Issues of complexity are controlled, and user-friendly en-
vironment for changing the software by the data decomposition and
algorithmic processes needed for the software analysis. The in-
dependent operation of modules is achieved by good abstraction in the
programming base-levels, and thus, addition or any form of

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1778

modification in the program framework becomes easy. As a result, new
codes can be implemented into the program code, thus with only a few
changes to other objects or modules.

2. Materials and methods

2.1. Verification with an experimental test

Since any numerical study needs a verification, a well-known ex-
prerimental test is selected for simulation in OpenSees herein. The ef-
fect of uniformly increasing temperature profile on some set of simply
supported steel I-beams (1.14 m long) made of an IPE80 (ST37.2)
section has been investigated by Rubert and Schaumann [25]. The
beams were designed to carry an imposed load of a load ratio of 0.2 at
the mid-span section. A validation of the aforementioned beams has
been conducted earlier by Jiang and Usmani [26] in OpenSees, and
Jeffers and Sotelino [27] following modelling of the force-based beam
elements in ABAQUS.

The current study focuses on the comparative validation of beam-
column elements developed in OpenSees. This experiment entails
modeling of steel beams with load ratio of 20%. This model showcased
the localised nonlinearity occurrence in the beam as a result of non-
uniform thermal action. Before the thermal action, a uniformly dis-
tributed load of 4.5 kN/m was applied at the left end of the beam. A
coefficient of thermal expansion α of 1.2 × 10−5 m/(m· K) and elastic
stiffness E0 of 2 × 105 MPa were assigned to the members. Fig. 1 shows
the trend of the generated results. As one can see, there is a strong
agreement between the mid-span deflection curves for beam tempera-
ture and model reported by Jeffers and Sotelino [27]. It is worthy of
note that different mesh fineness modes gave similar outputs since there
is constant thermal beam action.

2.2. Steel in fire

Past experiences of fire hazards have shown that unprotected steel is
vulnerable to fire, mainly due to its high thermal conductivity and
thinness of the members. It should be stated that significant deforma-
tion or total failure often occurs as a result of a fire hazard in steel
structure especially at high temperature exceeding 750 °C – as a result
of of a phase change and drastic strength and stiffness losses in steel.

2.2.1. Thermal expansion of steel
Eurocode EN 1993-2-1 [28] outlines the provision of curves for

thermal strain (εθ) of various typical carbon steels, and reinforcing
steels. The following equations show the variation of thermal strain in
steel with temperature (θa):

= − × + × + × < ≤− − − ° °ε θ θ C θ C2.416 10 1.2 10 0.4 10 20 750θ a a
J

a
5 5 8

(1)

= × < ≤− ° °ε C θ C11 10 750 860θ a
3 (2)

= − × + × < ≤− − ° °ε θ C θ C6.2 10 2 10 860 1200θ a a
3 5 (3)

2.2.2. Mechanical properties of steel at high temperature
Steel generally possesses a specific yield strength fy as consider in

conventional designs. However, the yield strength is not considered for
fire design, as its stress-strain behaviour varies with increasing tem-
perature. The Eurocode applies a reduction factor to take care of the
reduction of steel strength and stiffness properties. The Eurocode fac-
tors are temperature-dependent; they are multiplied by the original
strength or stiffness at room temperature (20 °C). The factors are as
follows:

=k f f/y θ y θ y, , (4)

=k f f/p θ p θ y, , (5)

=k E E/E θ θ, (6)

where ky,θ = reduction factor for effective yield strength,
kp,θ = reduction factor proportional limit, and kE,θ = reduction factor
for the slope of the linear elastic range.

High-temperature stress-strain curves for a temperature range is
specified in Eurocode EN 1993-1-2 [28].

It is shown in the stress–strain curves at different temperatures, that
they similar shape, there is lower stress pattern at higher temperatures.
The effects of creep on yield stress are encompassed in the curves
[19,20], where strain hardening is conservatively neglected. The fol-
lowing equations are used to represent the curves in EN 1993-1-2 [28]:

= < ≤σ εE ε ε0θ p θ, (7.1)

= − + − − < ≤ =σ f c b
a

a ε ε ε ε(0.02) 0.02p θ p θ p θ,
2 2

, , (7.2)

= < ≤ =σ f ε ε ε 0.15y θ y θ t θ, , , (7.3)

