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A B S T R A C T   

The indiscriminate use of fossil fuels has led to several challenges such as greenhouse gas emissions, environ-
mental degradation, and energy security. Establishment of clean fuels is at the forefront of science and inno-
vation in today’s society to curb these problems. Dark fermentation (DF) is widely regarded as the most 
promising clean energy technology of the 21st century due to its desirable properties such as high energy 
content, its non-polluting features, its ability to use a broad spectrum of feedstocks and inoculum sources, as well 
as its ability to use mild fermentation conditions. In developing nations, this technology could be instrumental in 
establishing effective waste disposal systems while boosting the production of clean fuels. However, DF is still 
hindered by the low yields which stagnate its commercialization. This paper reviews the recent and emerging 
technologies that are gaining prominence in DF based on information that has been gathered from recent sci-
entific publications. Herein, novel enhancement methods such as cell immobilization, nanotechnology, mathe-
matical optimization tools, and technologies for biogas upgrading using renewable H2 are comprehensively 
discussed. Furthermore, a section which discusses the potential of bioenergy in Sub-Saharan Africa including 
South Africa is included. Finally, scientific areas that need further research and development in DF process are 
also presented.   

1. Introduction 

The growing concerns about the anthropogenic CO2 emissions and 
depletion of natural resources have resulted in an enormous search for 
sustainable energy resources [1–3]. Therefore, a wide variety of clean 
technologies are being investigated [4,5]. Hydrogen (H2) is seen as one 
of the most appealing energy resources as a result of its qualities such as 
high energy content (120 kJ g� 1), its production using various tech-
niques (e.g. steam reforming, gasification, water electrolysis and 

fermentation), its carbon-sequestration abilities during downstream 
processing, and its diverse industrial applications [6–10]. 

Hydrogen is expected to play a pivotal role in decarbonising the 
energy and transport sector [11]. The potential of a H2-driven economy 
is already being recognized in several countries. For example, a total of 
8000 fuel cell vehicles are now registered with the International Energy 
Agency, of which 4500 vehicles are coming from the United States and 
another 2500 vehicles from Japan [12]. It is estimated that more than 
10 000 H2 fuel cell-powered forklifts are already in use in several 
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warehouses in the United States [13]. Furthermore, 192 fuel cell vehi-
cles are currently running under demonstration projects in Europe and it 
is anticipated that around 350 000 vehicles will be sold to the general 
public by 2020 [14]. Technology roadmaps for H2 and fuel cells have 
been established already in countries like Japan, China and the United 
States, to accelerate the industrialization of H2 related technologies 
[15]. According to recent reports, the global H2 market was estimated at 
129 billion US dollars in 2017 and is expected to increase to 183 billion 
US dollars by 2023 [16]. 

Currently, steam reforming and gasification of fossil-derived fuels 
are still considered the primary sources of H2 worldwide [11]. However, 
these processes undermine the purpose of using H2 as a clean technol-
ogy, as more CO2 is emitted during the processing of fossil fuels [17,18]. 
It is therefore vital for a H2 driven-economy to make environmental and 
economic sense [19]. Hydrogen from waste biomass represents an 
economical and environmentally-friendly approach because this process 
uses diverse feedstocks [20–23]. Amongst the H2 bioprocesses, DF is 
considered as the most promising clean technology of the 21st century 
because it can valorise diverse feedstocks including waste materials 
under mild fermentation conditions [24–26]. However, the establish-
ment of a large-scale DF process has not yet been realized due to the 
incomplete conversion of feedstocks that results in low yields [27]. 
Therefore, this calls for the implementation of robust technologies 
which will fast-track the development of this process. 

In recent years, there has been a surge in biofuel development 

initiatives in Sub-Saharan African countries with the aim of boosting 
economic growth, energy security, and rural development within the 
region [28]. The development of clean energy is fuelled by several fac-
tors such as high availability of non-arable land, abundance in biomass 
resources, and warm climate [28]. Biofuels such as bioethanol and 
biodiesel are being explored in many Sub-Saharan African nations, and 
it is hoped that these initiatives will lead to their commercialization [4]. 
DF is also receiving significant attention due to its socio-economic 
benefits, and the fact that this process can be incorporated into a bio-
refinery concept. 

As the body of knowledge is constantly expanding in DF, it is 
imperative to update the scientific community with novel and emerging 
technologies that can fast-track the advancement of this technology. 
This article examines the novel technologies that are gaining promi-
nence in DF based on recent scientific publications. Biogenic H2 
enhancement methods such as cell immobilization, nanotechnology, 
mathematical optimization tools, and biogas upgrading, are reviewed in 
this article. A section that highlights the potential of biofuels in Sub- 
Saharan Africa including South Africa is included. Finally, conclusions 
and suggestions for further research in DF, particularly from organic 
wastes, are provided. 

2. An overview of the process barriers facing the DF process 

Despite the efforts that have been undertaken over the past decade, 

Fig. 1. An overview of the process barriers facing the DF process. Adapted and modified from Sekoai et al. [10]. Letters A, B, C and D represent the different process 
barriers contributing to the low H2 yields. 
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DF is still hindered by low yields which delay its industrialization 
(Fig. 1). The substrates are partially converted into H2 and remain in the 
medium in the form of volatile fatty acids (acetic acid, butyric acid, 
propionic acid, etc.) and alcohols (butanol, ethanol, propanol, etc.) 
[29–31]. These by-products shift the reactions from acidogenesis to 
solventogenesis, resulting in low H2 yields [32–35]. Theoretically, 4 mol 
H2 mol� 1 glucose is produced from the acetic acid pathway while 2 mol 
H2 mol� 1 glucose is synthesized from the butyric acid pathway as shown 
in Equations (1) and (2), respectively. Currently, 1–3 mol H2 mol� 1 

glucose is reported in the literature and 60–70% of substrate is not used 
even under optimum bioprocess conditions [36,37]. 

DF studies use various microorganisms that are classified as pure- 
cultures or mixed-cultures [38,39]. Clostridial strains are the main 
H2-producing species and can generate up to 3 mol H2 mol� 1 glucose 
[40,41]. However, these microorganisms will not be suitable for 
scale-up processes because they require stringent aseptic conditions and 
this is impractical in industrial fermentation systems [42–46]. More-
over, some Clostridium sp. such as C. articum and C. barkeri are not 
favoured in DF because they use H2 to produce undesirable compounds 
such as propionic acid i.e. Equation (3) and lactic acid i.e. Equation (4) 
[47–49]. Other clostridial species co-produce H2 and ethanol, causing 
low H2 yields i.e. Equation (5) [50,51].  

C6H12O6 þ 2H2O → 2CH3COOH þ 2CO2 þ 4H2                                (1)  

C6H12O6 → CH3CH2CH2COOH þ 2CO2 þ 2H2                                  (2)  

C6H12O6 þ 2H2 → 2CH3CH2COOH þ 2H2O                                      (3)  

C6H12O6 → 2CH3CHOHCOOH þ 2CO2                                             (4)  

C6H12O6 þ 2H2O → CH3CH2OH þ H2O þ CH3COOH þ 2CO2 þ 2H2  (5) 

As a result, most DF studies use mixed-cultures due to the following 
reasons: (i) no sterilization is required, (ii) they consist of various 
biofilm-forming bacteria, (iii) there is a synergism between bacteria, and 
(iv) they use diverse feedstocks [52–54]. However, the use of 
mixed-cultures has been argued in DF as well. Mixed-culture consists of 
non H2-producers such as acetotrophic and hydrogenotrophic metha-
nogens, sulfate-reducing bacteria, nitrate-reducing bacteria, homoace-
togens, iron-reducing bacteria, lactic acid bacteria, etc. [55,56]. 
Although various pre-treatment methods are used to inhibit these mi-
croorganisms, they still thrive during the DF process and compete with 
H2-producers [57,58]. This implies that robust bioprocess technologies 
are needed to address these issues. 

3. Recent advances and emerging technologies in DF process 

3.1. Cell immobilization 

Studies are now using cell immobilization to improve the H2 yields 
and also minimize the accumulation of inhibitors during DF [59,60]. 
This approach favours the DF systems by: (i) maintaining high cell 
concentrations; (ii) stabilizing the fermentation pH; (iii) resisting the 
effect of H2-consumers; (iv) enabling an easier downstream process; and 
(v) allowing the reusability of cells [61,62]. Immobilization methods 
involves adsorption, entrapment, encapsulation, cross-linking, and co-
valent binding [63,64]. Moreover, various support materials are used to 
immobilize the acidogenic microorganisms [65,66], and these carriers 
are selected based on their internal geometry, mechanical stability, pore 
size, specific surface area, and thermal stability [67,68]. Matrices such 
as inorganic materials, carbon-based materials, natural polymers, and 
synthetic polymers are used to encapsulate the H2-producers [69,70]. 
Amongst these, natural polymers such as agarose, alginate, cellulose, 
collagen, and keratins are widely used due to their high accessibility, 
biocompatibility, non-toxicity, cost-competitiveness, and 
large-surface-area [71]. Nevertheless, natural carriers suffer from low 
mechanical stability but this is circumvented by binding them to 

