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A B S T R A C T   

Shear failure in reinforced concrete beams poses a critical safety issue since it may occur without any prior signs 
of damage in some cases. Many of the existing shear design equations for steel fiber reinforced concrete (SFRC) 
beams include significant uncertainty due to failure in reflecting the phenomenology of shear resistance accu
rately. Given these, adequate reliability evaluation of shear design provisions for SFRC beam is of high signifi
cance, and increased accuracy and minimisation of variability in the predictive model is essential. This 
contribution proposes machine learning (ML) based methods - Gaussian Process regression (GPR) and the 
Random Forest (RF) techniques - to predict the ultimate shear resistance of SFRC slender beams without stirrups. 
The models were developed using a database of 326 experimental SFRC slender beams obtained from previous 
studies, utilising 75% for model training and the remainder for testing. The performance of the proposed models 
was assessed by statistical comparison to experimental results and to that of the state-of-practice existing shear 
design models (fib Model Code 2010, German guideline, Bernat et al. model). The proposed ML-based models are 
in close alignment with the experimentally observed shear strength and the existing predictive models, but 
provide more accurate and unbiased predictions. Furthermore, the model uncertainty of the various resistance 
models was characterised and investigated. The ML-based models displayed the lowest bias and variability, with 
no significant trend with input parameters. The inconsistencies observed in the predictions by the existing shear 
design formulations at the variation of shear span to effective depth ratio is a major cause for concern; reliability 
analysis is required. Finally, partial resistance safety factors were proposed for the model uncertainty associated 
with the existing shear design equations.   

1. Introduction 

Given the quasi-brittle behaviour of concrete in tension, shear failure 
in reinforced concrete (RC) beams without web reinforcements (stir
rups) can lead to disastrous consequences. Shear failure, which is often 
initiated by inclined cracks, is an undesirable mode of failure which can 
occur without any prior warning. The different modes of shear failure in 
RC beams without stirrups include diagonal-tension, shear-compression 
and web-crushing [1,2]. The concept of incorporating fiber re
inforcements to improve the behaviour of concrete has been introduced 
since ancient time [3,4]. Fibers are produced from various types of 
materials, namely steel, carbon, plastic, glass and natural fibers (coconut 
(coir) fiber, bamboo fiber, wood fiber, sisal fiber) [5,6]. Steel fibers are 

the most prevalent form of fibers used in reinforced concrete members. 
This can be attributed to their capability to restrain crack opening, 
enhance ductile and post-cracking behaviour; increase flexural tough
ness, tensile strength, energy absorption and improve shear behaviour 
[7-10]. Over the past decades, extensive experimental and numerical 
studies have been undertaken on the shear strength of SFRC beams [9- 
14]. The various studies reported that the inclusion of steel fibers in 
concrete structural members greatly improves their shear capacity and 
ductility. 

The shear behaviour of SFRC beam is influenced by several param
eters and mechanism like the conventional reinforced concrete beams. 
There is no yet an international consensus on some of the critical pa
rameters and mechanisms governing the shear behaviour of SFRC beams 
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[15]. Some of these parameters include the effective member depth d, 
the concrete compressive strength fc, the aggregate size dag, the shear- 
span to effective depth a/d, and amount of longitudinal reinforcement 
ratio ρ, the volume percentage of fibers , aspect ratio (ratio of length to 
the diameter of fibers) and shape of steel fibers [16]. Reinforced con
crete beams can be categorised on the basis of the shear span to effective 
depth a/d ratio. Slender beams are those with a/d > 2.5 and may fail 
either in shear or in flexure [1,17]. 

Shear failure poses a crucial safety issue since it may develop swiftly 
with no prior signs of damage. Consequently, shear design provisions 
should be reliable and accurate. Numerous design expressions have been 
introduced in the current design standards [18-20] and literature. 
However, developing a precise and acceptable design formulation for 
shear capacity of SFRC beams is still an evolving process. A summary of 
most of the proposed shear design models for SFRC beams without 
stirrups in current literature and design guidelines can be found in 
[15,16]. Majority of the existing shear design formulations are either 
empirical or semi-empirical based, except for the models based on the 
Modified Compression Field Theory (MCFT) [21,22], the Dual Potential 
Capacity Model [23], plasticity-based models [24,25] and the modified 
Multi-Action Shear Model [26]. The comparison of the various SFRC 
shear resistance models, as presented in [15,26], indicate the difficulty 
and complexity of the accurate prediction of shear capacity of SFRC 
beams. Not only do the resistance predictions of the various procedures 
differ from each other, but they also vary from the experimentally 
observed shear strength. Given these uncertainties, there is an interest in 
the adequate assessment of the reliability of SFRC beams in the case of 
shear failure. To that end, maximum possible accuracy and minimum 
possible variability in the predictive model are essential. These qualities 
can also be translated to model uncertainty, which is a quantifiable 
measure in structural reliability assessments. 

In recent years, innovations in computing have led to a boom in the 
utilisation of artificial intelligence (AI) across all industries. Machine 
learning (ML) or soft computing (SC) techniques have been extensively 
applied to a wide range of civil engineering problems such as design 
optimisation, stochastic simulations, reliability analysis, performance 
evaluating of structural systems of high complexity [27-32]. Various 
machine learning approaches such as Random Forest, Gene Expression 
Programming (GEP), Bayesian Networks, Generic Algorithms, Gaussian 
Process regression, Support Vector Machines, Artificial Neural Networks 
(ANNs), have been successfully implemented in modelling different 
structural engineering problems [32-37]. However, a survey of available 
literature indicates that previous studies on ML-based modelling of shear 
strength of SFRC beams are limited. Most of the available studies adopt 
popular tools such as ANN [37-41] and GEP [42-49] for modelling the 
shear resistance of SFRC beams using an experimental database con
taining both slender and non-slender beams. Previous studies [50,51] 
identified some of the major challenges facing the successful imple
mentation of ANN as the problem of over-fitting, problem of obtaining 
the optimum hyperparameters and suitable network topology, poor 
generalising performance and slow convergence speed. 