= ⎛
⎝

− − ⎞
⎠

< ≤ =σ f ε ε ε ε1 0.15
0.05

0.2y θ t θ u θ, , , (7.4)

= >σ ε ε0.0 u θ, (7.5)

The term c is calculated by:

=
−

− − −
c

f f

ε ε E f f

()

() 2()
y θ p θ

y θ p θ θ y θ p θ

, ,
2

, , , , (8)

This is then substituted to determine a and b:

⎜ ⎟= − ⎛
⎝

− + ⎞
⎠

a ε ε c
E

(0.02) 0.02p θ p θ
θ

2
, ,

(9)

= − +b c ε E c(0.02)p θ θ
2

,
2 (10)

2.3. Fiber section

During a fire incident, there is a tendency that the cross-section of a
beam is exposed to a thermal gradient. Thus, the fiber element ap-
proach is applied to the cross-sections to model the non-uniform tem-
perature distribution. As shown in Fig. 2, section height is discretized
into n number of smaller rectangular fibers, with each fiber i denoting a
small rectangular area Ai of the section and the second moment of in-
ertia Ii about the neutral axis (NA). It is noteworthy that the Ii value
changes according to the shifting of the NA.

The importance of applying the fiber section approach for FBE are
as follows:

• There is a possibility of assigning different temperatures to each
fiber, which therefore simulates a thermal gradient.

• As each fiber is assigned a material model, the fiber section, there-
fore, takes care of composite parts.

• Gradual yielding and plasticity distribution in a section during the
fire is captured using the fiber analogy.

2.4. Strains in fire

According to EN 1992-1-2 [29], the total strain (ε) comprises of the
sum of thermal strain (εθ), mechanical strain (εσ), creep strain (εcreep),
and transient strain (εtr), as shown in Eq. (11) [20]:

= + + +ε ε ε ε εθ σ creep tr (11)

As shown in Fig. 3, the Eurocode, however, incorporates creep and
transient strain in the material models and reduction factors. This thus
simplifies the Eqs. (11) and (12).

= +ε ε εθ σ (12)

Thus, the thermal strain is developed as there is an increase in

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1779

temperature, which can be calculated directly based on the specified
material models. This study follows Eurocodes [28,29] criteria for
calculation of the thermal strains of steel. It should be noted that this
takes sign convention for strains and stresses as negative for compres-
sion and positive for tension.

3. Results and discussion

3.1. Developing of the thermal spring element

In this study, the new material model for the OpenSees program was
developed with Visual C++ programming language. With that, pro-
gramming performed with the new material was executed using the
proposed formula, followed by the complication of the written code.
The output of the compiled code was DLL format. Thus, the software
utilizes the DLL during the OpenSees software operation and compiling
code for the new material.

C++ Programming language is described as an object-oriented
programming language, which requires that each material and element
is defined as an object. Moreover, classes are the unit of programming
using this language, from which objects are created through it. Also,
functions are linked to each class. The implication of this is that a new
programming class, having numerous functions, is used for the

development of new material. There are two main categories of func-
tions, which comprises of those functions associated with the OpenSees
software (also called by the software). With the aid of specific input and
output terms, the functions are programmed following OpenSees de-
velopers' standards.

A new strain in the material is set based on the setTriaStrain()
method, which is called by an element. Whereas, for subsequent calls,
getTangent() and get stress() are returned to their corresponding tangent
and stress values, respectively. It should be noted that setTrialStrain() is
invoked when the solution algorithm performs trials of finding solu-
tions, thus going from a valid solution to the next on the solution path.

However, commitState() method is invoked after a trial solution can
be seen solution path. Yet, the material is responsible for backtracking
to that solution if there is invoking of a revertToLastCOmmit(). This kind
of occurrence is observed if a solution on the solution path could not be
found by the algorithm.

An element in the element constructor is responsible for the in-
voking of the getCopy() method. But a unique copy of the materials is
returned to the element. As a result, different elements can utilize the
same type of material and similar properties, in such a way that each
element possessed its unique copy.

Several functions are also available, in which programmers are
implemented based on the predicted algorithm for their desired

(a)

(b)

IPE 80

0

10

20

30

40

50

60

0 200 400 600 800

M
id

-s
pa

n
de

fle
ct

io
n

(m
m

)

Temperature (°C)

Experimental [31]

OpenSees

Fig. 1. Verification, (a) the test specimen, (b) comparison of results of OpenSees and test.