stabilizing materials such as polyvinyl chloride, polyvinyl alcohol, 
inorganic mesoporous silica, activated carbon, ethylene glycol, metals, 
etc. [72,73]. Immobilized biocatalysts are used in the enhancement of 
H2 yields. Zhang et al. [74] obtained an optimum H2 yield of 1.203 mol 
H2/mol glucose using immobilized co-cultures of Enterobacter cancero-
geous and Enterobacter homaechei. Furthermore, a 259% increase in H2 
yield was achieved using immobilized biocatalysts [74]. Han et al. [75] 
studied the effect of packing ratio (inoculum fraction of 10–20%) and 
substrate loading rate (8–40 kg L� 1 d� 1) on DF process using an 
immobilized reactor. Herein, a maximum H2 production rate of 353.9 
mL H2 L� 1 h� 1 was achieved at a packing ratio of 15% and substrate 
loading rate of 40 kg L� 1 d� 1. In another study, a Clostridium sp. T2 strain 
was immobilized with mycelial pellets in the bioaugmentation of H2 
yield using corn-stalk hydrolysate. The immobilized biocatalyst pro-
duced a maximum H2 yield of 0.0142 mol H2 L� 1 h� 1 at an optimized 
hydraulic retention time (HRT) of 6 h and substrate concentration of 20 
g L� 1 [76]. This yield was 2.6 times higher than that of suspended 
mycelial pellets [76]. Recently, three porous particulate carriers such as 
activated carbon, bagasse and brick were evaluated in the encapsulation 
of Clostridium acetobutylicum for production of H2 [77]. The use of 
entrapped biocatalysts increased the concentration of cells within the 
medium, resulting in high glucose consumption [77]. In another recent 
study, immobilized mutated (with ethidium bromide and ultraviolet) 
co-cultures of Rhodobacter M19 and Enterobacter aerogenes were studied 
in DF using brewery effluent [78]. An optimal H2 yield of 2877 mL H2 
was achieved using immobilized ethidium bromide-mutated co-cultures 
[78]. The immobilized ethidium bromide-mutated co-cultures also 
enhanced the COD removal by 85% [78]. Furthermore, it has been 
shown that cell immobilization improves the activity of the predominant 
H2-producers such as Clostridium, Bacillus, and Enterobacter species 
[79–82]. In addition to these studies, a wide variety of support materials 
have been used in recent years for the immobilization of DF biocatalysts 
as shown in Table 1. 

3.2. Nanotechnology 

The field of nanotechnology is receiving increasing prominence in DF 
due to the intrinsic properties of nanoparticles [99–102] which enables 
them to be used in diverse areas such as engineering, medicine, agri-
culture, food industry, electronics, material sciences, etc. [103–108]. 
These materials have outstanding properties such as large-surface-area, 
high adsorption capacity, high catalytic efficiency, and high reactivity 
[109–111]. The mechanisms surrounding the effect of nanoparticles on 
DF are not well elucidated in the literature. But studies have suggested 
that these nano-based additives provide a large-surface-area for bacteria 
to attach to these materials, thereby catalysing the H2-producing re-
actions [112–114]. They also stimulate the H2-producing enzymes 
([Fe–Fe]- and [Ni–Fe]-hydrogenase) and electron-transfer proteins 
(ferredoxins) [114,115]. Therefore, different nanoparticles such as 
metallic nanoparticles (Ni, Ag, Fe, Cu, Pd, and Au), metal oxide nano-
particles (MgO, TiO2, NiO, Fe2O3, CuO, ZnO, and NiCo2O4), nano-
composites (Si@CoFe2O4 and Fe3O4/alginate), and graphene-based 
nanomaterials are used in the enrichment of H2 of yields [114,116,117]. 

Metallic nanoparticles are applied in numerous fields due to their 
remarkable features such as high catalytic, electrical, optical and mag-
netic behaviour, chemical and mechanical stability, and large-surface- 
area [118–123]. Examples of metallic nanoparticles include iron (Fe), 
copper (Cu), gold (Au), silver (Ag), palladium (Pd), zinc (Zn), cobalt 
(Co), and Nickel (Ni) [112,124–126]. Kodhaiyolii et al. [127] developed 
bimetallic nanoparticles (Co–Ni) for co-production of H2 and bioethanol 
using Citrobacter fruendii. These nanomaterials produced low H2 but 
enhanced the production of ethanol [127]. This is because Citrobacter 
fruendii is not a potent H2-producer in comparison to Clostridium sp. [10, 
128–130]. However, Zhang and Shen [114] enhanced H2 yield by 46% 
using Au nanoparticles. The pH of the fermentation medium was also 
maintained within 6.0–7.0 [114]. In another study, Kalathil et al. [131] 
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reported that Au nanoparticles can be used in a microbial fuel cell 
reactor for co-production of bioelectricity and H2. Gold nanoparticles 
stimulate the DF process by enhancing the enzymatic activities, reaction 
rates, and conversion of substrates [114,131]. 

Silver nanoparticles are also used in DF due to their superior cata-
lytical, electrical, physical, biological, and chemical characteristics 
[132–140]. Zhao et al. [112] used Ag nanoparticles at varying concen-
trations (0–2x10� 7 mol L� 1) in H2-producing reactors to boost the DF 
process. A maximum H2 yield of 2.48 mol H2/mol glucose was achieved 
at Au nanoparticles of 20 nm L� 1. This yield was 67% higher than that of 
the control experiment. Elsewhere, it was shown that low concentrations 

of Ag nanoparticles promote the growth of acidogenic bacteria [138]. 
Therefore, these results clearly show that Ag nanoparticles have stim-
ulatory effects on H2-producers, but this is possible at low 
concentrations. 

Other types of metallic nanoparticles are also applied in DF. Beckers 
et al. [139] studied the effects of Pd, Ag and Cu nanoparticles alongside 
metal oxide (FeO) nanoparticles on DF using Clostridium butyricum. 
These nanomaterials were attached to porous silica (SiO2) at low con-
centration (10� 6 mol L� 1). The cultures that were entrapped on FeO 
maximized the H2 yield by 38% when compared to the control tests. This 
increase was attributed to the enhanced enzymatic activity and electrons 

Table 1 
Dark fermentative H2 production using various immobilization materials.  

Support material Inoculum Substrate Temp 
(oC) 

pH Evaluation of H2 production process H2 yield Reference 

Activated carbon Enterobacter Molasses 37 – Cell immobilization enhanced the H2 yield by 259%. 1.203a [74]  
Enterobacter homaechei 83       

Alginate þ AC Mixed cultures Fruit waste 36 7.0 Co-immobilization improved the production of H2. 0.029a [83] 
Alginate þ AC Mixed cultures Synthetic 

medium 
37.5 6.0 Complete substrate utilization was achieved in the 

immobilized process. 
– [84] 

PSSP þ WM Mixed bacteria Wheat starch 37 7.0 H2 increased by 2.1 times when the HRT was reduced 
from 5 to 1 day. 

2.1a [85] 

Coconut coir þ PVC 
tubes 

Bacillus amyloliquefaciens 
CD16 

Domestic waste 37 7.0 H2 was increased by 4- to 10- folds and 3- to 5- folds, 
respectively. 

100–120b [86]  

Bacillus thuringiensis EGU45 Industrial 
effluent      

Coconut coir þ PVC 
tubes 

Bacillus amyloliquefaciens 
CD16 

Industrial 
effluent 

37 7.0 The H2 yield was 1.18 times higher in the 
immobilized process. 

165c [87] 

Mutag BioChip™ Mixed bacteria Synthetic 
medium 

37 5.5 There was low acetate-to-butyrate ratio during H2 

production. 
1.80a [79] 

Brick Clostridium acetobutylicum Synthetic 
medium 

37 6.5 There was a high of conc. of bacterial concentration 
during the process. 

1.81a [77] 

PVDF membrane Rhodobacter M 19 Brewery effluent 37 6.9 The highest H2 was produced using EtBr mutated 
immobilized co-cultures. 

2877d [78]  

Enterobacter aerogenes    The immobilized co-cultures achieved a high COD 
removal of 85%.   

Polyurethane foams Enterobacter aerogenes Synthetic 
medium 

37 – Immobilized cells were repeatedly used in batch and 
continuous processes. 

0.6a [88] 

Corn stalk Bacillus cereus A1  37 6.5 A two-step continuous H2 production process was 
developed. 

1.81a [89]  

Brevundimonas 
naejangsanensis B1    

Immobilized bacteria could hydrolyse starch directly.   

Polyester fiber Mixed bacteria Wheat waste 39–55 5.5–6 Optimum H2 was produced at: PN ¼ 240, SC ¼ 10 g 
L� 1, and T ¼ 44.9 �C. 

2.59a [90]      

RSM proved to be a helpful tool for predicting the 
optimum variables. 

– [91] 

Polyethylene Mixed bacteria Synthetic 
medium 

37 5.5 Polyethylene and expanded clay favoured the H2- 
producing bacterial groups.   

Polyurethane     Polyethylene and expanded also stabilized the 
process pH (5.0–4.5).   

Activated carbon 
Expanded clay 
Activated carbon Mixed bacteria Synthetic 

medium 
60 6.0 The presence of immobilized cells enriched the conc. 

of biomass in FBR. 
2.2a [92]      

Clostridium was amongst the dominant H2-producing 
bacteria in FBR.   

Bamboo stems Mixed bacteria Cassava 
wastewater 

36 6.0 The highest H2 was obtained at OLR of 35 g L� 1 d� 1. 1.1e [93]      

Butyric acid was the most prevalent metabolite.   
Loofah sponge þ AC Clostridium sporogenes Pineapple 

biomass 
33 7.0 Loofah sponge showed a better H2-producing 

performance. 
0.0359f [94]  

Enterobacter aerogenes       
Porous foam SiC 

ceramic 
Mixed bacteria Synthetic 

medium 
33 8.0 Sic ceramic resulted in quick start-up period (~5 

days) and high H2 yield. 
5.24e [95] 

Alginate þ PEI Mixed bacteria Brewery 
wastewater 

37 7.0 The immobilized cells enhanced the H2 production 
rate. 

100–600g [96] 

Carbon fiber Enterobacter aerogenes Synthetic 
medium 

30 7.0 The H2 yield was higher than that of other support 
materials (PAC and GAC). 

2.56a [97] 

Carbon cloth Enterobacter aerogenes Synthetic 
medium 

37 6.0 H2 production was enhanced by using the conductive 
carbon cloth. 