Even though ANN and GEP algorithms have been well applied in 
several studies involving the shear capacity prediction of SFRC beams, 
more efficient and accurate machine learning algorithms should be 
investigated for more extensive database and recent experimental re
sults. More recent studies present soft computing techniques such as the 
Gaussian Process regression (GPR) and the Random Forest (RF) with 
high efficiency in modelling complex problems in structural engineering 
[32,51-55]. Both algorithms have been successfully implemented to 
solve nonlinear, small samples and high-dimensional issues [32,51-62]. 
Some of the advantages of Gaussian Process includes meaningful 
hyperparameters, its good generalisation capability, no required pre
defined structure, the tendency to incorporate prior knowledge and 
specifications via the selection of kernel functions and, directly captures 
the model uncertainty [51]. Besides GPR and RF, other ML techniques 
including, Bayesian networks, or hybrid methods such as adaptive 

neuro-fuzzy inference systems, have been investigated as possible can
didates for efficient strength modelling. 

The main aim of this contribution is to propose efficient ML-based 
shear resistance models for SFRC slender beams without stirrups and 
to characterise the model uncertainties in shear resistance models. To 
this aim, two machine learning algorithms are adopted, namely the 
Gaussian Process regression (GPR) and the Random Forest techniques. 
These ML-based algorithms are applied for the first time in predicting 
the shear strength of SFRC slender beams. At first, an overview of some 
of the existing shear predictive models for SFRC beams without stirrups 
are briefly presented (Section 2). The background of the proposed ma
chine learning techniques is discussed in Section 3. Using an experi
mental database of 326 specimens on SFRC slender beam tests, from the 
database compiled by [15], the models are trained and tested. The 
experimental database is discussed in Section 4. A comparative assess
ment of the developed ML-based models with experimentally observed 
shear strength is conducted and discussed. The developed ML-based 
models are assessed as regards their accuracy and efficiency compared 
to the state-of-practice predictive model embedded in international 
design standards and literature (Section 5). An estimate of resistance 
partial safety factors for model uncertainties associated to shear resis
tance models for SFRC beams is proposed in Section 5. While other ML- 
based algorithms (such as ANN and GEP) have been mostly applied in 
predicting the shear resistance of SFRC beams in the literature studies 
mentioned earlier, this contribution is thus a pioneer work in the 
application of the Gaussian Process regression and Random Forest 
techniques to model the shear resistance of SFRC beams, and also an 
improvement of the state-of-the-art. The outcome of this study is valu
able for the establishment of reliability-based design codes for shear 
resistance of SFRC beams. 

2. Predictive equations for the shear resistance of SFRC beams 
without stirrups 

This section presents a summary of the current shear design models 
for SFRC beams without stirrups from design guidelines and recently 
published literature. The presented shear strength formulations are later 
considered in Section 4 for comparative study. 

2.1. German guideline (DAfStB) [19] 

The mean shear resistance of SFRC beam is given as a summation of 
shear capacity of the concrete contribution and fiber contribution 
expressed as Eq. (1). 

VDAfStB = 0.15kbwd(100ρl.fcm)
1/3

+∝f
cf

f
ct,Rubwh (1)  

f f
ct,Ru = kf

Fkf
G0.37f f

cfI,L2 (2) 

To obtain the values of f f
cfI,L2, the expressions in Eq. (3) is used [62]. 

Also, applied in the assessment conducted in [15] 

fspfc = 0.63
̅̅̅̅̅̅
fcuf

√
+ 0.288F

̅̅̅̅̅̅
fcuf

√
+ 0.052F (3) 

where bw and d is the width and effective depth of beam cross- 
section, respectively. 

k is the size effect factork = 1 +

(
200
d

)0.5
≤ 2 

fcm is the mean concrete strength 
f f
ct,Ru is the tensile strength of SFRC 

ρl is the reinforcement ratio 
kf

F is fiber orientation factor taken as 0.5 for shear 
f f
cfI,L2 is the post-cracking flexural strength for a deflection of 3.5 mm 

Af
ct is the effective area expressed as Af

ct = bw*min(d,1.5m)

kf
G is the fiber size factor expressed as kf

G = 1.0 + 0.5Af
ct ≤ 1.7 
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∝f
c is the factor accounting for the long term effects 

F is the fiber factor 
h is the height of cross-section. 

2.2. Model Code 2010 [20] 

The mean shear resistance of SFRC beams without stirrups is 
expressed as Eq. (4). 

VMC− 10 = 0.18kbwd
[

100ρl.fcm

(

1 + 7.5.
fFtu

fct

)]1/3

(4) 

Since the information on the tensile strength is not reported in the 
database utilised in the comparative assessment conducted in Section 4, 
f Ftu is estimated similarly as the German guideline in this study. 

where fct is the tensile strength of concrete without fiber. fFtu is the 
ultimate tensile strength for the fiber reinforced concrete. 

2.3. Modified multi-action shear model for SFRC beams [26] 

The proposed modified MASM formulation for estimating the shear 
strength of SFRC beam without stirrups is expressed as Eq. (5). 

