AN INDEX MAPPING-BASED DEEP TRANSFER LEARNING APPROACH FOR VIOLENT CRIME PREDICTION

FALADE, ADESOLA MURITALA (13PCG00484)

DECEMBER, 2020

	2.10.2	PHP Open Source Development	50
	2.10.3	Integrated Development Environment	60
	2.10.2	Hypertext Markup Language(HTML)	52
	2.10.3	Cascading Style Sheets	52
	2.10.2	Javascript	52
	2.10.3	Bootsrap Framework	53
	2.10.2	Backend Components	53
	2.10.3	MySQL Database	53
2.12	Relate	d Work	54
	2.10.1	Statistical and Clustering Approaches	54
	2.10.2	Supervised Learning and Hybrid Approaches	56
	2.10.3	Summary of Findings	60
CHAP	TER T	'HREE: METHODOLOGY	
3.1	Metho	dology Workflow	63
3.2	Crime Prediction problem formulations		
3.3	Descri	ption of the Process	66
	3.3.1	Crime Data Collection	66
		3.3.1.1 Open Web Portal Dataset	66
		3.3.1.2 Historical crime dataset	67
	3.3.2	Crime Data Preprocessing	70
3.4	Princip	oal Component Analysis (PCA) on Violent Crime Dataset	72
	3.4.1	Interpretation of the PCA	74
	3.4.2	The Proportion of Variance	74
	3.4.3	Standardizing Violent Crime Dataset	76
3.5	Steps i	n Formulating and Designing the Predictive Model	77
	3.5.1	Index mapping-based deep transfer learning prediction model	80
	3.7.7	Classifiers on Top of Deep CNN	84
3.6	Steps 1	nvolved in Training and Testing the Model in Watson studio	85
3.7	Algori	thm for Developing an Index-mapping based Deep	
	Transf	er Learning Violent Crime Prediction Model	91
3.8	Violen	t Crime Hotspots Prediction	92
	3.8.1	The Approach Overview	93

	3.8.2 Negative Sample Data	95
3.9	Model Development	96
	3.9.1 Violent Crime Prediction Model	99
3.10	System Designs	100
3.11	Evaluation	104
3.12	Summary	106
CHAF	TER FOUR: RESULTS	
4.1	Classification Model Building	108
4.2	Decision Tree Learning Model Results	109
4.3	Results of Support Vector Machine Model	114
4.4	Naïve Bayes Classifier Results	118
4.5	Random Forest Classifier Results	121
4.6	K-Nearest Neighbor Classifier Results	124
4.7	Deep Neural Network Classifier Results	127
4.8	Description of Results for DEEPTRA Model	131
4.9	Model Evaluation	133
4.10	Summary of Results of the Violent Crime Prediction Techniques	134
4.11	Implementation Screenshots	135
4.12	System Usability Scale Survey	136
CHAF	TER FIVE: DISCUSSION	
5.1	Discussion about the Model developed	140
5.2	Model Results Comparison with Existing Results	141
5.3	DEEPTRA Model Performance Over time	143
5.4	Summary	144
CHAF	TER SIX: CONCLUSION AND RECOMMENDATIONS	
6.1	Summary	145
6.2	Conclusion	146
6.3	Contributions to the Body of Knowledge	146
6.4	Recommendation for Future Work	147
REFE	RENCES	148
Apper	dices	164
	A The Python codes used in standardizing the dataset	164

В	The Python codes used in extracting features from the		
	Convolution base	162	
С	The Python codes used for the fully connected layers	165	
D	The codes used in generating the results of Decision Tree	165	
Е	Python codes used in fitting the model into the dataset used	166	
F	The complete codes for Decision Tree classifier	167	
G	Codes used in building SVM model	169	
Η	The codes used in building DNN model	169	
Ι	List of Publications	170	
J	List of websites used	171	
K	Sample dataset used during the study	172	