228.5h [98] 

-: Not available, AC: activated carbon, Conc.: concentration, COD: chemical oxygen demand, EtBr: ethidium bromide, FBR: fluidized bed reactor, GAC: granular 
activated carbon, HRT: hydraulic retention time, OLR: organic loading rate, PAC: powdered activated carbon, PEI: polyethyleneimine, PN: particle number, PSSP: 
plastic scouring sponge pad, PVC: polyvinyl chloride, PVDF: polyvinylidene difluoride, SC: substrate concentration, Temp: temperature, WM: metal mesh, RSM: 
response surface methodology, amol H2/mol glucose, bL H2 L� 1 feed, cL H2/L crude glycerol, dmL H2, eL H2 L� 1 d� 1, fmol H2 h� 1 L� 1, gmL H2 d� 1, hmL H2 g� 1 glucose. 
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transfer [139]. Mohanraj et al. [115] synthesized Pd nanoparticles using 
Coriandrum sativum leaf extract and studied their effects on H2 produc-
tion using Enterobacter cloacae and mixed-consortia. A maximum H2 
yield of 1.48 and 2.48 mol H2/mol glucose was obtained using E. cloacae 
and mixed-consortia, respectively. These values were 0.6% and 6.4% 
higher than that of the control tests. Mullai et al. [141] reported a H2 
increase of 22.71% using Ni nanoparticles in a DF process from ther-
mally pretreated anaerobic sludge. 

Similarly, Sun et al. [142] studied the synergistic effects of Ni 
nanoparticles and biochar on the DF process. A remarkable H2 increase 
of 48% was achieved at the end of the DF process. These additives also 
reduced the formation of inhibitory metabolites [142]. Biochar consists 
of various organic and inorganic constituents which stimulate the ac-
tivity of H2-producers, improves the buffering capacity of the medium, 
and enhance the transfer of electrons [7,143]. Whereas Ni nanoparticles 
stimulate the activity of H2-producing enzymes because Ni along with Fe 
ions forms part of the [Ni–Fe]-hydrogenases [130,144]. Iron nano-
particles have also been used in DF studies. These nano-additives enrich 
the predominant H2-producers such as Clostridium species [113], stim-
ulate the hydrogenase activity [145], reduce the formation of inhibitors 
[126], improve the buffering capacity [146], increase the transfer of 
electrons [113], and enhance the utilization of substrate [113]. The 
metallic nanoparticles that have been used in the enrichment of DF 
processes are summarized in Table 2. 

Metal oxide nanoparticles are also used in many fields due to their 
unique properties [147–152]. These nanomaterials improve the acido-
genic yields by stimulating the activity of H2-producing enzymes as well 
as by increasing the substrate conversion efficiency [153,154]. The ef-
fects of three metal oxides nanoparticles (α-Fe2O3, NiO, and ZnO) was 
recently evaluated on DF using industrial wastewater [155]. These 
nanoparticles promoted the activity of H2-producing pathways such as 
those of alcohol dehydrogenase, aldehyde dehydrogenase, and hydrog-
enase. The production of H2 was maximized by 8–14% when dual 
(α-Fe2O3 þ NiO, α-Fe2O3 þ ZnO, and NiO þ ZnO) and 
multi-nanoparticles (α-Fe2O3 þ NiO þ ZnO) were used in this process, 
and this favoured the growth of Clostridium species [155]. 

The influence of TiO and Fe2O3 nanoparticles on DF using Clostridium 
pasteurianum at various concentration (0–0.8 g L� 1) was also evaluated 
[156]. The use of hematite nanoparticles increased the H2 production by 
24.9% and also maximized the COD removal by 15.4–22.8% [156]. 
Likewise, Engliman et al. [157] studied the effects of pH and metal 
oxides (NiO and α-Fe2O3) nanoparticle concentrations (0–0.5 g L� 1) on 
thermophilic DF using mixed-consortia. These nano-carriers increased 
the H2 yield by 34.38% and 5.47%, respectively, at operational pH of 
5.5, and favoured the acetate pathway [157]. 

Furthermore, mesoporous silica (SiO2) nanoparticles exhibit 
outstanding features such as tunable pore size, high chemical and 
thermal stability, high adsorption capacity, excellent biocompatibility, 
and large- surface-area [158–162]. These nanomaterials have been used 
in the enrichment of DF processes by Venkata Mohan et al. [163] and 
Seifert et al. [164]. The authors reported a remarkable H2 increase of 
544% and 50%, respectively [163,164]. Interestingly, the SBA-15 
nanomaterials generated a H2 yield that was 347% higher than that of 
activated carbon [163]. Table 2 summarizes the metal oxide nano-
particles that have been used in the optimization of H2 yield in DF 
process. 

Novel methods are used to impregnate various nanoparticles to 
produce multifunctional nanocomposites with high chemical and me-
chanical stability, excellent catalytic and optical properties, and high 
permeability [165,166]. The synergistic effects of these nanoparticles 
have been studied on DF, as shown in Table 2. In one of such studies, the 
influence of Ni-graphene (Ni-Gr) nanocomposites on DF was examined 
by Elreedy et al. [117] using industrial wastewater. The Ni-Gr nano-
particles (0.06 g L� 1) produced a H2 yield (41.28 mL H2/g COD) that was 
105% higher than that of the control experiments. These nanoparticles 
also enhanced the H2 yield by 67% in comparison to the Ni nanoparticles 

[117]. The interactive effects of iron oxide (Fe3O4) nanoparticles and 
silica (SiO2) nanoparticles on DF was assessed as well [163]. The newly 
synthesized Fe3O4@SiO2 nanoparticles were able to function under a 
broad pH range, possessed high thermal and chemical stability, and high 
catalytic performance [163]. Furthermore, the co-addiction of hematite 
(Fe3O4) and NiO nanoparticles improved the H2 yield by 27% during DF 
[167]. Meanwhile, a 24% increase in H2 was obtained using sole he-
matite as additives [167]. This increase was caused by enhanced sub-
strate recovery and ferredoxin-oxidoreductase activity [167]. 

In addition to metal ions and metal oxides, metal ion salts like FeSO4, 
FeCl2, NiSO4, NiCl2, and MgCl2 are also used as catalytic agents in DF 
(Table 2). These studies used a wide variety of inoculums and substrates 
at different parameters (Table 2). The enhancement effects of these 
additives are mainly derived from Ni, Fe, Mg, and Ca ions. Ni and Fe ions 
are well known for their catalytic activity in hydrogenases because they 
are the main components in these enzymes as mentioned earlier. On the 
other hand, Mg plays a crucial role in the metabolic activities of H2- 
producers [168]. It forms chelates with important intracellular mole-
cules such as ATP and cytochromes [169,170]. Whereas Ca ions serve as 
entrapment compounds for enhancing the digestibility of feedstocks 
[171,172]. 

It is therefore evident from these studies that nanoparticles have 
desirable effects on DF processes and these materials could play a crucial 
role in the advancement of this technology. However, these studies are 
carried out under laboratory-scale conditions and this may not be a true 
representation of the process behaviour due to the complexities of in-
dustrial processes. Therefore, more studies should be conducted at large- 
scale to gain deeper insights into the effects of these nano-additives on 
the overall performance of the DF process. 

3.3. Mathematical tools 

Mathematical-based models are also used in DF due to their ability to 
provide insights about the effects (individual and interactive) of oper-
ating variables on H2 yields. Application of mathematical tools to 
develop empirical models to explain the parametric effects of the 
operating variables could be instrumental in reducing the operational 
costs in DF by focusing on the most important variables for further 
optimization. It is noteworthy to mention that statistical approaches 
employed to develop empirical models used in understanding the 
parametric effect of operating variables include data-based modelling 
approach such as response surface methodology (RSM), Artificial Neural 
Network (ANN), etc. During the experimental collection of data 
employed in model development, common design of experiments (DoE) 
such as Box-Behnken Design (BBD), Central Composite Design (CCD), 
Plackett-Burman Design (PBD), Full Factorial Design (FFD), and Mixture 
Design (MD) are used. In addition, the use of computational fluid dy-
namics (CFD) has been shown to be helpful in gaining insights into the 
prevailing hydrodynamics during DF. It is noteworthy to highlight that 
there are other existing tools, but these are scantily reported in DF 
studies. 

Amongst these data-based modelling approaches, RSM is a promising 
tool that is used to investigate the parametric effect of operating vari-
ables on H2 yield, and consequently optimize the H2 yields [207–210]. 
RSM is an empirical model-building approach that employs mathemat-
ical and statistical techniques [209,211]. The process response (output 
variable) is influenced by several independent variables (input vari-
ables). Additionally, RSM models provide crucial information about the 
linear and synergistic effects of process variables on the overall H2 
performance [211]. Previous studies relied mainly on the use of tradi-
tional techniques such as one-variable-at-a-time (OVAT), but these 
methods not reliable because they overlook the interaction amongst 
process variables, and are time-consuming as well [212]. Therefore, 
RSM (through which second-order polynomial models are developed in 
most cases) is applied in DF because it considers the effect of interaction 
among the process variables alongside the main effect of each variable 
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Table 2 
The various types of nanoparticles that have been used in the enhancement of dark fermentative H2 yields.  