VM− MASM =

[

ζ
(

0.84 − 0.10
σtu

fctm

)
x
d
+ 0.08+ 1.10

σtu

fctm

]

fctmbwd (5) 

The average residual tensile stress σtu is obtained using Eq. (6) 

σtu

fct
= 2η0η1F (6) 

where x is the neutral axis of plain concrete. 
ζ is the size and slenderness effect factor. 
η0 is the fiber orientation factor taken as 0.405 
η1 is the length efficiency factor for fiber 

3. Machine learning algorithms and performance evaluation 

3.1. Gaussian Process (GP) 

The Gaussian Process is a powerful tool that provides a probabilistic, 
non-parametric supervised learning technique for classification and 
regression problems. Supervised learning is concerned with inferring the 
values of response variables (or outputs), for a given set of inputs or 
predictor variables. This study is focused only on the regression aspect. 
The GP method has received extensive attention due to its capability and 
effectiveness to handle nonlinear data using kernel machine functions. 
This technique is presently well accepted and utilised in different fields 
of structural engineering [51-57]. The GP regression is summarised in 
this section; further description can be found in [63]. A Gaussian dis
tribution is a continuous probability distribution, with a mean vector μ 
and covariance:x̃N(μ, σ) [63]. A univariate Gaussian distribution, 
which has a mean vector and covariance can be defined by the function 
expressed in Eq. (7) 

f (x) =
1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e−
(x− μ)2

2σ2 (7) 

The Gaussian Process is a Gaussian random function having a 
covariance function k(x, x’) and a mean function m(x), expressed in Eq. 
(8). The equation represents that the function f is distributed as a GP 
with mean function m and covariance function k. 

f (x)̃GP(m(x), k(x, x’)) (8) 

The covariance function/kernel function, k(x, x’), can be found in 
any function that uses any two arguments, such that k(x, x’), generates a 
nonnegative definitive covariance matrix K. GP has different types of 
possible covariance functions, or kernel functions some of which in
cludes squared exponential kernel (Eq. (9)), exponential kernel (Eq. 

(10)), Matern 5/2 (Eq. (11)) and rational quadratic kernel (Eq. (12)). 
This study employs the four kernel functions to predict the shear ca
pacity of SFRC slender beams. 

k(x, x’) = σ2
f exp

(

−
1

2l2(x − x’)
T
(x − x’)

)

(9)  

k(x, x’) = σ2
f exp

(− r
l

)
(10)  

k(x, x’) = σ2
f

(

1+
̅̅̅̅̅
5r

√

l
+

5r2

3l2

)

exp
(

−

̅̅̅̅̅
5r

√

l

)

(11)  

k(x, x’) = σ2
f

(

1 +
r2

2αl2

)− ∝

(12) 

where l denotes the length parameter of the kernel function. r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − x’)
T
(x − x’)

√

. α is a positive-valued scale-mixture parameter. σf 

and l are hyperparameters 
Given we have a set of training data or observations y, on which each 

element is a sample from a Gaussian distribution, representing the real 
value of the observation affected by some independent Gaussian noise ε 
with variance σn. The observations can be viewed as being the sum of a 
function plus an additive Gaussian noise, expressed in Eq. (13) [63]. 

y = f (x)+ ε (13) 

Considering this, we can predict a new dependent variable y* given a 
new test input x*. The GP is a set of random variables with a Gaussian 
distribution having a zero mean. The problem can then be represented 
as: 
[

y
y*

]

̃N

(

0,

[
K(X,X) + σ2

nI K(X,X*)

K(X*,X) K(X*,X*)

])

The different K matrices are built using any function k(x, x’) able to 
perform as a covariance function. An elaborate description of the 
Gaussian Process methodology can be found in [55,63]. 

3.2. Random Forest algorithm 

Random forest (or random decision forests, randomised trees) is an 
ensemble machine learning technique for performing both regression 
and classification tasks, using multiple decision trees (DT). A random 
forest R is an ensemble of T independent decisions trees R = {R1,⋯.,Rt ,

⋯.RT}. In order to construct independent decision trees based on a 
unique training set, Breiman [64] introduced the randomisation tech
nique known as bagging (also called Bootstrap aggregation). For a given 
training set Z = {X(n),Y(n)}

N
n=1, a bootstrap is essentially a subset Zt of 

the complete training set, in which component has been sampled at 
random using a uniform distribution, and this, with or without 
replacement. Each decision tree Rt of the ensemble is trained using a 
different bootstrap Zt. The results of the ensemble are obtained by 
aggregating together, using averaging, the predictions from all indi
vidual trees. 

Considering the random forest R = {Rt}
T
t=1, with each tree Rt 

yielding aa partition pt of the feature space χ. As each individual tree can 
be seen as a surjective function associating an observation X ∈ χ to a cell 
A(zt)

t of partition pt, the whole forest is a function which associates X to 
an ensemble of cells of trees (Eq. (14)) 

R(X) = {A(zt)
t ,⋯.,A(zt)

t ,⋯.,A(zt)
t } (14) 

Considering that each pt is equiprobable, the forest prediction can 
then be simply computed by averaging the tree posteriors (Eq. (15)) 

P(Y|X) =
1
T
∑T

t=1
P(Y|X ∈ A(zt)

t , pt) (15) 
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Breiman [64] demonstrated that the random forest algorithm pro
vides good generalisation capability. Random forests offer a flexible 
framework with room for selecting task-specific objective functions, 
different classes of splitting functions or posterior models. The main 
hyperparameters in Random Forests are the number of trees and the tree 
depth. Increasing the number of trees makes it possible to average out 
noisy predictions, and thus corresponds in a monotonic decrease of the 
prediction error. The maximal allowable depth of the tree is a key 
parameter that needs to be optimised as it directly impacts the gener
alisation ability of each tree [65]. The structure of RF is shown in Fig. 1. 
An elaborate description of the Random Forest methodology can be 
found in [64]. 

4. Construction of the ML-based shear resistance predictive 
models and performance evaluation 

A brief discussion of the various stages involved the development of 
the ML shear strength predictive models are presented in this section. 

4.1. Processing of the experimental database 

Several experimental investigations have been conducted on the 
shear strength of SFRC beams without shear stirrups. A large database of 
488 experimental on SFRC beams without stirrups was recently 
compiled by [15]. From the originally collected 488 experiments, a total 
of 162 beams with the shear-flexure mode of failure and shear-span to 
effective depth ratio a/d < 2.5 (non-slender beams) were filtered out, 

resulting in a subset of 326 experimental tests investigated in this study. 
The resulting database of 326 experiments was adopted for model 
development. Specimens in the evaluation database consist of slender 
beams with a flanged and rectangular cross-section. 