LIST OF FIGURES

Figur	es Title of Figures	Page
2.1	Crime fatalities in Nigeria by states between Jan., 2009 to Dec., 2018	6
2.2	Yearly trend of Armed Robbery fatalities and incidents in Nigeria	7
2.3	Yearly trend of cult killings and incidents in Nigeria	7
2.4	Yearly trend of kidnapping fatalities and incidents in Nigeria	8
2.5	Yearly trend of brutal Rape incidents in Nigeria	9
2.6	An index-mapping search representation	14
2.7	A sample clustering scheme	23
2.8	Artificial Neural Network structures	26
2.9	Deep Neural Network architecture	27
2.10	Network structure for Feef-forward Neural Network	33
2.11	Network structure for Convolution Neural Network	34
2.12	Max pooling diagram for a 4x4 grid with a 2x2 filter and stride of 2	34
2.13	Recurrent Neural Network structure	34
2.14	Recurrent Convolutional Neural Network structure	35
2.15	Architecture of a model based on CNN	36
2.16	Transfer Learning approach	39
2.17	Features Learning in Transfer Learning	40
2.18	The flow of creating and using ML models on IBM Watson studio	49
2.19	Violent Crime Prediction approaches from literature	54
2.20	Summary of Crime prediction techniques from literature	62
3.1	Research methodology workflow	64
3.2	3-D Coordinate system	65
3.3	Violent Crime incidents in Lagos, Nigeria reported online	67
3.4	Violent Crime incidents in Lagos, Nigeria by Nigerian Police	68
3.5	Summary of violent crime dataset analysis	70
3.6	Preprocessed violent crime dataset workflow	70
3.7	The relevant attributes before application of PCA	76
3.8	The relevant attributes after application of PCA	77

3.9	Fine tuning strategies	81
3.10	Size similarity matrix	84
3.11	Decision map for fine-tuning pre-trained models	84
3.12	Architecture of CNN model	88
3.13	Walk-forward optimization training process	90
3.14	Lagos state boundary map	93
3.15	Chart of population distribution in Lagos state	94
3.16	Positive and Negative data sampling from Lagos boundary map	95
3.17	Existing violent crime prediction architecture	96
3.18	The proposed violent crime prediction model	97
3.19	An indexed-mapping based Deep Transfer learning approach to	97
	violent crime prediction	
3.20	Architectural description of the proposed system	98
3.21	Use case model of the violent crime alert and reporting system	102
3.22	Use case diagram showing interaction between Police and the public	102
3.23	Access use case for DEEPTRA Naija alert system	103
3.24	Public uses/administrator use case for DEEPTRA Naija alert system	103
3.25	Picture showing confusion matrix	104
4.1	Model workflow of Decision Tree from Watson Studio	105
4.2	Decision Tree generation	107
4.3	Decision Tree model training in Jupyter Notebook	107
4.4	AUC for Decision Tree model	108
4.5	Decision Tree predictive accuracy graph	110
4.6	Decision Tree confusion matrix results	111
4.7	Model workflow of Support Vector Machine in IBM Watson Studio	112
4.8	Accuracy graph of Support Vector Machine	113
4.9	Support Vector Machine prediction performance comparisons for	115
	different violent crimes	
4.10	Prediction workflow for Naïve Bayes classifier	116
4.11	Naïve Bayes prediction performance comparisons for different	118

violent crimes

4.12	Prediction workflow of Random Forest model	118
4.13	Random Forest prediction performance comparisons for	120
	different violent crimes	
4.14	Prediction workflow for K-NN in IBM Watson studio	120
4.15	Snapshot of K-NN Training in Jupyter Notebook in Watson studio	121
4.16	K-NN prediction performance for different violent crimes	124
4.17	Prediction workflow for DNN in IBM Watson studio	124
4.18	DNN prediction performance comparisons for different	126
	violent crimes	
4.19	Accuracy graph of the global average pooling solution	127
4.20	Loss of the global average pooling solution	127
4.21	DEEPTRA prediction performance comparisons for different	132
	violent crimes	
4.22	Sample of defining training and testing data over time	133
4.23	Snapshot of the landing page of DEEPTRA Naija Crime alert system	135
4.24	DEEPTRA Naija Crime alert system crime reporting page	136
5.1	(Accuracy graph): Week in January, 2019	141
5.2	(F1 Score): Week in January, 2019	141
5.3	(AUC): Week in January, 2019	141
5.4	Average performance overtime	142