Category Substrate Nanoparticles Inoculum source Operational parameters H2 yield Reference 

Concentration pH Temp 
(oC) 

Metals Synthetic 
medium 

Ag Anaerobic cultures 2 � 10� 8 mol 
L� 1 

8.0–9.4 35 2.48b [112] 

Sodium acetate Au Anaerobic sludge 5 � 10� 4 mol 
m� 3 

4.0 30 105 mL H2 L� 1 d� 1 [124] 

Artificial 
wastewater 

Au Anaerobic cultures – 7.0 35 4.48b [ [114] 

Synthetic 
medium 

Cu Clostridium acetobutylicum NCIM 
2337 

2.5a 6.0 37 1.73b [125] 

Synthetic 
medium 

Cu Enterobacter cloacae 811101 2.5a 7.0 37 1.43b [125] 

Synthetic 
medium 

Fe Anaerobic sludge 25a 5.5 37 551 mL H2 g� 1 VS [126] 

Synthetic 
medium 

Fe Enterobacter cloacae DH-89 100a 7.0 37 1.9b [173] 

Synthetic 
medium 

Fe Anaerobic consortia 400a 7.0 30 1.33b [174] 

Water hyacinth Fe Mixed cultures þ Clostridium 
butyricum TISTR 1032 

250a 7.0 35 57c [175] 

Dewatered 
sludge 

Fe Anaerobic consortia 0.2 g 7.82–8.35 37 30.51c [176] 

Malate Fe Rhodobacter sphaeroides NNBL-02 
þ E. coli NMBL-04 

312a 5.6 32 3.1k [177] 

Synthetic 
medium 

Fe Mixed cultures 50a 5.5 60 1.92b [157] 

Grass Fe Mixed consortia 400a 7.0 37 50.6 mL H2 g� 1 dry 
grass 

[178] 

Sugarcane 
bagasse 

Fe Mixed consortia 200a 5.0 30 0.874b [179] 

Synthetic 
medium 

Ni Anaerobic sludge 50a 5.5 37 680c [126] 

Synthetic 
medium 

Ni Anaerobic sludge 5.67a 5.6 33 2.54b [141] 

Industrial 
wastewater 

Ni Anaerobic consortia 60a 6.72 55 24.73d [117] 

Synthetic 
medium 

Pd Enterobacter cloacae 811101 5.0a 7.0 37 1.39b [115] 

Synthetic 
medium 

Pd Mixed cultures 5.0a 7.0 37 2.11b [115] 

Metal oxides Distillery 
wastewater 

NiO Anaerobic sludge 5a 5.5 37 0.00673e [180] 

Dairy 
wastewater 

NiO Anaerobic sludge 10a 5.5 37 0.0157e [167] 

Palm oil mill 
effluent 

NiO Bacillus anthracis 1.5a 5.5 37 0.563f [181] 

Palm oil mill 
effluent 

CoO Bacillus anthracis 1.0a 5.5 37 0.487f [181] 

Wastewater SiO2 Mixed consortia 120a 5.5 28 7.29 mol H2 kg� 1 COD [163] 
Synthetic 
medium 

SiO2 Anaerobic sludge 200a 5.5 36 1360 L H2 L� 1 [164] 

Peptone yeast 
broth 

TiO2 Clostridium pasteurianum CH5 0.8 g L� 1 7.0 35 2.1g [156] 

Synthetic 
medium 

Fe2O3 Clostridium acetobutylicum NCIM 
2337 

175a 6.0 37 2.33b [182] 

Peptone yeast 
broth 

Fe2O3 Clostridium pasteurianum CH5 0.8 g L� 1 7.0 35 0.0022e [156] 

Cassava starch Fe2O3 Enterobacter aerogenes ATCC13408 200a 6.0 37 192.4 mL H2 g� 1 starch [183] 
Synthetic 
medium 

Fe2O3 Enterobacter cloacae 811101 25a 7.0 37 1.7b [184] 

Synthetic 
medium 

Fe2O3 Mixed cultures 200a 6.0 35 3.57h [185] 

Synthetic 
medium 

Fe2O3 Mixed cultures 400a 7.0 37 1.53b [116] 

Starch 
wastewater 

Fe2O3 Anaerobic sludge 25 � 10� 3 g 6.8 30 66.22c [186] 

Inorganic salts Fe2O3 Mixed consortia 200a 6.0 35 3.57h [185] 
Synthetic 
medium 

Fe3O4 Mixed cultures 200a 6.6 37 218.63b [187] 

Sucrose 
wastewater 

Fe3O4 Anaerobic consortia 2 � 104a 5.5 35 0.39 L H2 g� 1 sucrose [188] 

Synthetic 
medium 

Fe3O4 Clostridium beijerinckii NCIMB 8052 300a 7.0 35 2.1b [189] 

Fe3O4 Clostridium butyricum CWBI1009 10� 6 mol L� 1 7.6 30 2.1b [139] 

(continued on next page) 

P.T. Sekoai et al.                                                                                                                                                                                                                                



Biomass and Bioenergy 140 (2020) 105673

7

[210]. Application of RSM involves these sequential steps: (i) experi-
mental design using standard statistical DoE and implementation of the 
experimental design to collect data, (ii) development of empirical 
models using the experimental data and validate the developed model, 
(iii) use the developed and validated model to explain the parametric 
effects of the operating variables (individual and interaction) using 
response surface plots and contour plots (iv) predicts the optimal process 
conditions using the constraints set by the lower and upper limits of the 
independent variables of the validated model and with the validated 
model as the objective function, and (v) experimentally confirm the 
optimal conditions by comparing the experimental output with the 
model output [213]. 

Since the economic and industrial success of DF mainly lies in the 
optimization of operating conditions such as the nutritional composi-
tion, biomass concentration, hydraulic retention time, H2 partial pres-
sure, pH, and temperature [10,36,214,215], recent studies have been 
modelling and optimizing these parameters to determine the optimal 
operating variables that could be instrumental to the scalability of DF 
process [146,207,216]. These studies are usually conducted using 
renewable and inexpensive feedstocks such as industrial and municipal 
wastewaters, lignocellulosic biomass, and food waste as shown in 
Table 3. 

Recently, Lopez-Hidalgo et al. [217] used the CCD to determine the 
optimal conditions for DF using a mixture of agro-industrial wastes i.e. 
wheat straw hydrolysate (WSH) and cheese whey (CW), alongside other 

parameters such as pH, temperature. The optimal conditions of 7.25, 
26.6 �C, 5 g L� 1, and 25 g L� 1, were achieved for pH, temperature, WSH, 
and CW, respectively, and this produced a H2 yield of 5724.5 mL H2 L� 1. 
These optimal variables were then used in large-scale processes (1 L and 
4 L) and produced a H2 production rate of 66.6–89.5 mL H2 L� 1 h� 1. 
Similarly, CCD was applied in the optimization of H2-producing vari-
ables (pH, potato concentrate, temperature, and fermentation time) 
[217]. Optimal H2 yield of 68.54 mL H2 g� 1 TVS was obtained at opti-
mized conditions of 7.86, 39.56 g L� 1, 37.87 �C and 82.58 h, for pH, 
substrate concentration, temperature, and fermentation time, respec-
tively. Zainal et al. [218] studied the synergistic effects of reaction 
temperature, inoculum size to substrate ratio, and reaction time on H2 
yield using palm oil effluent via the statistical software (Design Expert® 
Software). A maximum H2 yield of 28.47 mL H2 g� 1 COD was obtained 
at a reaction temperature of 50 �C, inoculum size to substrate ratio of 
40:60, and reaction time of 8 h. Furthermore, these conditions achieved 
a COD removal efficiency of 21.95% [218]. CCD models are suitable in 
DF studies because the predicted (R2) and adjusted (Adj. R2) coefficient 
of determination values are usually high (>0.90) which implies that 
these models are adequate to describe the process and to navigate the 
optimization space [219]. 

BBD is another multivariate tool that has attracted a lot of attention 
in DF due to its excellent prediction ability (high Adj. R2 and R2 values) 
and its ability to use fewer experimental runs in comparison to the CCD 
model [220–222]. Rafieenia et al. [223] recently reported an innovative 

Table 2 (continued ) 

Category Substrate Nanoparticles Inoculum source Operational parameters H2 yield Reference 

Concentration pH Temp 
(oC) 

Synthetic 
medium 

Composites Industrial 
wastewater 

Ni þ Gr Mixed cultures 60a 7.0 55 41.28c [117] 

Dairy 
wastewater 

Ni þ Fe3O4 Mixed consortia 10a and 50a 5.5 37 17.2d [167] 

Glucose C þ Fe2O3 Mixed consortia 200a 6.6 37 218.63i [187] 
Metal ion 

salts 
Synthetic 
medium 

FeCl2 Anaerobic consortia 4000a 6.0 37 122.7 mL H2 g� 1 

sucrose 
[190] 

Synthetic 
medium 

FeCl2 Anaerobic sludge 500a 6.8 37 200j [191] 

Synthetic 
medium 

FeCl3 Enterobacter aerogenes MTCC 111 213a 6.15 30 1.69b [192] 

Synthetic 
medium 

FeSO4 Anaerobic sludge 350a 7.0 35 311.2b [193] 

Palm oil mill 
effluent 

FeSO4 Clostridium butyricum EB6 309a 5.6 37 2.2b [194] 

Whey permeate FeSO4 Anaerobic consortia 1500a 7.0 25 4.13k [195] 
Synthetic 
medium 

FeSO4 Anaerobic consortia 3000a 5.5 35 1.9b [196] 

Sweet potato FeSO4 Anaerobic sludge 63.17a 6.0 30 3501 mL H2 L� 1 [146] 
Glucose FeSO4 Anaerobic sludge 200a 6.8 37 234.4i [197] 
Synthetic 
medium 

FeSO4 Anaerobic sludge 100a 6.0 37 2.6b [198] 

Synthetic 
medium 

FeSO4 Mixed consortia 100a 5.0 70 5.729 mL H2 L� 1 h� 1 [199] 

Synthetic 
medium 

NiCl2 Anaerobic sludge 0.1a 7.0 35 296.1i [200] 

Synthetic 
wastewater 

NiCl2 Anaerobic sludge 16a 6.0 34 14.89 mol H2 kg� 1 

CODR 

[201] 

Synthetic 
wastewater 

MgCl2 Mixed consortia 200a 5.4 55 1.75b [202] 

Synthetic 
medium 

MgCl2 Ethanoligenens harbinense 600a 7.0 35 2.14b [203] 

Sucrose CaCl2 Mixed consortia 100a 5.5 60 700j [171] 
Sucrose CaCl2 Mixed consortia 5.4a 6.7 35 2.45h [204] 
Sucrose Na2CO3 Anaerobic consortia 1000–2000a 6.5 37 28.04–28.97 mL H2 g� 1 

sucrose 
[205] 