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1780

material. The developers take full charge of this, as the functions can
have inputs and outputs following the developer's will, without any
known limitations.

A zeroLength element object (having a two nodes thermal functions)
is constructed using the developed command. Connection of nodes was
achieved using multiple UniaxialMaterial objects for the representation
of the element force-deformation relationship:

element zeroLengthThermal $eleTag $iNode $jNode -mat $matTag1
$matTag2 … -dir $dir1 $dir2 … < -doRayleigh $rFlag> < -orient
$ × 1 $ × 2 $ × 3 $yp1 $yp2 $yp3>

in which $eleTag = unique element object tag, $iNode
$jNode = end nodes, $matTag1 $matTag2 … = tags associated with
previously-defined UniaxialMaterials, $dir1 $dir2 … = material direc-
tions, $ × 1 $ × 2 $ × 3 = vector components in global coordinates

defining local x-axis (optional), $yp1 $yp2 $yp3 = vector components
in global coordinates defining vector yp which lies in the local x-y plane
for the element (optional), $rFlag = optional: default = 0 where
rFlag = 0 means NO RAYLEIGH DAMPING (default) and rFlag = 1
include Rayleigh damping.

Appendix A1 contains the most important code written in C++ in
Microsoft Visual Studio.

In this section, validation of the zeroLength element implemented in
OpenSees is done by the application of a problem. This entails heating a
one-dimensional spring element under a uniform temperature
(0–1000 °C). The uniform load is defined as a pattern Plain Linear in
OpenSees. Therefore, the expression described in section 3 could be
used to manually solve the problem. The spring’s response to fire under
this methodology is evaluated by comparing hand calculation results
and that of OpenSees. The process of implementation matched with the
theory is illustrated in Fig. 4.

Table 1 shows how the thermal loading is applied to the zeroLength
element, which is compatible with the OpenSees output.

Also, there was the incorporation of the thermal functions to the
zeroLengthSection element. Using this command, the construction of two
nodes zeroLength element objects, is achieved along with the same lo-
cation. Nodes connection was made using a single section object re-
presentation of the force–deformation relationship of the element.

3.2. Developing of the thermal parallel material

The command for parallel thermal material was used for the con-
struction of an identical material object, which is made up of an arbi-
trary number of previously-constructed UniaxialMaterial objects. An
example of this is presented in Fig. 5.

uniaxialMaterial ParallelThermal $matTag $tag1 $tag2 … < -fac-
tors $fact1 $fact2 …>

in which $matTag = integer tag identifying material, $tag1 $tag2
…=identification tags of materials making up the material model,
$fact1 $fact2 … = factors to create a linear combination of the spe-
cified materials. Factors can be negative to subtract one material from
another (optional, default = 1.0).

Appendix A2 contains the most important code written in C++ in
Microsoft Visual Studio.

An example was considered to control the correct implementation of
parallel material in OpenSees fire, which takes care of the concept of
the parallel spring. Heat analysis was performed under a stable tem-
perature condition. Fig. 6 shows the implementation of identical ma-
terial in OpenSees fire.

3.3. Developing of the beam with hinges thermal element

With this command, it has been possible to construct a
beamWithHinges element object. This utilizes the non-iterative (or
iterative) flexibility formulation, and plasticity is considered as con-
centrated over specified hinge lengths of the element ends, as shown in
Fig. 7. Plastic hinges are localized at the element end using the beam-
WithHinges element.

With this type of hinges, elements are divided into three parts.
There are two hinges at the ends, a linear-elastic region in the middle.
Thus, hinges are defined simply by assigning them to each of the pre-
viously-defined sections. The user is expected to specify the length of
each hinge.

This study adopted thermal functions that were added to the ele-
ment in the following format:

element beamWithHingesThermal $eleTag $iNode $jNode $secTagI
$HingeLengthI $secTagJ $HingeLengthJ $secTagC $transfTag < -mass
$massDens> < -iter $maxIters $tol>

$eleTag = unique element object tag, $iNode and $jNode = end
nodes, $secTagI = identifier for previously-defined section object cor-
responding to node i, $HingeLengthI = hinge length at node i,

Fig. 2. A typical discretized steel profile into n number of fibers [20].

+ =

es e e

Fig. 3. Example of a) the total strain in a cross-section as the combination of b)
the mechanical strain and c) the thermal strain. In this example, the thermal
load has a uniform temperature gradient across the depth of the cross-section
[20].