LIST OF TABLES

Tables	Title of Tables	Page
1.1	Objective methodology mappings for this study	4
2.1	Summary of crime control theories from literature	13
2.2	Summary of probabilities	16
2.3	Research summary of crime prediction techniques	42
3.1	Incidents summary of violent crime dataset reported online	67
3.2	Incidents summary of historical violent crime dataset	68
3.3	Summary of the total violent crime dataset collected	69
3.4	Eight steps/processes in designing a DNN model	77
3.5	Commonly used parameters for designing BP in crime predictive	86
	Models	
3.6	Codes used for regions in Lagos state during model building	94
3.7	Summary of tool supports to realize DEEPTRA model	100
3.8	Units in the violent crime alert and reporting system	101
4.1	Sample of empirical result of Decision Tree model	112
4.2	Evaluation result of Decision Tree classifier for different	113
	violent crimes	
4.3	Confusion Matrix result of Decision Tree model	114
4.4	Sample of empirical result of Support Vector Machine	116
	Model	
4.5	Evaluation result of Support Vector Machine classifier	117
	For different violent crime types	
4.6	Sample of empirical result of Naïve Bayes model	119
4.7	Evaluation result of Naïve Bayes classifier for different	120
	violent crimes	
4.8	Sample of empirical result of Random Forest model	122
4.9	Evaluation results of Random Forest classifier for different	123
	violent crimes	
4.10	Sample of empirical result of K-Nearest Neighbor model	125

4.11	Evaluation result of K-NN model for different violent	126
	Crimes	
4.12	Sample of empirical result for Deep Neural Network model	128
4.13	Evaluation results of DNN classifier for different	129
	violent crimes	
4.14	Sample of empirical result of DEEPTRA model	131
4.15	Evaluation results of the model (DEEPTRA) for	132
	different violent crimes	
4.16	Summary of the overall evaluation results for different	135
	prediction models	
4.17	System Usability Scale survey results of DEEPTRA Naija	138
	violent crime alert system.	

LIST OF ABBREVIATIONS

Acronyms	Full Meaning
ANN	Artificial Neural Network
API	Application Programming Interface
ASP	Active-X Server Pages
ASM	Attributes Selection Measures
BP	Back Propagation
CC	Control Server
CNN	Convolutional Neural Network
CPTED	Crime Preventions Through Environmental Design
CSS	Cascading Style Sheet
DB	Database
DBSCAN	Density Based Spatial Clustering Application with Noise
DEEPTRA	Deep Transfer learning
DL	Decision Learning
DNN	Deep Neural Network
DT	Decision Tree
DTL-NN	Deep Transfer Learning Neural Network
EE	Enterprise Edition
EJB	Enterprise Java Beans
FBI	Federal Bureau of Investigation
FCT	Federal Capital Territory
GPS	Global Positioning System
GUI	Graphics User Interface
HTML	Hyper Text Markup Language
HTTP	Hyper Text Transfer Protocols
IDE	Integrated Development Environment
ІоТ	Internet of Things
JDBC	Java Database Connectivity

JS	JavaScript
JSON	JavaScript Object Notation
JVM	Java Virtual Machine
KDE	Kernel Density Estimation
KNN	K- Nearest Neighbor
LAMP	Linus Apache MySQL and PHP
ME	Mobile Edition
ML	Machine Learning
MLLib	Machine Learning Libraries
MLP	Machine Learning Programs
NLP	Natural Language Processing
NoSQL	No Structured Query Language
OCR	Optical Character Recognition
PCA	Principal Components Analysis
PHP	Hyper Text Preprocessor
RDBMS	Relational Database Management System
SE	Standard Edition
SOCP	Second Order Cone Programming
SQL	Structured Query Language
SUS	System Usability Scale
SVM	Support Vector Machine
TD-IDF	Term Document and Inverse Document Frequency
UCPS	Ubiquitous Crime Prevention System
VVT	Voice to Text
WAMP	Windows Apache MySQL and PHP
XAMPP	Cross Platform Apache MySQL PHP and Perl
XML	extra Markup Language

AN INDEX MAPPING-BASED DEEP TRANSFER LEARNING APPROACH FOR VIOLENT CRIME PREDICTION

By

FALADE, ADESOLA MURITALA

(13PCG00484)

B.Sc., Computer Science, University of Ilorin, Ilorin Kwara State

M.Sc., Computer Science, Covenant University, Ota, Ogun State

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN COMPUTER SCIENCE IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA.