Glucose NaCl Clostridium acetobutylicum NCIMB 
13357 

5000a 7.0 30 ̶ [206] 

Temp: Temperature, amg L� 1, bmol H2 mol� 1 glucose, cmL H2 g� 1 VS, dmL H2 g� 1 COD, emol H2 g� 1 COD, fL H2 g� 1 COD, gmol H2 mol� 1 xylose, hmol H2 mol� 1 sucrose, 
imL H2 g� 1 glucose, jmL, kmol H2 mol� 1 malate. 
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approach of increasing the H2 yield using mixed-consortia that was 
pretreated with waste frying oil. In this work, the waste frying oil was 
used to suppress the growth of H2-scavenging microorganisms. The 
model was used to determine the optimum pH, pre-treatment time, and 
waste frying concentration. The model predicted complete inhibition of 
H2-consumers at waste frying oil concentration of 7.74 g L� 1, fermen-
tation pH of 5.5, and pre-treatment time of 42.67 h, respectively. And 
this led to a H2 yield of 71.34 mL H2 g� 1 VS, which was 400% higher 
than the yield of the untreated inoculum [223]. Yin and Wang [224] 
produced a maximum H2 yield of 1.29 mol H2 mol� 1 glucose and pro-
duction rate of 86.7 H2 L� 1 h� 1 at optimal variables of 7.1, 11.3 g L� 1, 
10.4%, and 34.8 �C for initial pH, glucose concentration, inoculation 
amount, and temperature, respectively, using a newly isolated strain of 
Enterococcus faecium. Likewise, Sa�gır et al. [225] developed a sequential 
dark and photo-fermentative process in which the BBD method was used 
to optimize the process variables. A maximum H2 yield of 7.8 mol 
H2/mol glucose was achieved at a glucose concentration of 6 � 10� 3 

mol m� 3, inoculum fraction of 62.5%, and oxygen concentration of 4.5% 
using Rhodobacter capsulatus JP91 [225]. Therefore, these findings may 
provide new avenues for the development of integrated processes in DF. 
In addition to DF studies, the BBD model is widely used in other bio-
processes such as citric acid production [226], biomethane production 
[227], yoghurt production [228], bioethanol production [229], and 
sugar recovery from lignocellulosic biomass [230]. 

Factorial Design is also used to evaluate the effects of parameters on 
H2 output [231]. This approach usually involves several combinations of 

different factor levels which allows it to predict the synergism between 
variables and enables it to be more effective in working with a large 
number of runs [232]. Factorial Design can be categorized into two 
groups i.e. Full Factorial Design and Fractional Factorial Design [232]. 
In Full Factorial design, all possible combinations of the process vari-
ables on H2 yield are tested. The most commonly used Full Factorial 
design is the two-level design, which is represented by 2n, where n refers 
to the number of process variables that are being evaluated by the model 
[233]. A polynomial regression model can also be generated to study the 
effects of the process conditions on H2 response [233]. In contrast, the 
Fractional Factorial Design is employed when the number of experi-
mental runs for a Full Factorial design is too many to carry out experi-
mentally because of time and limited resources [234]. However, the 
Fractional Factorial Design may increase the experimental error, 
thereby compromising expected precision due to large experimental 
runs when compared to using BBD and CCD [207]. 

Other empirical tools like the two-level Plackett-Burman Design 
(PBD) have been used in the optimization of DF processes [235,236]. 
PBD is useful in screening the most influential parameters for bioprocess 
optimization [237]. After the screening process, a three-level exper-
imental-design tool (e.g. BBD or CCD) is applied to evaluate the syner-
gistic effects of parameters on the overall H2 yield [238]. Meanwhile, the 
Mixture Design (MD) is a special experiment tool that is used to deter-
mine the optimum proportions of feedstocks for enhanced H2 yields 
[239,240]. Sekoai and Gueguim Kana [240] used the MD to assess the 
optimum proportions of corn stalk (CS), bean husk (BH), and organic 

Table 3 
Summary of the predictive models that have been reported in H2 production studies.  

Substrate Inoculum DoE Optimum conditions for H2 production H2 yield Reference 

Food waste Granular sludge Box-Behnken 
Design 

Initial pH of 5.5, pretreatment duration of 42.67 h, and waste frying oil 71.34a [223]    

conc. of 7.74 g L� 1.    

Growth medium Enterococcus faecium 
INET2 

Box-Behnken 
Design 

Initial pH 7.1, temperature 34.8 �C, glucose concentration 11.3 g L� 1, and 
inoculation amount 10.4%. 

1.29b [224]  

Sugarcane 
bagasse 

Mixed anaerobic 
cultures 

Central Composite 
Design 

Substrate concentration of 22.77 g L� 1 total sugar, substrate: buffer ratio of 
4.31, and inoculum: substrate ratio of 0.31. 

6980 mL H2 

L� 1 
[252]  

Sugarbeet 
molasses 

Mixed consortia Box-Behnken 
Design 

Initial pH of 7.0, COD of 10 g L� 1, and volatile suspended solids of 2.3c [253]    

4–20 g COD g� 1 VSS.    

Potato starch Clostridium butyricum Box-Behnken 
Design 

Substrate concentration of 15 g L� 1, buffer concentration of 5 � 10� 2 mol m� 3, 
and inoculum ratio of 3. 

6.4b [254]  

Growth medium Psychrophilic strain 
G089 

Box-Behnken 
Design 

Temperature of 26.30 �C, initial pH of 6.2, and glucose conc. of 25.31 g L� 1. 1.81b [255]  

Potato waste Mixed anaerobic 
cultures 

Central Composite 
Design 

Potato waste conc. of 39.56 g L� 1, initial pH of 7.1, temperature of 37.87 �C, and 
fermentation time of 82.58 h. 

79.43d [20]  

Jatropha waste Mixed anaerobic 
cultures 

Central Composite 
Design 

Substrate conc. of 211 g L� 1, temperature of 55.4 �C, and pH of 6.5. 296 mL H2 [256]  

Agricultural 
wastes 

Mixed anaerobic 
cultures 

Mixture Design Optimal proportion of food waste, cattle manure, potato pulp and pig 21e [239]    

manure was 61.6%, 38.4%, 0%, and 0%, respectively.        
[257] 

Growth medium Chlorella sp. Taguchi Design Initial pH of 7.0, temperature of 35 �C, substrate conc. of 80 g VS L� 1. 22e   

Fruit peels Mixed anaerobic 
cultures 

Plackett-Burman 
Design 

C/N ratio of 30, temperature of 37 �C, and GAS as the best inoculum. 2221 mL H2 

L� 1 
[258]  

Glucose Mixed consortia Box-Behnken 
Design 

Initial pH of 7.92, temperature of 32.9 �C, and glucose conc. of 17.0 g L� 1. 1.81b [259] 

C/N: carbon to nitrogen ratio, Conc.: concentration, COD: chemical oxygen demand, GAS: granular activated sludge, Conc.: Concentration, DoE: design of experiment, 
VS: volatile solids. 
VSS: volatile suspended solids, TS: total solids, amL H2 g� 1 VS, bmol H2 mol� 1 glucose, cmol H2 mol� 1 sucrose, dmL H2 g� 1 TVS, emL H2 g� 1 VS. 
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fraction of solid municipal waste (OFSMW) on H2 yield using 
mixed-consortia. Optimum H2 yield of 56.47 mL H2 g� 1 TVS was ob-
tained at a ratio of OFSMW: BH: CS ¼ 30:0:0. Thereafter, the authors 
used the BBD to optimize the setpoints conditions of pH, temperature, 
substrate concentration, and hydraulic retention time (HRT), respec-
tively [240]. The BBD predicted the setpoint parameters of 7.9, 30.29 
�C, 40.45 g L� 1, and 86.28 h for pH, temperature, substrate concentra-
tion, and HRT, with a H2 yield of 57.73 mL H2 g� 1 TVS [240]. Similarly, 
Shuang et al. [239] studied the optimal proportion of cattle manure 
(CM), food waste (FW), pig manure (PM), and potato pulp (PP) for 
augmentation of H2 yield using MD. An enhanced H2 yield of 21.0 mL H2 
g� 1 VS was achieved at optimal ratio of FW: CM: PP: PM ¼
61.6:38.4:0:0. Therefore, these results highlight the significance of MD 
models in DF processes that use co-digested feedstocks. 

Computational fluid dynamics (CFD) is a multi-dimensional tool that 
employs numerical methods to provide useful information about the 
hydrodynamics of processes [241–246]. CFD also provides in-depth in-
formation about the design of DF reactors and is used to evaluate the 
scalability of DF systems [247]. This method is used to improve mixing, 
heat transfer, mass transfer, and chemical reactions within a fermenter 
[248,249]. These aspects of a reactor design can be fine-tuned with CFD, 
rather than with one-dimensional equations i.e. although they are 
simpler, they are less accurate. Wang et al. [250] conducted a hydro-
dynamics assessment using CFD for an industrial-scale DF process. The 
results showed that several process barriers need to be overcome in 
industrial-scale reactors, including velocity heterogeneity and stagna-
tion zones. The optimal operation was achieved using an impeller with a 
rotation speed of 0.67 Hz and diameter of 1600 mm [250]. Ding et al. 
[251] used CFD to obtain an optimum propeller speed of 0.83–1.17 Hz 
for economic DF process. These results demonstrate the possibility of 
using CFD for up-scaling the DF processes. 