All the beam specimens in the database failed majorly by shear- 
compression and diagonal tension and had an a/d ratio greater or 
equal to 2.5. The experimental database covers a wide variety of shear 
configurations from small to large geometry and low to high reinforce
ment. The statistical properties of the main parameters of the evaluation 
database are presented in Table 1. The main parameters include the 
shear capacity Vu, the ratio of the shear span to effective depth a/d, 
beam effective depth d, beam width bw, amount of longitudinal rein
forcement ρl, concrete strength fc, aggregate size da, the steel fiber factor 
Fsf . The steel fiber factor is a function of the percentage volume Vf , 
diameter df and length of fibers Lf (see Eq. (16)). 

Fsf =
Vf Lf

df
(16) 

The shear capacity Vu of the SFRC beams as a function of the main 
shear parameters are presented in Fig. 2. Generally, as shown in Table 1 
and Fig. 2, the range of parameters of the database corresponds to what 
can be found practical design situations. Although data for large beam 
sizes are few, the dataset is deemed representative of most real appli
cations; and that of design situations covered by current design 
provisions. 

Fig. 1. Schematic diagram for random forest prediction.  
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4.2. Preparation of testing and training database 

The construction of an efficient machine learning-based shear 
strength model for SFRC beams requires the addition of the critical pa
rameters affecting shear strength as input variables. Various studies [12- 
16], identified the ratio of the shear span to effective depth a/d, beam 
effective depth d, beam width bw, amount of longitudinal reinforcement 
ρl, concrete strength fc, aggregate size da and the steel fiber factor Fsf as 
essential variables influencing the shear resistance of SFRC beams. For 
this reason, the mentioned parameters are considered as input param
eters for the development of the ML-based models for this study. 

In order to develop and implement the ML algorithms, the experi
mental evaluation database was split into two subsets: a training and 
testing database. The training database is adopted to develop both the 
GP and the RF models, whereas the testing database is utilised to 
appraise the performance of the proposed predictive models. It was 
ensured, as much as possible, that the input variables of the training and 
the testing data patterns are statistically consistent while dividing the 
database into subsets. 75% of the evaluation database (244 out of 326 
tests) are utilised for training, and the remainder (82 tests) are employed 
for model testing. Table 2 provides a summary of the input and output 
parameters for the testing and training database. The geometrical 
properties are defined by d, bw and the a/d. The geometry of a typical 
beam specimen can be seen in Fig. 3. The properties of the steel rein
forcement are described as the percentage of steel reinforcement ρl. The 
concrete strength fc and the aggregate size da describes the concrete 
properties. The attributes of the fibers are defined by the tensile strength 
of fiber ft and the steel fiber factor Fsf (which is a function of the per
centage volume Vf , diameter df and length of fibers Lf ). The shear ca
pacity Vu of the SFRC beams is considered as the single output variable. 

4.3. Implementation of the machine learning algorithms 

The algorithms of the Gaussian Process and the Random Forest 
techniques were implemented in a MATLAB environment. The algo
rithms were trained using the training evaluation database summarised 
in Table 2. Each specimen in the training database contains eight input 
variables and one output variable (shear strength). The objective of 
implementing the ML algorithms is to develop a model which reasonably 
predicts the target value (shear capacity) of the test cases in the testing 
database given only the input variables. 

Various types of kernel functions can be used in Gaussian Process 
regression models. Considering that specific kernel functions are suit
able for a given dataset type, four GP kernel functions are considered in 
this investigation. The investigated kernel functions include the squared 
exponential kernel (Gaussian/RBF) (Eq. (9)), exponential kernel (Eq. 
(10)), Matern 5/2 (Eq. (11)) and rational quadratic kernel (Eq. (12)). In 
order to avoid parameters in higher numeric ranges dominating those in 
smaller numeric ranges, the data were normalised using the Z-score 
normalisation technique. In the Z-score method, the values are 

normalised based on the mean μX and standard deviation σX of the data 
set of the input variable X (e.g. concrete strength). For Xi value of input 
variable X, the normalised value is given as Ui =

Xi − μX
σX

. Normalisation 
helps to avoid numerical problems during the calculation. In this 
investigation, a 10-fold cross-validation approach is considered 

The implementation of the GP and RF algorithms in this study re
quires the proper selection of the algorithm hyperparameters. The 
hyperparameters for the GP regression model includes the length 
parameter l, the standard deviation of the noise σn and the covariance σf . 
In the case of the Random Forest model, the design parameters include 
the depth of the tree; the number of features, seeds, iterations, execution 
slots and the batch size. The identification of the optimal/best values of 
the design parameters is majorly a trial and error process. Therefore, the 
optimum parameters were obtained using the optimum search method. 

4.4. Predictive model performance evaluation metrics 

4.4.1. Statistical parameters - Root-mean-square error (RMSE), mean 
absolute error (MAE) and coefficient of determination (R2) 

The performance of the developed ML-based models is investigated 
in terms of various statistical parameters such as R2, MAE and RMSE. 
The best model is the one R2 value closest to one along with the mini
mum values of MAE and RMSE (nearest value to zero). The MAE value is 
a performance metric measured by taking the average of the absolute 
difference between actual values and the predictions. The function is 
expressed in Eq. (10). 

MAE =

(∑n
i=1

⃒
⃒Rpred − Rexp

⃒
⃒

n

)

(17) 

The coefficient of determination R2 measures how well the regres
sion line replicates the actual outcomes. When the R2 = 1, then a perfect 
fit is obtained between the predicted and the true/actual values. The 
mathematical representation for R2 is expressed as Eq. (18). 

R2 = 1 −
∑n

i=1

(
Rpred − Rexp

)2

∑n
i=1

(
Vpred

)2 (18) 

The RMSE is obtained as the square root of the average of squared 
errors obtained as the difference between the predicted and the 
measured values. The RMSE is determined as Eq. (19). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Rpred − Rexperiment

)2

√

(19) 

where Rexp and Rpred are experimental and predicted values. n is the 
number of data samples 

4.4.2. Predictive model error (model uncertainty) 
The developed models are assessed in terms of the mean (bias) and 

standard deviation (scatter) of the model error or model uncertainty. 