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1781

$secTagJ = identifier for previously-defined section object corre-
sponding to node j, $HingeLengthJ = hinge length at node j,
$secTagC = identifier for previously-defined section object corre-
sponding to the elastic section, $transfTag = identifier for previously-
defined coordinate-transformation object, $massDens = element mass
density (per unit length, $maxIters = maximum number of iterations to

undertake to satisfy element compatibility, and $tol = tolerance for
satisfaction of element compatibility.

Appendix A3 contains the most critical code written in C++ in
Microsoft Visual Studio.

A 1.4 m long beam having only the left half subjected to a normal
range (0–1000 °C) is presented in Fig. 8. However, the right half of the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200

De
e

 (m
m

)
Temperature °C

zer e gthThermal eleme t Ha d calcula

Fig. 4. Time-temperatures curves recorded for the spring element by hand calculation and OpenSees.

Table 1
Calculations of spring deflection under thermal loading.

Temperature °C ε,θ Deflection (mm) fy,θ (MPa) Eθ (MPa)

43.2 0.000502 0.000955 1 100,000
89.7 0.001084 0.001008 1 99,030
136.3 0.001686 0.001062 1 94,370
182.8 0.002303 0.001116 1 89,720
229.3 0.002938 0.001179 1 85,070
275.8 0.00359 0.001247 1 80,420
322.3 0.004259 0.001324 1 75,770
368.8 0.004945 0.001412 1 71,120
415.3 0.005649 0.001528 0.92234 66,470
461.8 0.00637 0.001702 0.82004 61,820
508.3 0.007109 0.001995 0.69227 51,793
554.8 0.007865 0.002834 0.54812 38,308
601.3 0.008638 0.003709 0.41888 27,166
647.8 0.009428 0.005823 0.30728 18,796
1 100,000 694.3 0.010236 0.007938 0.21284 12,428
1 100,000 740.8 0.011061 0.009624 0.15704 10,568
1 100,000 787.3 0.011 0.011252 0.10635 8835.75
1 100,000 833.8 0.011 0.05796 0.0831 7789.5
1 100,000 880.3 0.011406 0.121607 0.05985 6743.25
1 100,000 1000 0.0138 0.324938 0.036 4050

Fig. 5. Parallel material [30].

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1782

beam is at ambient temperature, and it thus acts as a translational
spring for restraining the displacement of the left part. The model in-
cludes two beam elements in which material class Steel01Thermal and
an initial elasticity modulus of 200 GPa at 0 °C was used.

It is possible that uniform heating is applied to the member until
failure as a result of the loss of stability. In Fig. 8, the displacements
recorded during the experimental test at the mid-span of the beam are
presented. The modeling process covers the use of both dis-
pBeamColumnThermal and beamWithHingesThermal elements. Overall, it
has been demonstrated that strong agreement exists between test data
and displacements (calculated using the modified OpenSees module) as

evidence in the plots. This thus shows the adequacy of the im-
plementation of the new elements in OpenSees fire.

4. Conclusions

This study focuses on the implementation of thermal spring ele-
ments, thermal spring section, thermal parallel material, and beam with
hinges thermal element in OpenSees.

The available code on the OpenSees website has been verified to be
compatible with the current version of C++ available in Visual
Studio.Net. It is required that the version of C++ should be present on
the computer with the Tcl scripting language program (applicable to
the release of the code being built) after downloading the source code.
Information regarding the presence and location of system files needed
for a valid code compiling is available on the website. This requirement
is taken care of by simply copying the correct file folders to the correct
computer directories.

In this study, the development of the OpenSees for the analysis of
fire-damaged structures was investigated by expanding the program to
take into consideration spring and beamWithHingesThermal elements
with other parallel material. This has been achieved by the im-
plementation of fire beam element methodology into the OpenSees fi-
nite element software and validating results using case study examples.

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0 200 400 600 800 1000 1200

De
ec

 (m
m

)
Temperature °C

Parallel pr gs Equivale t spri g

Fig. 6. Time-temperatures curves recorded for the parallel material by hand calculation and OpenSees.

Fig. 7. The beamWithHinges element in OpenSees [30].

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900 1000

D
ef

le
ct

io
n

(m
m

)

Temperature °C

Experimental test DispBeamCol ele DispBeamCol with Hinge

Fig. 8. Results of numerical OpenSees against the experimental test.