The non-linear nature of bioprocesses has limited the application of 
RSM-based models in DF processes [260]. Hence, experts are now 
shifting to models that can encapsulate this non-linearity to effectively 
optimize the DF processes [261]. Artificial neural network (ANN) is the 
most robust empirical approach for modelling and optimization of 
multifaceted and non-linear systems [262]. ANNs emulates the neuro-
logical functioning of the human’s brain by arithmetically modelling the 
network structure of interconnected nerves [262]. The interest in ANNs 
stems from their exquisite properties such as self-learning, adaptability, 
high-speed processing, fault and noise tolerance, and remarkable 
information-processing ability [263]. ANNs are used in various disci-
plines such as engineering, forensic sciences, medicine, mining, clima-
tology, economics, agriculture, and business [264,265]. 

Currently, these tools are being used to elucidate the non-linear 
behaviour of biogenic H2 processes [262]. Whiteman and Gueguim 
Kana [266] conducted a comparative assessment of ANN and BBD for DF 
process using sugarcane molasses. The ANN and BBD generated the 
coefficient of determination (R2) values of 0.91 and 0.75, respectively, 
at optimal conditions of 8.0, 35 �C, 150 g L� 1, for initial pH, tempera-
ture, substrate concentration, and different inoculum concentrations 
(15% and 10.11%) for ANN and RSM, respectively. Therefore, ANN 
exhibited a higher level of accuracy compared to BBD and this confirms 
the inability of RSM-based models to accurately capture the behaviour 
of complex non-linear microbial systems as highlighted above [266]. 
Similarly, Jha et al. [267] assessed the accuracy of BBD and ANN models 
in the optimization of H2 yield and COD removal efficiency in an up-flow 
anaerobic sludge blanket reactor. ANN was the most reliable optimiza-
tion tool compared to BBD and generated a high R2 value of 0.99, 
whereas the BBD model produced an R2 value of 0.90. Furthermore, an 
optimum H2 yield of 0.90 mol H2 mol� 1 glucose and a COD removal 
efficiency of more than 80% was achieved using the ANN approach 
[267]. 

In another study, ANN was used to regulate a continuous DF process 
for 450 days [268]. The model optimized the non-linear relationships of 
setpoint parameters of pH, temperature, sucrose concentration, recycle 

ratio, alkalinity, metabolites concentration, oxidation-reduction poten-
tial, and hydraulic retention time. There was a high correlation between 
the predicted and experimental results [268]. Recently, ANN was also 
used in the optimization of DF using organic fraction of solid municipal 
waste as a substrate [269]. The optimal conditions for DF were 7.0, 35 
�C, 8%, and 1:5, for initial pH, temperature, solid content, and mixing 
ratio, respectively, with R2 value of 0.96 [269]. High prediction accu-
racies with R2 values ranging from 0.90 to 0.99 are also reported in other 
DF studies [270–278]. Hence, these results highlight the suitability of 
ANNs in the optimization of H2 yields and these tools will help re-
searchers understand the multifaceted and non-linear nature of DF 
processes, which is crucial for future scale-up studies. However, the use 
of ANN in biofuels is still in its infancy and requires further in-
vestigations. Table 4 summarizes the abovementioned studies and other 
studies on the use of ANN in DF processes. 

3.4. Consolidated bioprocessing for lignocellulosic H2 production 

The “food vs fuel” debate has reinvigorated an interest in the 
development of second generation biofuels owing to their socio- 
economic benefits [279,280]. Lignocellulosic wastes are highly stud-
ied in DF processes because they are ubiquitous (have a global yield of 
more than 1.3 billion tons per annum) and are rich in nutrients 
[281–284]. Also, the lignocellulosic feedstocks make the process of DF 
to be economically-viable [285,286]. 

The conversion of lignocellulosic biomass into H2 involves three 
sequential steps: (i) the pre-treatment process which disrupts the crys-
talline structure of lignocellulosic biomass, (ii) the conversion of poly-
saccharides into monomeric sugars via the hydrolysis process, and (iii) 
the utilization of monomeric sugars by H2-producers [287,288]. How-
ever, the use of lignocellulosic feedstocks poses several challenges. 
Firstly, the pre-treatment methods are energy-intensive and laborious 
[289]. Secondly, fermentative inhibitors such as aliphatic compounds, 
furan derivatives and phenolic compounds are released during the 
pre-treatment [290–292]. Furthermore, techno-economic studies have 
shown that more than 40% of the overall costs are derived from the 
pre-treatment steps [293]. Therefore, the success of DF using cellulosic 
biomass relies on the development of robust and cheap technologies 
[294,295]. 

Consolidated bioprocessing (CBP) is receiving increasing popularity 
for its cost-effectiveness and ability to generate high H2 yields 
[296–298]. CBP is a single fermentation process that integrates the steps 
of enzymatic pre-treatment, hydrolysis of polysaccharides, and conver-
sion of sugars into H2 using microorganisms [299,300]. This integrated 
process is beneficial because it lowers the capital costs, reduces the 
fermentation periods, minimizes the risks of contamination, and pro-
duces high H2 yields [301–305]. This process is undertaken using the 
native or recombinant method [305]. The native strategy uses cellulo-
lytic enzymes that are found in predominant H2-producing microor-
ganisms such as Clostridium [306,307]. The recombinant strategy 
employs genetically-engineered strains to enhance the hydrolysis of 
biomass, resulting in high H2 yields [308]. However, in an industrial 
setting, the recombinant strategy would not be ideal due to various 
constraints such as the need to sustain high-level expression of recom-
binant cellulolytic genes and there are high risks of contamination 
[308]. 

Several cellulolytic clostridial strains including C. cellulolyticum, C. 
termitidis, C. cellulovorans, and C. thermocellum [42,307,309,310], Cal-
dicellulosiruptor sp. [311], Thermoanaerobacter sp. [312], Thermoanaer-
obacterium sp. [313], Ruminococcus sp., and mixed biofilm-forming 
communities from anaerobic mixed sludge [314], compost manure 
[315], and rumen gut [316] are used in CBP of lignocellulosic H2 pro-
duction. Amongst these, thermophiles are extensively studied in CBP of 
lignocellulosic H2 production because they: (i) produce high H2 yields 
(ii) use various cellulosic biomass, (iii) improve the rate of hydrolysis, 
(iv) enhance the metabolic rates due to improved mass transfer, (iv) 
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reduce the formation of inhibitors, and (v) pave the way to reducing the 
operating costs [317,318]. 

Mixed-cultures are also desirable in DF because these microorgan-
isms can: (i) utilize various lignocellulosic feedstocks, (ii) produce H2 
under mild fermentation conditions (ii) increase the conversion of sub-
strates and metabolic reactions, (iv) favour the production of continuous 
H2 fermentations, (v) participate in synergistic mechanisms, (vi) can be 
used without sterilization, and (vii) allow simultaneous saccharification 
and fermentation of biomass [319–321]. Clostridium species are the most 
studied microorganisms for CBP of lignocellulosic H2 production 
because they have complex cellulose degrading-enzymes known as cel-
lulosomes [322]. It has been shown that C. clariflavum consists of 160 
carbohydrate-active enzymes whereas C. thermocellum encodes for over 
70 carbohydrate-active enzymes [323,324]. P�erez-Rangel et al. [325] 
evaluated the effect of wheat-straw for CBP of H2 production using four 
inoculum sources (anaerobic sludge, cow ruminal fluid, forest soil, and 
microbes found in wheat straw). The microflora found in wheat-straw 
produced the highest H2 yield (7 mL H2 g� 1 VS) and this was attrib-
uted to the presence of cellulolytic fungi which improved the sacchari-
fication of wheat-straw while promoting synergism with H2-producing 
bacteria [325]. 

Wang et al. [326] used human waste simulants for thermophilic CBP 
of biogenic H2 production using mixed-cultures obtained from various 
sites (hot spring, wastewater treatment plant, and landfill compost). A 
high H2 yield of around 4 � 10� 3 mol H2/g substrate was achieved using 
the consortium in the landfill compost [326]. Further microbial analysis 

showed that Caldanaerobius, Caloribacterium, and Thermoanaer-
obacterium sp. were the main H2-producing species [326]. Carver et al. 
[327] also used four cellulosic feedstocks (microcrystalline cellulose 
Sigma Type 20, Type 50, Whatman filter paper, and cellulosic filter 
paper) in CBP of H2 production at different temperatures (50 �C and 60 
�C) from compost. Results showed that Clostridium and Thermoanaer-
obacter were the dominant cellulolytic species. CBP of lignocellulosic H2 
production could also be integrated with other bioprocesses as acetic 
acid and ethanol were produced [327]. Table 5a highlights the various 
studies that used mixed-cultures in CBP of lignocellulosic H2 production. 

Others studies used pure-cultures in an attempt to overcome the 
thermodynamic limitations in biological H2 production. These include 
cultures from the genera Clostridium, Enterobacter, Bacillus, Thermoa-
naerobacterium and Caldicellulosiruptor, as shown in Table 5b [311, 
328–331]. Optimal H2 yields of 2.53 mol H2/mol hexose and 3.8 mol 
H2/mol hexose were reported using pure-cultures of C. saccharolyticus 
[311], and T. thermosaccharolyticum [331], respectively. Other thermo-
philic studies reported high H2 yields that ranged from 1.5 to 3.3 mol 
H2/mol hexose [307,332–336]. The elevated H2 yields in pure-cultures 
are caused by the high substrate conversion efficiency, suppression of 
inhibitors, and enrichment of H2-producers. Nevertheless, the scalability 
of DF processes using pure-cultures is still uncertain due to the 
complexity of these inoculum sources and high operational costs [305]. 

Table 4 
Summary of studies that reported the use of ANN for optimization of H2 production.  

Substrate Inoculum Input parameters for ANN training and modelling H2 yield R2 

value 
Reference 

Sugarcane 
molasses 

Anaerobic 
sludge 

Initial pH (4–8), molasses conc. (50–150 g L� 1), temperature (35–40 �C), and 84.33 mL H2 0.91 [266]   

inoculum concentration (10–50%).     