Table 1 
Statistical summary of the experimental evaluation database (326).  

Parameters Range Min 25th Percentile 50th Percentile 75th Percentile Max Mean S.D C.o.V 

Vu(kN)  686.64 12.89 45.84 107.38 191.33 699.53 134.44 128.75 0.96 
Fsf (-)  1.90 0.10 0.30 0.50 0.64 2.00 0.51 0.31 0.62 
ft(MPa)  4653.00 260.00 1100.00 1100.00 1200.00 4913.00 1264.36 476.60 0.38 
da(mm)  21.60 0.40 9.55 10.00 12.50 22.00 9.94 5.23 0.53 
ρl  0.05 0.00 0.02 0.03 0.03 0.06 0.03 0.01 0.38 
fc(MPa)  205.23 9.77 33.22 40.77 53.54 215.00 49.33 26.94 0.55 
a/d(-)  3.50 2.50 2.99 3.40 3.50 6.00 3.37 0.66 0.20 
bw(mm)  255.00 55.00 101.00 150.00 200.00 310.00 151.96 57.77 0.38 
d(mm)  837.75 85.25 165.50 251.00 333.50 923.00 264.15 160.46 0.61 

* SD denotes standard deviation, C.o.V denotes the coefficient of variation, Max denotes maximum, Min denotes minimum. 
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Model uncertainty is described as the deficiency of a model to accurately 
represent and express a physical phenomenon (in this study, the shear 
strength) due to lack of understanding of the problem, conservative 
assumptions and mathematical simplifications [2,66]. In structural 

reliability framework, the model uncertainty is expressed as a random 
variable with a mean value, standard deviation and probability distri
bution. It has been shown to have a major impact on shear reliability 
analysis [67,68]. For the predictive models considered in this study, the 

Fig. 2. Shear capacity Vu of the SFRC beams as a function of the main shear parameters.  
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model uncertainty (or model error) associated with a single specimen x 
is defined as the ratio of the experimental to predicted shear strength, 
expressed in Eq. (20) [66,67]. 

Mx =
Rexp,

Rpred,x(X)
(16a)  

M(μM , σM) (16b) 

where, Mxis the model uncertainty for a single beam test x in shear. X 
represents the input variables for the predictive model (a/d, d, bw, ρl, 
fc,ft, da and Fsf ). μM and σM represents the mean and standard deviation 
of the model uncertainty variable, respectively. 

The best model is the one with model uncertainty mean value μM 
closest to one along with the minimum standard deviation σM (nearest 
value to zero). μM > 1implies that the model predicts a lower value of 
ultimate shear capacity than the failure load of the beam specimen and 
thus underpredicts. Conversely, μM < 1 implies that it overpredicts the 
actual shear resistance. 

5. Results and discussion 

5.1. ML-based predictive models: Performance evaluation 

In this study, four kernel functions (Squared exponential kernel, 
Exponential kernel, Matern 5/2 and Rational quadratic kernel) were 

trialled to develop the most reasonable GPR model. The optimum pa
rameters for the kernel functions (the length parameter l, standard de
viation of the noise σn and the covariance σf ) were obtained using the 
optimum search method. The performance of the developed GPR model 
using the training and testing database, and for various kernel functions 
is presented in Table 3. As shown in the table, all the kernel functions 
exhibited a reasonable degree of accuracy in predicting the shear 
strength of SFRC beams. It is evident that the rational quadratic kernel 
produced the best performance with R2 = 0.94 and the lowest RMSE and 
MAE scores (32.68 and 19.23 respectively) using the training data. 
Similarly, R2, RMSE and MAE values of 0.94, 30.8 and 22.4 is obtained 
for the testing database, respectively. Hence further discussions in this 
study will be based on the GPR rational quadratic model. The statistical 
results of the developed Random Forest predictive model are presented 
in Table 4. Compared to the GPR models, the RF model displayed better 
performance in terms of the R2 of the training and testing database. The 
RMSE and MAE values from both the GPR and RF models are 
comparable. 

To further demonstrate the efficiency of the proposed models (GPR 
and RF), the plots of their predicted shear resistance versus experi
mentally observed shear strength for the training and testing database 
are presented in Figs. 4 and 5 respectively. As shown on the figures, the 
predictions of the proposed models match well with the experimentally 
observed strength. A high prediction capability was obtained by the 
testing database even though it was not used for the training of the 
models. This demonstrates the generalisation capability of the proposed 
models. As the value of the shear strength increases, the scatter becomes 
more significant due to the reduction in the number of observations. 
Fig. 6 presents a head-to-head plot of the predicted and experimental 
shear resistance against the record number of observations (testing 

Table 2 
Statistical summary of the training and testing dataset.  

Parameters Range Min Max Mean Standard Deviation Coefficient of Variation 

Training dataset (244) 
Vu(kN)  686.64 12.89 699.53 133.98 128.70 0.96 
Fsf (-)  2.75 0.11 2.86 0.60 0.40 0.66 
ft(MPa)  4653.00 260.00 4913.00 1263.69 475.73 0.38 
da(mm)  21.60 0.40 22.00 9.94 5.22 0.53 
ρl  0.05 0.00 0.06 0.03 0.01 0.38 
fc(MPa)  205.23 9.77 215.00 49.35 26.89 0.54 
a/d(-)  3.50 2.50 6.00 3.37 0.66 0.20 
bw(mm)  255.00 55.00 310.00 151.75 57.75 0.38 
d(mm)  837.75 85.25 923.00 309.73 163.76 0.53 
Testing database (82) 
Vu(kN)  701.92 18.61 720.53 162.40 126.65 0.78 
Fsf (-)  2.75 0.11 2.86 0.60 0.40 0.66 
ft(MPa)  2340.00 260.00 2600.00 1293.89 472.35 0.37 
da(mm)  21.60 0.40 22.00 11.84 4.10 0.35 
ρl  0.05 0.01 0.06 0.03 0.01 0.36 
fc(MPa)  125.95 19.60 145.55 47.92 24.21 0.51 
a/d(-)  3.50 2.50 6.00 3.29 0.58 0.18 
bw(mm)  245.00 55.00 300.00 160.61 48.60 0.30 
d(mm)  824.75 85.25 910.00 309.73 163.76 0.53  

Fig. 3. Geometry of a typical beam specimen.  