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1783

Finally, due to the unavailability of elements and material, the global
thermal analysis was impossible for structures.

Declaration of Competing Interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Appendix:. Developed code in C++ for OpenSees

A.1. Function ZeroLengthThermalEle

#include < ElementalLoad.h>
#include < NodalThermalAction.h>
#include < ThermalActionWrapper.h>
#include < math.h>
#include < stdlib.h>
#include < string.h>
#include < ElementResponse.h>
// initialise the class wide variables
Matrix ZeroLengthThermalEle::ZeroLengthThermalEleM2(2,2);
Matrix ZeroLengthThermalEle::ZeroLengthThermalEleM4(4,4);
Matrix ZeroLengthThermalEle::ZeroLengthThermalEleM6(6,6);
Matrix ZeroLengthThermalEle::ZeroLengthThermalEleM12(12,12);
Vector ZeroLengthThermalEle::ZeroLengthThermalEleV2(2);
Vector ZeroLengthThermalEle::ZeroLengthThermalEleV4(4);
Vector ZeroLengthThermalEle::ZeroLengthThermalEleV6(6);
Vector ZeroLengthThermalEle::ZeroLengthThermalEleV12(12);
// Matrix& tran = *t1d;
int ret = 0;
for (int mat = 0; mat < numMaterials1d; mat++) {

// compute strain and rate; set as current trial for material
strain = this-> computeCurrentStrain1d(mat,diff);

strainRate = this-> computeCurrentStrain1d(mat,diffv);
//opserr≪Temp≪“\n”;

ret += theMaterial1d[mat]-> setTrialStrain(strain,Temp,strainRate);
}
// get tangent for material

strain = this-> computeCurrentStrain1d(mat,diff);
strainRate = this-> computeCurrentStrain1d(mat,diffv);

theMaterial1d[mat]- > setTrialStrain(strain,Temp,strainRate);
E = theMaterial1d[mat]- > getTangent();
//opserr≪“E”≪E≪“ Temp”≪Temp≪“\n”;

A.2. Function ParallelThermal

// $Revision: 1.12 $
// $Date: 2007–02-02 01:19:30 $
// $Source: /usr/local/cvs/OpenSees/SRC/material/uniaxial/ParallelMaterialThermal.cpp,v $
// File: ~/material/ParallelModel.C
//
// Written: fmk
// Created: 07/98
// Revision: A
//
// Description: This file contains the class definition for
// ParallelModel. ParallelModel is an aggregation
// of UniaxialMaterial objects all considered acting in parallel.
//
// What: “@(#) ParallelModel.C, revA”
#include < ParallelMaterialThermal.h>
#include < ID.h>
#include < Vector.h>
ParallelMaterialThermal::ParallelMaterialThermal(

int tag,
int num,
UniaxialMaterial ** theMaterialModels)

:UniaxialMaterial(tag,MAT_TAG_ParallelMaterialThermal),
trialStrain(0.0), trialStrainRate(0.0), numMaterials(num), theModels(0)
{
// create an array (theModels) to store copies of the MaterialModels
theModels = new UniaxialMaterial *[num];
if (theModels == 0) {
opserr ≪ “FATAL ParallelMaterialThermal::ParallelMaterialThermal() ”;
opserr ≪ “ ran out of memory for array of size: ” ≪ num ≪ “\n”;
exit(−1);

}
}

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1784

A.3. Function beamWithHingesThermal

#include < Domain.h>
#include < Node.h>
#include < Matrix.h>
#include < ForceBeamColumn2dThermal.h>
#include < ForceBeamColumn3dThermal.h>
#include < HingeMidpointBeamIntegration.h>
#include < HingeEndpointBeamIntegration.h>
#include < HingeRadauTwoBeamIntegration.h>
#include < HingeRadauBeamIntegration.h>
#include < ElementalLoad.h>
#include < NodalThermalAction.h>
#include < ThermalActionWrapper.h>
sections[0] = sectionI;
sections[1] = sectionI;
sections[2] = sectionM;
sections[3] = sectionM;
sections[4] = sectionJ;
sections[5] = sectionJ;
}
else if (strcmp(argv[1],“beamWithHingesThermal3″) == 0 ||

strcmp(argv[1],“beamWithHingesThermal”) == 0) {
theBeamIntegr =
new HingeRadauBeamIntegration(lenI, lenJ);

if (isShear) {
SectionForceDeformation *sectionL = theBuilder-> getSection(shearTag);
if (sectionL == 0) {
opserr ≪ “WARNING section L does not exist\n”;
opserr ≪ “section: ” ≪ shearTag;
opserr ≪ “\nBeamWithHinges: ” ≪ tag ≪ endln;
return TCL_ERROR;
}
sections[numSections++] = sectionL;
}
theElement = new ForceBeamColumn2dThermal(tag, ndI, ndJ, numSections,

sections, *theBeamIntegr,
*theTransf,massDens,numIters,tol);

delete theBeamIntegr;