Growth medium Anaerobic 
sludge 

Temperature (30–45 �C), HRT (4–48 h), and cell immobilized conc. (50–100%). 0.90a 0.99 [267]  

Growth medium Mixed 
consortia 

Initial pH (5.0–6.5), glucose: xylose ratio (0:5 to 5:0), inoculum size (0.04–0.1 g), and age of 
inoculum (0–24 h). 

325–379b 0.99 [273]  

OFMSW Mixed 
consortia 

Initial pH of 7.0, temperature of 35 �C, solid content of 8%, and mixing ratio of 1:5. 138.88 mL H2 

gm� 1 VS 
0.99 [269]  

Growth medium Mixed 
consortia 

Temperature (30–48.4 �C), initial pH (6.0–9.0), and glucose conc. (10–34.4 g L� 1). 305.3b 0.99 [272]  

Glucose Mixed cultures Initial pH (5.5–7.5), temperature (20–55 �C), substrate conc. (0.3–58.6 g L� 1), and biomass 
conc. (0.9–17.6 g L� 1 COD). 

382c 0.97 [270]  

Cheese whey E. coli Initial pH (6.5–7.5), ORP (� 0.1 to � 0.5 V), and DCO2 (0–90%). 745c 0.95 [271]  

Agricultural 
wastes 

Mixed cultures Temperature (25–40 �C), initial pH (5–9), substrate types (xylose, glucose and sucrose), and 
substrate conc. (10–35 g L� 1). 

305.3b 0.90 [274]  

Growth medium Mixed 
consortia 

Influent bicarbonate alkalinity (1–3.5 g L� 1), HRT (3–30 h), and organic loading rate 
(10–90 g COD L� 1 d� 1) 

1.40a 0.96 [275]  

Distillery 
wastewater 

Mixed cultures Temperature of 34 �C, pH of 6.5, HRT of 24 h, and OLR (1–10.2 kg COD L� 1 d� 1) 1300 mL H2 d� 1 0.98 [276]  

Kitchen waste Mixed 
consortia 

Volumetric loading rate (0–4 kg COD L� 1 d� 1), pH (5.0–6.0), temperature of 34 �C, 
alkalinity (0.5–1.0 g L� 1), and ORP. 

11.5H2 L� 1 d� 1 – [277]  

Basal medium Mixed 
consortia 

Biochar conc. (0–8x10� 5 g L� 1), Nickel conc. (0–2x10� 4 g L� 1), pH (5.5–7.0), and dosage of 
microbes (24 � 10� 3-33 � 10� 3 g L� 1). 

234.1b – [142]  

Growth medium Enterobacter sp. Initial pH (6.0–8.5), peptone conc. (2–7 g L� 1), and xylose conc. (8–18 g L� 1). 1.94d 0.99 [278] 

-: Not available; Conc.: concentration, COD: chemical oxygen demand, DCO2: dissolved carbon dioxide, HRT: hydraulic retention time, OLR: organic loading rate. 
ORP: oxygen reduction potential, VS: volatile solids, amol H2 mol� 1 glucose, bmL H2 g� 1 substrate, cmL H2, dmol H2 mol� 1 xylose. 
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3.5. Biological H2 methanation 

The production of clean H2 through the water electrolysis process is 
also receiving a lot of consideration [365–372]. The cost of electricity to 
produce H2 is regarded as the main barrier that restricts the industrial-
ization of H2 technologies in the energy sector [373–377]. Biological H2 
methanation is a method that converts H2 and CO2 into CH4 and it is 
derived from the Sabatier reaction. This approach is advantageous 
because there are already existing CH4 gas infrastructures (e.g. natural 
gas pipelines) that are used for various applications such as chemical 
industry, mobility sector, power generation, and gas sector [378–382]. 
The biological process uses moderate temperatures (50–60 �C) and 
biowastes and is considered as the most suitable biogas upgrading 
method [383,384]. In this technology, biogas consisting of CH4 
(50–70%), is converted into high CH4 content (�95%) through the 
exogenous addition of H2 and CO2 into the methanogenic reactor 
[383–390]. Studies on this technology are quite recent and investigation 
of the effects of various process variables such as reactor design, pH, 
temperature, mixing, partial pressure, and inoculum sources on CH4 
concentration is reported (Table 6). 

4. The potential of bioenergy in Sub-Saharan Africa 

Several Sub-Saharan African countries are listed amongst the world’s 
fastest-growing economies [411,412]. These nations need a thriving 
energy sector to cater for this rapid industrialization and population 
growth [411]. Biofuels will serve as a catalyst to strengthening the re-
gion’s energy sector, infrastructural development programmes, rural 
development, and economic growth. In recent years, efforts have been 
made to fast-track the development of biofuel-related technologies in 
this region. But these initiatives are hindered by several issues such as 
lack of technical expertise, low funding opportunities, political inter-
ference, and scepticism surrounding biofuels [412]. The existing biofuel 
projects are under preliminary stages and few of these have reached 
commercialization (Table 7). Nevertheless, these studies will play a 
crucial role in the advancement of alternative fuels in this region due to 
the high availability of biomass resources and non-arable land. 

A recent review by Adewuyi [28] showed that the pressing human-
itarian issues such as food shortages, poor health care, and slow eco-
nomic growth delay the advancement of biofuels in Sub-Saharan Africa 

because a majority of the budget is earmarked for improving the live-
lihoods of people. It was proposed that these nations should establish 
regulatory frameworks that allow various stakeholders (farmers, land-
owners, foreign investors, NGOs, and research institutions) to play an 
active role in biofuel development initiatives [28]. Furthermore, the 
environmental and social impacts of biofuels need to be thoroughly 
assessed to ensure that they do not affect other valuable resources such 
as water and biodiversity. 

4.1. The South African scenario 

South Africa does not have adequate waste management facilities 
[413]. Therefore, a large fraction of the country’s waste is disposed on 
landfills and this causes various environmental issues [414]. More than 
60 million tons of waste is produced each year [415], and this value will 
increase by more than 10 million tons over the next decade [416,417]. 
The conversion of waste into biofuels could help to address these issues. 
It is noteworthy to mention that biofuel-related technologies are in their 
early stages in South Africa and about 200 small-scale biofuel plants 
have been built and run, but this number is likely to increase in the next 
few years due to government policies aiming at strengthening the 
development of alternative fuels [418]. Fundamental research afforts on 
DF studies are also being expended in some South Africa institutions 
such as Durban University of Technology, University of the Witwa-
tersrand, and the University of KwaZulu-Natal to contribute to the 
development of this technology [419–426]. 

5. The way forward: a proposed roadmap for surpassing the 
current process barriers 

In spite of the enormous amount of research that has been conducted 
over the past years, major hurdles still need to be overcome to realize the 
potential of DF process as an alternative fuel. The proposed optimal 
technologies are mostly conducted under laboratory-scale conditions 
and have not been evaluated at large-scale. Secondly, scientists are 
currently investigating the individualistic effects of these technologies 
on DF pathways but are yet to examine the synergistic interactions of 
these technologies on H2 yield from DF, and this stagnates the indus-
trialization of DF technology. To accelerate the commercialization of DF 
process, the stakeholders (scientists, industries, and policymakers) 

Table 5a 
Consolidated bioprocessing of lignocellulosic H2 production process using mixed anaerobic cultures.  

Substrate Inoculum Temp (oC) pH Operation mode H2 yield Reference 

Leaves Anaerobic cultures 37 7.0 Batch 37.8a [337] 
Rice husk Anaerobic cultures 35 6.0 Batch 200 mL H2 L� 1 [338] 
Rice straw Anaerobic cultures 35 5.01 Batch 14.54a [339] 
Algal bloom Mixed cultures 35 6.0 Batch 24.96b [340] 
Sweet sorghum Mixed cultures 35 4.7–5.5 Continuous 10.4 L H2 kg� 1 sweet sorghum [341] 
Potato waste Mixed cultures 37.87 7.86 Batch 79.43b [20] 
Cassava starch Mixed consortia 60 5.5 Continuous 249.3 mL H2 g� 1 starch [342] 
Napier grass Rumen consortia 38 7.0 Batch – [343] 
Rice straw Anaerobic sludge 55 7.0 Batch 0.74 � 10� 3 mol H2 g� 1 VS [344] 
Corn straw Anaerobic sludge 35 4–8 Batch 68 mL H2 g� 1 corn straw [345] 
Rice straw Mixed cultures 55 6.5 Batch 24.8 mL H2 g� 1 TS [315] 
Corn stover Anaerobic consortia 35 5.5 Batch 2.84–3.0c [346] 
Raw paper sludge Microflora from paper sludge 55 7.0 Batch 110.91a [347] 
Molasses Mixed consortia 35 5.5 Continuous 1.47c [348] 
Cornstalk Anaerobic cultures 55 6.0 Batch 48.7g [349] 
Cornstalk Anaerobic consortia 60 7.0 Batch 155.4b [350] 
Fodder maize Mixed microflora 35 5.2–5.3 Batch 62.4 mL H2 g� 1 maize [351] 
Perennial ryegrass Mixed microflora 35 5.2–5.3 Batch 75.6 mL H2 g� 1 grass [351] 
Wheat straw Anaerobic cultures 37 5.5 Batch 5.18–10.52a [352] 
Rice straw Mixed consortia 55 7.0 Batch 21a [353] 
Grass Anaerobic consortia 35 6.0 Batch 1.25 � 10� 3 mol H2 g� 1 grass [354] 
Mushroom waste Mixed cultures 55 8.0 Batch 0.73 � 10� 3 mol H2 g� 1 TVS [355] 
Sugarcane bagasse Mixed cultures 37 6.0 Batch 6980 mL H2 L� 1 [252] 
Sugarcane bagasse Elephant dung 37 6.5 Batch 0.84 mol H2 mol� 1 total sugar [356] 
Corn starch Mixed consortia 35 5.3 Continuous 0.51c [357]  

P.T. Sekoai et al.                                                                                                                                                                                                                                



Biomass and Bioenergy 140 (2020) 105673

12

involved in alternative energies should have a precise roadmap for DF. 
The roadmap should include research and development (R&D) stage (as 
shown in this article), scale-up studies, which could pave the way for the 
industrialization of this process (Fig. 2). In this manner, the process 
barriers highlighted in Fig. 1 can then be overcome by implementing the 
steps (1, 2, and 3) that are presented and described in this roadmap. 
Some of the recommendations applicable here are also discussed in 
section 6. 