Table 3 
GPR model performance for different kernel functions.  

Model Training dataset Testing dataset  

RMSE  R2  MAE  RMSE  R2  MAE  

Rational Quadratic 32.68 0.94 19.23 30.8 0.94 22.4 
Matern5/2 32.83 0.94 19.36 30.6 0.94 22.4 
Exponential 33.93 0.93 19.8 33.48 0.93 23.5 
Gaussian RBF 34.51 0.93 20.9 31.28 0.94 23  
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database). From the chart, it can be noticed that the trends by the 
developed models have a good resemblance and a minimal mismatch 
with the trendline of experimental results for the testing datasets (see 
Fig. 6). 

5.2. Comparative assessment of the developed ML-based models and 
existing SFRC shear strength models 

A comparative assessment is carried out to evaluate the predictive 
capability of the developed ML-based models (GPR and RF) against 

existing shear resistance predictive models for SFRC beams. The existing 
shear strength models considered in this study include the code equa
tions from Fib Model Code 2010 (MC-10) (Eq. (4)) and the German 
guideline (DAfStB) (Eq. (1)) and the recently developed modified MASM 
equation (M− MASM) (Eq. (5)). The included safety factors/bias used in 
the code equations were removed (taken as 1) when the models were 
evaluated against each other and the experimental database. A plot of 
the correlation between the experimentally observed shear strength Vexp 
and the predicted shear strength Vpred for the five considered models 
(GPR, RF, MC-10, DAfStB and M− MASM), using the testing evaluation 
database is presented in Fig. 7. A tolerance of ± 20% is shown on the 
graph. Generally, the predicted capacity by the various methods deviate 
from the ’perfect line’ (defined as the point where Vexp = Vpred). As 
shown on the plot, the predictions from the GPR model are less dispersed 
compared to other methods and mostly lie within ± 20% line of 
equality/perfect line. 

A statistical comparison of the proposed ML-based shear strength 
models in terms of the model uncertainty statistics (mean and coefficient 
of variation), R2, RMSE and MAE, using the testing database, are sum
marised in Table 5. A comparison of the ML-based models with the 
existing design models in terms of RMSE and MAE results is illustrated in 
Fig. 8. From Table 5 and Fig. 8, it is observed that the ML-based models 
have the highest R2 values and the lowest RMSE and MAE values of all 
the models investigated. The respective uncertainty distributions are 
shown in a box plot presented in Fig. 9. The model uncertainty variable 

Table 4 
RF model performance.  

Model Training dataset Testing dataset  
RMSE(kN) R2  MAE(kN) RMSE(kN) R2  MAE(kN)

Random 
Forest 

39.4 0.95 21.9 37.32 0.96 23.03  

Fig. 4. Plot of predicted shear capacity (kN) against experimental shear ca
pacity (kN) using the training database. 

Fig. 5. Comparison of predictions from the GPR (rational quadratic) and RF to 
the experimental values using STEM plot (testing database). 

Fig. 6. Comparison of predictions from the GPR (Quadratic) and RF to the 
experimental values using the testing dataset. 

Fig. 7. Predicted value versus the experimental shear capacities for the 
developed models and existing method. 
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related to the RF model has a mean value of μM =
Vexp
Vpred

= 1.00 (closest to 
the optimal value of 1). Concerning dispersion, the RF model produces 
the lowest standard deviation of all the models investigated with σM =

0.18. The MC-10 shear model has the highest mean value of μM = 1.24 
(largest conservative bias) and the most substantial dispersion with 
σM = 0.35. Table 6 presents the model error statistics obtained for MC- 
10, DAfStB and M− MASM from previous studies using the database 
compiled by [15] containing both slender and non-slender SFRC beams. 
The same database was used for the assessment conducted in this study 
with the exclusion of non-slender beams. The model uncertainty char
acteristics obtained for existing models investigated in this study are 
comparable to those recorded by other researchers listed in Table 6. 

Considering the statistical parameters R2, model error mean value μM 
and standard deviation σM, the overall precision of the RF model exceeds 
that of the GPR as well as the existing models investigated. Although the 
accuracy of the GPR model is higher than that of the existing models. 

In order to establish the most suitable predictive model, a rational
ised ranking method for predictive models, introduced by Olalusi & 
Spyridis [69] is adopted in this study. According to this method, the 
models are ranked, based on the following criteria:  

i. Best ranking for the highest R2  

ii. Best ranking for least RMSE  
iii. Best ranking for least MAE  
iv. Best ranking for mean model error μM closest to the optimal value 

of 1  
v. Best ranking for least standard deviation σM  

vi. Best ranking for the minimum ratio of (Mmax/Mmin)

For each criterion, the five models investigated are awarded ranking 
scores from 1 to 5, starting with the model with the best ranking. The 
overall ranking is the average of ranking scores from criteria i-vi. Based 
on this system, the developed RF model ranks first, followed by the GPR 
model, the DAfStB model, the M− MASM and the MC-10 model 
(Table 7). 

5.3. Influence of input variables Xi on the model performance (sensitivity 
analysis) 

A sensitivity analysis is undertaken to measure the significance of the 
input parameters in predicting the shear strength of SFRC beams. The 
sensitivity of the input parameters is assessed by omitting each input 
variable from the database once at a time and using the resultant dataset 
to train and test the proposed models. The significance of each variable 
on the shear resistance of SFRC beams was evaluated using by R2, RMSE 
and MAE values of the training and testing database and the results 
presented in Table 8. Since the rational quadratic kernel yielded the best 
performance for the GP regression model, the sensitivity analysis of the 
model was conducted using the rational quadratic kernel. The table 
shows that all the input variables considered to affect the shear strength 
of SFRC beams. However, compared to other input variables, the beam 
depth, beam width and concrete strength are the most sensitive vari
ables affecting the shear strength of SFRC beams. It can be noted that 
omitting the tensile strength of fiber ft results in a minimal change in the 
performance of the developed models. 