DECEMBER, 2020

ABSTRACT

Crime has been with us from time immemorial and impacts negatively on the quality of life of citenzery and the general health of a nation. Different approaches have been used in the previous studies for violent crime prediction to aid predictive policing, making conventional policing more efficient and proactive. The violent crime rate in Nigeria has been on the continual increase. There are dearths of state-of-the-art measures like the predictive policing approach for violent crime prediction in Nigeria. The existing controlling and preventive measures for tracking and controlling violent crime are not sufficient. The violent crime predictive models in the previous studies do not have sufficient features to predict violent crime types and time-slot of violent crime occurrences. More so, violent crime occurrence prediction is nearly impossible when there is insufficient dataset. Therefore the aim of this study is to develop an improved predictive model for violent crime prediction using an index mapping-based deep transfer learning approach with a view to increasing the predictive accuracy of violent crime prediction in Nigeria. The sources of data for this study are from historical violent crime records of Nigerian Police, and online reported violent crime data. As a prelude to generating training data, cleaning of data and relevant feature selection of violent crime dataset were performed. Consequently the predictive model developed during the empirical study was trained on IBM Watson Machine Learning studio. The model consists of four layers: data collection, features extraction, spatio-temporal violent crime prediction premised on index mapping-based deep transfer learning, and violent crime hot spot visualizer layer. The evaluation experiment was conducted through benchmarking with the existing approaches using accuracy, semantic precision, and recall as well as F-measure metrics with the use of confusion matrix. The violent crime prediction model evolved in this study delivers a predictive accuracy of 92.53% across the six violent crime dataset used. This result showed that an index mapping-based deep transfer learning model developed outperformed other Machine Learning models used in the previous studies. In addition, the proof-of-concept web-based application for reporting and alerting violent crime developed was also evaluated through a system usability scale survey with a result of 85.28%, which represent usable system with good usability rating score. The study therefore serves to benefit the citizens of Nigeria by alerting them of violent crime hotspot areas in the country, and also would enable police authority develop violent crime prevention strategies that could mitigate spate of criminal activities in the country.

Keywords: Convolutional Neural Network, Deep Learning, Index mapping, Recurrent Neural Network, Transfer Learning, Hot spot, Violent Crime Prediction.

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria

Mr. John A. Phillip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Obinna C. Nwinyi

(Ag. Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **FALADE Adesola Muritala** (**13PCG00484**), declare that this research work was carried out by me under the supervision of Prof. Ambrose A. Azeta and Dr. Aderonke A. Oni of the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Nigeria.

I attest that this thesis has not been presented either wholly or partially for the award of any degree elsewhere. All the sources of the data and scholarly information used in the thesis were duly acknowledged.

FALADE, ADESOLA MURITALA

Signature and Date

CERTIFICATION

We certify that the thesis titled **"An Index-mapping based Deep Transfer Learning Approach for Violent Crime Prediction"** is an original research work carried out by **FALADE, ADESOLA MURITALA (13PCG00484)**, in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ogun State, Nigeria under the supervision of Prof. Ambrose A. Azeta and Dr. Aderonke A. Oni. We have examined and found the work acceptable as part of the requirements for the award of a degree of Doctor of Philosophy (Ph.D) in Computer Science.

Prof. Ambrose A. Azeta (Supervisor)

Signature and Date

Dr. Aderonke A. Oni

(Co-Supervisor)

Prof. Ambrose A. Azeta

(Head of Department)

Prof. Olusegun Folorunso

(External Examiner)

Signature and Date

Signature and Date

Signature and Date

Prof. Obinna C. Nwinyi

(Ag. Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This research study is dedicated to the glory of Almighty God, the Alpha and the Omega, the light of the World who granted me the grace to start and finish the Ph.D programme successfully. Mighty God, I thank you.

Also, to the loving memory of my beloved parent who took care of me from childhood. May their gentle souls rest in the bosom of the Lord.

ACKNOWLEDGMENTS

My deep appreciation goes to God almighty, the Alpha and the Omega, the beginning and the end for the grace and the privilege granted me to start and finish the PhD programme successfully. I can see vividly His divine hand upon my life. The omnipotent and omnipresent God, He is always there for me in every situation. I appreciate greatly His priceless help and the wisdom He granted me throughout my doctoral sojourn in Covenant University.