References

[1] Kodur VKR, Naser MZ. Designing steel bridges for fire safety. J Constr Steel Res
2019;156:46–53. https://doi.org/10.1016/j.jcsr.2019.01.020.

[2] Naser MZ, Kodur V. Structural fire engineering. 1st ed. United States: McGraw Hill;
2020.

[3] Naser MZ. Autonomous Fire Resistance Evaluation. J Struct Eng 2020;146(6).
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002641.

[4] Naser M, Kodur V. Response of fire exposed composite girders under dominant
flexural and shear loading. J Struct Fire Eng 2018;9(2):108–25. https://doi.org/10.
1108/JSFE-01-2017-0022.

[5] Naser MZ, Kodur VKR. Comparative fire behavior of composite girders under flex-
ural and shear loading. Thin Walled Struct 2017;116:82–90. https://doi.org/10.
1016/j.tws.2017.03.003.

[6] Khorasani NE, Garlock M, Gardoni P. Probabilistic performance-based evaluation of
a tall steel moment resisting frame under post-earthquake fres. J Struct Fire Eng
2016;7(3):193–216. https://doi.org/10.1108/JSFE-09-2016-014.

[7] Gerasimidis S, Khorasani NE, Garlock M, Pantidis P, Glassman J. Resilience of tall
steel moment resisting frame buildings with multi-hazard post-event fire. J Constr
Steel Res 2017;139:202–19. https://doi.org/10.1016/j.jcsr.2017.09.026.

[8] International Organisation for Standardisation (ISO), Part 1: Fire resistance tests-
elements of building construction, ISO-834, Geneva, Switzerland, 1992.

[9] Standard test methods for fire tests of building construction and materials, ASTM-
E119-07, West Conshohocken, PA, 2007.

[10] Jiang J, Jiang L, Kotsovinos P, Zhang J, Usmani A, McKenna F, et al. OpenSees
software architecture for the analysis of structures in fire. J Comput Civ Eng
2015;29(1). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000305.

[11] Jeffers AE, Beata PA. Generalized shell heat transfer element for modeling the
thermal response of non-uniformly heated structures. Finite Elem Anal Des
2014;83:58–67. https://doi.org/10.1016/j.finel.2014.01.003.

[12] Elhami Khorasani N, Garlock MEM, Quiel SE. Modeling steel structures in
OpenSees: Enhancements for fire and multi-hazard probabilistic analyses. Comput
Struct 2015;157:218–31.

[13] Hu JW, Chicchi R, Mansouri I, Mortazavi SJ, Kim JJ. Thermal performance of steel
eccentrically braced frames subjected to fire conditions, 10th International
Symposium on Steel Structures (ISSS). South Korea: Jeju; 2019.

[14] G. Della Corte, R. Landolfo, F.M. Mazzolani, Post-earthquake fire resistance of
moment resisting steel frames, Fire Saf. J. 38(7) (2003) 593-612. https://doi.org/
10.1016/S0379-7112(03)00047-X.

[15] Mousavi S, Bagchi A, Kodur VKR. Review of post-earthquake fire hazard to building

structures. Can J Civ Eng 2008;35(7):689–98. https://doi.org/10.1139/L08-029.
[16] Zhang J. Developing OpenSees software framework for modelling structures in fire

Ph.D. thesis United Kingdom: Heriot-Watt University; 2014.
[17] Franssen JM. SAFIR a thermal/structural program modelling structures under fire.

Eng J, AISC 2005;42(3):143–58.
[18] Franssen JM, Gernay T. Modeling structures in fire with SAFIR®: Theoretical

background and capabilities. J Struct Fire Eng 2017;8(3):300–23. https://doi.org/
10.1108/JSFE-07-2016-0010.

[19] Wang Y, Burgess I, Wald F, Gillie M. Performance-based fire engineering of struc-
tures. New York: Spon Press; 2012.