Table 5 
Statistical properties of the developed and existing model (using the testing data 
set).  

Parameters GPR RF MC-10 DAfStB M− MASM 

R2  0.94 0.95 0.86 0.86 0.87 

RMSE 32.68 39.4 70.8 58.6 64.4 
MAE 19.23 21.9 46.82 39.9 40.2 
Mean μM  0.98 1.00 1.24 1.17 1.17 
Standard deviation σM  0.20 0.18 0.35 0.32 0.33 
Coefficient of variation VM  0.20 0.18 0.28 0.27 0.28 
Skewness (ηM) 0.03 0.01 0.38 0.45 0.75 
Range 1.25 0.98 1.68 1.67 2.27 
Minimum (Mmin) 0.43 0.60 0.55 0.51 0.31 
Maximum(Mmax) 1.68 1.58 2.2 2.17 2.58  

Fig. 8. Comparison of the developed models with existing models in terms of 
RMSE and MAPE. 

Fig. 9. Box plot of model error distributions.  

Table 6 
Model error statistics from literature.  

Model Source Mean(μMF) SD 
(σMF)

Sample 
size # 

Fib Model Code 
(MC-10) 

[18] (Slender and non- 
slender beams) 

1.24 0.36 488 

DAfStB [18] (Slender and non- 
slender beams) 

1.12 0.31 488 

M− MASM [29] (Slender and non- 
slender beams) 

1.15 0.25 488  

Table 7 
Predictive model’s ranking system.  

Parameters GPR RF MC-10 DAfStB M− MASM 

Ranking for R2  2 1 3 3 4 

Ranking for RMSE 1 2 5 3 4 
Ranking for MAE 1 2 5 3 4 
Ranking for μM  2 1 4 3 3 
Ranking for σM  2 1 5 3 4 
Ranking for (Mmax/Mmin) 2 1 3 4 5 
Overall ranking 1.7 1.3 4.2 3.2 4.0  
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Table 8 
Impact of input variables on the performance of the proposed ML models.  

Model Input variables Training dataset Testing dataset   

RMSE(kN) R2  MAE(kN) RMSE(kN) R2  MAE(kN)

GPR Fsf , ft , fc da, ρl, a/d, bw,d  32.68 0.94 19.23 30.8 0.94 22.4  
Fsf , f t, f c da, ρl, a/d,d  45.55 0.88 28.17 36.9 0.92 26.0  
Fsf , f t, f c da, ρl, a/d,bw  50.01 0.85 28.91 51.3 0.84 35.52  
Fsf , ft , fc da, ρl, bw,d  37.6 0.92 23.4 33.09 0.94 23.4  
Fsf , ft , fcda, a/d, bw ,d  40.34 0.90 23.1 29.8 0.95 21.2  
Fsf , ft , fc ρl, a/d, bw,d  36.3 0.92 20.8 31.2 0.94 22.3  
Fsf , f t, da, ρl, a/d, bw,d  39.72 0.91 25.2 40.7 0.89 27.6  
Fsf , fc da, ρl, a/d, bw ,d  34.9 0.93 19.9 31.8 0.94 22.1  
ft , fc da, ρl, a/d, bw,d  37.3 0.92 23.1 32.2 0.92 23.3 

RF Fsf , ft , fc da, ρl, a/d, bw,d  39.4 0.95 21.9 37.32 0.96 23.03  
Fsf , f t, f c da, ρl, a/d,d  48.6 0.93 27.2 40.5 0.95 23.8  
Fsf , f t, f c da, ρl, a/d,bw  53.2 0.91 29.0 49.5 0.93 31.7  
Fsf , ft , fc da, ρl, bw,d  40.9 0.95 22.8 35.4 0.96 22.8  
Fsf , ft , fcda, a/d, bw ,d  41.9 0.95 23.3 36.6 0.96 23.3  
Fsf , ft , fc ρl, a/d, bw,d  39.8 0.95 21.7 37.3 0.95 22.6  
Fsf , f t, da, ρl, a/d, bw,d  47.5 0.93 27.2 40.2 0.95 27.0  
Fsf , fc da, ρl, a/d, bw ,d  40.2 0.95 22.3 37.3 0.96 23.0  
ft , fc da, ρl, a/d, bw,d  42.6 0.95 23.5 38.7 0.95 25.47  

Fig. 10. Relationship between the ratio of experimental to predicted shear strength versus shear parameters.  
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5.4. Trends in the model error with input variables Xi ; parametric 
performance assessment 

The trend in the performance of the various models with input var
iables (shear parameters) is assessed by correlating the prediction model 
error (model uncertainty) Mx with important shear input variables Xi 
(shear span to depth ratio a/d, beam effective depth d, beam width bw 
and concrete strength fc). The variation and trends of the model error 
Mxwith the basic input variables Xi are shown in Fig. 10, using the 
testing database. The trend analysis allows us to discern any trend/bias 
in the performance of the various models in relation to their input 
variables. 

As observed from the figures, the accuracy of the results of the 
developed ML-based models does not show any significant and apparent 
trend or bias with the shear span to effective depth ratio, beam effective 
depth, beam width and the concrete strength, for the range investigated 
in this study. This means that the proposed models can be used with 
acceptable confidence for all the range of shear parameters considered 
in this study. On the other hand, the existing methods (M− MASM, MC- 
10 and DAfStB) have some trend with the d and a/d. The strong 
decreasing trend/safety bias observed as the shear span to effective 
depth ratio a/d increases is a cause for concern. Reliability evaluation of 
the shear design formulations is advised at parametric ranges of a/d. 