My profound appreciation goes to our dear Chancellor, Dr. David O. Oyedepo and the entire members of the Board of Regents of Covenant University for the Vision and the Mission of the university. Also special thanks to the management staff of the University: the Vice Chancellor, Prof. Abiodun H. Adebayo, the Registrar, Dr. Olusegun P. Omidiora, the Ag. Dean, School of Postgraduate Studies, Prof. Obinna C. Nwinyi, as well as the Dean, College of Science and Technology, Prof. Temidayo V. Omotosho and the Head of Department, Computer and Information Sciences, Prof. Ambrose A. Azeta for their commitments to the pursuit of excellence and sound academic scholarship.

My appreciation goes to my supervisor, Prof. Ambrose A. Azeta for his untiring efforts, guidance, unconditional supports and immense contributions to the realization of this thesis. I equally want to thank my co-supervisor, Dr. Aderonke A. Oni for her enormous contributions and support in this journey.

I equally thank every faculty and staff of the Department of Computer and Information Sciences for their support in particular Prof. C. Ayo, Prof. A. Adebiyi, Prof. V. Osamor, Dr. I. Odun-ayo, Dr. Z. Okuboyejo and Dr. I. Isewon for their contributions at every stage of this study.

Finally, I am indeed grateful for the unflinching love and support from my beloved wife, Folasade Bilikis Falade and my son, Umar Ayomide Adesina Falade for standing with me in realizing the success of this study.

TABLE OF CONTENTS

CON	CONTENT		
COVI	ER PAGE	i	
TITL	E PAGE	ii	
ACCI	EPTANCE	iii	
DECI	ARATION	iv	
CERT	TIFICATION	v	
DEDI	CATION	vi	
ACKN	NOWLEDGMENT	vii	
TABL	JE OF CONTENT	viii	
LIST	OF FIGURES	xiii	
LIST	OF TABLES	xvi	
LIST	OF ABBREVIATIONS	xviii	
ABSTRACT		XX	
CHAI	PTER ONE: INTRODUCTION		
1.1	Background to the Study	1	
1.2	Statement of the Problem	3	
1.3	Research Questions	3	
1.4	Justification of the Study	3	
1.5	Aim and Objectives	4	
1.6	Limitation and Scope of the Study	5	
CHAI	PTER TWO: LITERATURE REVIEW		
2.1	State of Crime in Nigeria	6	
2.2	Sociological Theories of Crime Occurrence	11	
2.3	Index Mapping Technique	13	
2.4	Soft Computing Techniques		
2.5	Data Mining		
2.6	Machine Learning	19	
	2.6.1 Supervised Learning	20	
	2.6.2 Unsupervised Learning	21	

	2.6.3	Clustering	22
	2.6.4	Principal Components Analysis	23
2.7	Machi	ne Learning Algorithms	23
	2.7.1	Naïve Bayes	24
	2.7.2	Support Vector Machine	24
	2.7.3	Decision Tree	25
	2.7.4	Artificial Neural Network	26
	2.7.5	Deep Neural Network	26
	2.7.6	Feed-forward Neural Network	28
	2.7.7	Convolution Neural Network	30
	2.7.8	Recurrent Neural Network	32
	2.7.9	Recurrent Convolution Neural Network	33
	2.7.10	Pre-trained Model Approaches	35
2.8	Transf	er Learning	37
	2.8.1	Categorization of Transfer Learning	37
	2.8.2	Transfer Learning Operations	38
	2.8.3	Popular Pre-Trained Models	40
	2.8.4	Studies where Transfer Learning was used	41
2.9	Big Da	ata Technologies	42
	2.9.1	NOSQL	42
	2.9.2	Apache Spark	44
	2.9.3	Apache Storm	44
	2.9.4	Apache Samza	44
	2.9.5	Yahoo!S4.	45
	2.9.6	Elastic Streaming Processing Engine	45
	2.9.7	IBM InfoSphere Streams	45
	2.9.8	Microsoft StreamInsight	45
2.10	Resear	ch Tools and Technologies	46
	2.10.1	IBM Watson Studio	46
	2.10.2	Benefits of Watson Studion	47
2.11	Impler	nentation	50
	2.10.1	Implementation Details	50