[20] J.F. Volkmann, Implementation of the Fire Beam Element (FBE) in OpenSees for the
analysis of structures in fire, M.Sc. thesis, Stellenbosch University, South Africa,
2018.

[21] Clifton GC. Design of composite steel foor systems for severe fires, Report R4–131.
Manukau City: HERA; 2006.

[22] Walls RS. A beam finite element for the analysis of structures in fire Ph.D. thesis
South Africa: Stellenbosch University; 2016.

[23] Lu X, Xie L, Guan H, Huang Y, Lu X. A shear wall element for nonlinear seismic
analysis of super-tall buildings using OpenSees. Finite Elem Anal Des
2015;98:14–25. https://doi.org/10.1016/j.finel.2015.01.006.

[24] Shayanfar M, Abbasnia R, Khodam A. Development of a GA-based method for re-
liability-based optimization of structures with discrete and continuous design
variables using OpenSees and Tcl. Finite Elem Anal Des 2014;90:61–73. https://doi.
org/10.1016/j.finel.2014.06.010.

[25] Rubert A, Schaumann P. Structural steel and plane frame assemblies under fire
action. Fire Saf J 1986;10(3):173–84. https://doi.org/10.1016/0379-7112(86)
90014-7.

[26] Jiang L, Usmani A. Computational performance of beam-column elements in
modelling structural members subjected to localised fire. Eng Struct
2018;156:490–502. https://doi.org/10.1016/j.engstruct.2017.11.008.

[27] Jeffers AE, Sotelino ED. Analysis of steel structures in fire with force-based frame
elements. J Struct Fire Eng 2012;3(4):287–300. https://doi.org/10.1260/2040-
2317.3.4.287.

[28] EN1993-1-2, Eurocode 3: Design of steel structures - Part 1-2: General rules -
Structural fire design, vol. 2, Britisch Standards Institute, London, 2005.

[29] EN1992-1-2, Eurocode 2: Design of steel structures - Part 1-2: General rules -
Structural fire design, vol. 2, Britisch Standards Institute, London, 2004.

[30] Open System for Earthquake Engineering Simulation (OpenSees): https://opensees.
berkeley.edu/.).

S.J. Mortazavi, et al. Structures 27 (2020) 1777–1785

1785

https://doi.org/10.1016/j.jcsr.2019.01.020
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0010
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0010
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002641
https://doi.org/10.1108/JSFE-01-2017-0022
https://doi.org/10.1108/JSFE-01-2017-0022
https://doi.org/10.1016/j.tws.2017.03.003
https://doi.org/10.1016/j.tws.2017.03.003
https://doi.org/10.1108/JSFE-09-2016-014
https://doi.org/10.1016/j.jcsr.2017.09.026
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000305
https://doi.org/10.1016/j.finel.2014.01.003
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0060
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0060
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0060
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0065
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0065
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0065
https://doi.org/10.1139/L08-029
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0080
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0080
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0085
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0085
https://doi.org/10.1108/JSFE-07-2016-0010
https://doi.org/10.1108/JSFE-07-2016-0010
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0095
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0095
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0105
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0105
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0110
http://refhub.elsevier.com/S2352-0124(20)30412-4/h0110
https://doi.org/10.1016/j.finel.2015.01.006
https://doi.org/10.1016/j.finel.2014.06.010
https://doi.org/10.1016/j.finel.2014.06.010
https://doi.org/10.1016/0379-7112(86)90014-7
https://doi.org/10.1016/0379-7112(86)90014-7
https://doi.org/10.1016/j.engstruct.2017.11.008
https://doi.org/10.1260/2040-2317.3.4.287
https://doi.org/10.1260/2040-2317.3.4.287

	Implementation of new elements and material models in OpenSees software to account for post-earthquacke fire damage
	Introduction
	Theory and framework design
	OpenSees program methodology

	Programming strategy

	Materials and methods
	Verification with an experimental test
	Steel in fire
	Thermal expansion of steel
	Mechanical properties of steel at high temperature

	Fiber section
	Strains in fire

	Results and discussion
	Developing of the thermal spring element
	Developing of the thermal parallel material
	Developing of the beam with hinges thermal element

	Conclusions
	Declaration of Competing Interest
	Developed code in C++ for OpenSees
	A.1. Function ZeroLengthThermalEle
	A.2. Function ParallelThermal
	A.3. Function beamWithHingesThermal

	References