5.5. Derivation of a partial factor for the model uncertainty related to 
shear resistance predictive models using deterministic reliability 
verification 

Resistance partial factor γRd can be used to account for the un
certainties related to resistance models [70,71]. Resistance partial fac
tors accounting for the model uncertainty related to M− MASM, MC-10 
and DAfStB shear resistance models, using model uncertainty M statis
tics presented in Table 5, are proposed in this section. The partial factor 
γRd is estimated following the procedures established in EN 1990. The 
model uncertainty random variable M(μM, σM) related to the existing 
models was taken as a lognormal distribution because the skewness 
coefficients ηM of the models (Table 5) are closer to what is required for a 
lognormal distribution. A lognormal distribution is also recommended 
for model uncertainty by the JCSS [72]. For a lognormal distribution, 
the partial factor γRd can be derived using the expression in Eq. (17). 

γRd = 1/[μM .exp.( − αR.β.VM) ] (17) 

where αR denotes the FORM sensitivity factor =0.8 [70]. (the model 
uncertainty is assumed as dominant resistance variable). β is the target 
reliability, according to EN 1990. μM and VM are the mean and coeffi
cient of variation of the model uncertainty random variable, 

respectively. Fig. 11 presents the variation of the obtained model un
certainty partial factor γRd with target reliability β for EN 1992–4. The 
range of target reliability presented in the figure covers the target re
liabilities for 50 years of design working life period for the ultimate limit 
states for structures. As shown in Fig. 11, the model uncertainty factor 
γRd increases as the target reliability β increases. For the target reliability 
level of Reliability Class 2 (RC2) structure (β = 3.8), the model uncer
tainty partial factor γRd obtained for MC-10, M− MASM and DAfStB are 
1.13, 1.20 and 1.19 respectively. 

According to EN 1990, the design values of the derived model un
certainty is incorporated into the design expressions through the resis
tance model uncertainty partial factor γRd applied on the total model as 
expressed in Eq. (18) 

Vd = V
[

η Xk

γm
; ad⋯.

]/

γRd (18) 

where Vd is the design resistance. Xk is the characteristic values of the 
variable. η is a conversion factor appropriate to the material property. γm 
is the material property factor. ad is the design geometric parameter. γRd 
is the resistance model uncertainty factor. 

6. Conclusions 

This contribution proposes efficient machine learning-based 
methods to predict the ultimate shear capacity of SFRC slender beams 
without stirrups. The shear behaviour of SFRC beam is a complex phe
nomenon, involving the interaction of many parameters and mecha
nism. So far, developing a precise and acceptable design formulation for 
shear capacity of SFRC beams is still an evolving process. Two machine 
learning algorithms -Gaussian Process regression and the Random Forest 
techniques- are applied for the first time to predict the shear capacity of 
SFRC slender beams. A total of 326 experimental tests were considered 
for the model development, utilising 75% for model training and the 
remainder for testing. Seven input variables (a/d, d, bw, ρl, fc, da and Fsf ) 
were considered for constructing the models. The single output variable 
is the experimentally observed shear strength. The performance of the 
proposed shear strength models was investigated in terms of statistical 
parameters such as the R2, MAE, RMSE and model uncertainty or model 
error variable. 

From the present contribution, the following general conclusions 
may be drawn:  

• When assessing the performance of the proposed models against 
experimental results, the predictions from the models match well 
with the experimental shear capacity. A high prediction capability 
was obtained by the testing database even though it was not utilised 
for the training of the models. This demonstrates the generalisation 
capability of the developed models.  

• Sensitivity analysis was carried out to measure the significance of the 
input variables on the model performance. The sensitivity analysis 
depicted the beam depth, beam width and concrete strength as the 
most sensitive variables affecting the performance of the proposed 
ML-based shear strength models.  

• The performance of the proposed ML-based models was investigated 
as regards their accuracy against the state-of-practice predictive 
model embedded in international design standards and literature (fib 
Model Code 2010, German guideline, M− MASM [26]). The best 
model is the one with the R2 value closest to one along with the 
minimum values of MAE and RMSE (nearest value to zero). Based on 
these parameters, the overall precision of the ML-based strength 
models outperforms that of the existing models.  

• The model uncertainty or model error random variables associated 
with the proposed models and the existing models were charac
terised in this study. The model uncertainty variable related to the RF 
model has a mean value of μM = 1.00 (closest to the optimal value of 

Fig. 11. Variation of the partial factor γRd with.β  
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1) and the lowest dispersion wit. The MC-10 model has the highest 
mean value of μM = 1.24 (highest conservative bias) and the most 
substantial dispersion with σM = 0.35.  

• Partial resistance factors accounting for the uncertainties and bias in 
the existing SFRC shear strength models were proposed. It is 
important to note that improved estimates of the partial factors can 
be obtained from a fully probabilistic approach. The derived model 
uncertainty statistics and related partial safety factors are associated 
with the specific database considered in this study, which may 
change noticeably should the database change. The use of partial 
factors ensures a consistent level of reliability over a range of 
structures [73]. 

• Trend analysis was conducted to discern any trend/bias in the per
formance of the various models concerning their input variables. The 
accuracy of the results of the proposed ML-based models showed no 
apparent trend or bias with the shear input variables for the range 
investigated in this study. The existing methods M− MASM, MC-10 
and DAfStB have strong decreasing trend/safety bias as the shear 
span to effective depth ratio a/d increases. This is a cause for 
concern. Reliability assessment of the shear design formulations is 
advised at parametric ranges of shear span to effective depth ratio 
a/d.  

• A general probabilistic model for shear reliability analysis should 
typically be based on a shear predictive model characterised by low 
bias and uncertainty as well as statistical independence with its input 
variables [66]. The ML-based shear strength models proposed in this 
study can be adopted as a general probabilistic model in a simplified 
reliability framework. This is justified by the fact that they have low 
bias and uncertainty compared to the other models. 

The findings from this investigation are valuable for the development 
of reliability-based shear design provisions for SFRC beams. 
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