6. Conclusions and recommendations for future studies 

This article provides a critical review of recent technological 
methods that are used to enhance H2 yields in DF process. Herein, novel 
biogenic H2 optimization methods such as cell immobilization, nano-
technology, empirical optimization tools, and biogas upgrading from 
renewable H2, are suggested to be the most promising methods that can 
be used to overcome the technical barriers facing DF process. However, 
most of the studies discussed in this article are still at the infancy stage 

and are far from commercialization. Since the industrialization of any 
process relies on its scalability, it is therefore crucial to develop a 
technology roadmap that will lead to the scalability of the DF process, as 
explained in section 5. To achieve this, several strategies should be 
adopted and some of these are suggested below:  

� More DF studies should be conducted at pilot-scale using optimized 
continuous reactors coupled with various online-monitoring and 
regulating instruments such as pH sensors, temperature sensors, ac-
tuators, and oxidation-reduction potential probes. This will provide 
reliable process data that can be used for its large-scale production.  
� Inoculum development remains a critical issue in the DF process. 

Research relating to metabolic engineering and bacterial encapsu-
lation will help in the creation of oxygen-tolerant bacterial strains, 
inhibition of H2-scavenging pathways, reduction of microbial con-
taminants, reusability of bacterial cells, extending the fermentation 
periods, maintaining anaerobic conditions, and increasing H2 pro-
duction yields in DF process. 

Table 5b 
Consolidated bioprocessing of lignocellulosic H2 production process using pure cultures.  

Substrate Inoculum Temp (oC) pH Operation mode H2 yield Reference 

Wheat straw Caldicellulosiruptor saccharolyticus DSM8903 70 7.2 Batch 3.8c [311] 
Sweet sorghum Caldicellulosiruptor saccharolyticus DSM8903 70 7.2 Batch 1.75c [311] 
Maize leaves Caldicellulosiruptor saccharolyticus DSM8903 70 7.2 Batch 1.80c [311] 
Bagasse Caldicellulosiruptor saccharolyticus DSM8903 70 7.2 Batch 2.30c [311] 
Silphium leaves Caldicellulosiruptor saccharolyticus DSM8903 70 7.2 Batch 0.48c [311] 
Switchgrass Caldicellulosiruptor saccharolyticus DSM 8903 65 7.2 Batch 0.0112d [302] 
Microcrystalline cellulose Caldicellulosiruptor saccharolyticus DSM 8903 65 7.2 Batch 9.4d [302] 
Cornstalk Thermoanaerobacterium thermosaccharolyticum 65 7.2 Batch 6.8d [294] 
Cornstalk Thermoanaerobacterium thermosaccharolyticum 60 7.0 Batch 0.00347e [294] 
Wheat straw Thermoanaerobacterium thermosaccharolyticum 60 7.0 Batch 0.00353e [294] 
Avicel Clostridium thermocellum 27405 55 7.0 Batch 0.032f [304] 
Filter paper Clostridium thermocellum 27405 55 7.0 Batch 0.02619f [304] 
Sugarcane bagasse Clostridium thermocellum 27405 55 7.0 Batch 0.02352f [304] 
Sugarcane bagasse Clostridium thermocellum ATCC 27405 55 6.99 Batch 0.09783f [306] 
Delignified wood fibers Clostridium thermocellum 27405 60 6.8 Batch 1.6c [307] 
Corn-stover Clostridium cellulolyticum DSM 5812 37 7.2 Batch 51.9 L H2 kg� 1 TS [358] 
Cornstalk Clostridium thermocellum 7072 55 7.2 Continuous 61.4g [359] 
Mushroom Clostridium thermocellum DSM 1313 55 5–6 Batch 73.90f [360] 
Sorghum bagasse Clostridium saccharolyticus DSM 8903 72 6.8 Batch 2.6 mol mol� 1 hexose [359] 
Starch Enterobacter aerogenes NCIMB 10102 40 6.6 Batch 1.09 mol mol� 1 substrate [361] 
Barley straw Caldicellulosiruptor saccharolyticus 70 7.0 Batch 0.0312f [362] 
Bagasse hydrolysate Bacillus firmus NMBL-03 38 6.8 Batch 1.29 mol H2 mol� 1 sugar [363] 
Distillers grain Clostridium thermocellum ATCC 27405 60 7.2 Batch 0.00127c [364] 

-: no data, amL H2 g� 1 VS, bmL H2 g� 1 TVS, cmol H2 mol� 1 glucose, dmol H2 g� 1 substrate, emol H2 g� 1 substrate, fmol H2 L� 1, gmL H2 g� 1 corn stalk. 

Table 6 
An overview of the biogas upgrading processes from various substrates.  

Reactor type Inoculum Substrate Gas mix Temp (oC) pH CH4 (%) Reference 

CSTR Digested manure Raw cattle manure in-situ 55 7.2 65 [391] 
CSTR Digested manure Manure and whey in-situ 55 7.5 90.2 [392] 
CSTR Digested sewage sludge Sewage sludge in-situ 37 8.0 99 [393] 
UASB Mesophilic granules Potato starch in-situ 55 8.3 82 [394] 
Batch reactor Anaerobic digestate Maize leaf in-situ 52 7.0–8.0 89 [395] 
CSTR Anaerobic digestate Straw in-situ 38 7.89–8.43 76.8–100 [396] 
Batch reactor Anaerobic sludge Food waste in-situ 37 and 55 8.6 77.5–98.1 [397] 
Batch reactor Anaerobic sludge Corn-stover biochar in-situ 55 7.5–9.0 >90 [398] 
CSTR Anaerobic sludge Wastewater ex-situ 35 5.5 92 [399] 
Trickle-bed reactor Immobilized mixed cultures Trace elements ex-situ 37 7.2–7.4 98 [400] 
Trickle-bed reactor Immobilized mixed cultures Trace elements ex-situ 37 7.4–7.7 >96 [401] 
UASB Anaerobic digestate Digested slurry ex-situ 52 8.0 98 [402] 
Batch reactor Anaerobic digestate Trace elements ex-situ 65 7.7–8.2 92 [403] 
Biofilm reactor Anaerobic sludge Trace elements ex-situ 37 7.0–8.0 90 [404] 
Up-flow reactor Mixed cultures Digestate ex-situ 55 8.48 96.8 [405] 
Trickle-bed reactor Anaerobic sludge Trace elements ex-situ 55 7.0 98 [406] 
Trickle-bed reactor Anaerobic sludge Trace elements ex-situ 40 7.31–7.40 97.19 [407] 
CSTR Cattle manure Potato starch in-situ þ ex-situ 53 8.3–8.5 95 [408] 
Batch reactor Mixed cultures Basal medium in-situ 37 6.0 96 [409] 
CSTR Anaerobic sludge Basal medium ex-situ 35 and 55 7.2 96 [410]  
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� There is still a dearth of knowledge about the microbial community 
structure and its impacts on acidogenic pathways during the DF 
process. Although high-throughput characterization tools are now 
used to unravel the microbial assemblages associated with DF pro-
cesses, the variations in inoculums, feedstocks and operational con-
ditions make our understanding of the microbiology impaired. 
Therefore, in-depth microbial screening studies should be conducted 
to understand the microbial communities involved during the course 
of DF processes.  
� It has been shown that an integrated process involving dark- and 

photo-fermentation can produce a theoretical yield of up to 12 mol 
H2 mol� 1 glucose. However, preliminary studies have not achieved 
this yield. More studies should therefore be explored to evaluate the 
possibility of attaining this yield as this could lead to the scalability 
of microbial H2 processes.  

� The pretreatment of lignocellulosic biomass remains a huge barrier 
in DF process, therefore the establishment of inexpensive pre-
treatments methods will assist in the advancement of this bioprocess 
as the majority of the operational costs are used in the initial pre-
treatment steps in DF process. 
� Techno-economic studies are still necessary to acquire deeper in-

sights into the technical and economic scenario of DF processes, 
particularly when using different feedstocks and setpoint parame-
ters. This information will be useful in energy planning, system 
design, and operation of DF facilities.  
� It is recommended that similar units (e.g. L H2 kg� 1 or mL H2 kg� 1 

substrate) should be used in DF processes, particularly when using 
biomass feedstocks so that the performances of DF processes can be 
easily compared and evaluated across studies.  
� The use of H2 purification methods will be necessary so that the H2 

from the DF process can be used in technologies such as fuel cells. 
However, this will only be feasible at large-scale after surpassing the 
current thermodynamic limitations. 
� The DF process should be integrated with other renewable technol-

ogies such as biogas upgrading methods because there are already 
existing CH4 gas infrastructures (e.g. natural gas pipelines) that are 
used for various applications such as chemical industry, mobility 
sector, power generation, and gas sector.  
� Since there are already existing pilot-scale biorefinery demonstration 

plants that are used to produce different compounds, DF processes 
should also be integrated into biorefinery methods to enhance the 
energetic gains and make this process more competitive as other 
products can be produced from these integrated systems.  
� A multidisciplinary collaboration of experts from different fields 

such as chemical engineering, electrochemical chemistry, biological 
sciences, and material sciences will be instrumental in overcoming 
the current thermodynamic limitations and this could ultimately 
lead to the scalability of DF processes.  
� It is important to have a strong partnership between the academia 

and industry. This will pave the way for new technological 

Table 7 
Biofuel projects in Sub-Saharan African countries [411,412].  

Country Feedstock Biodiesel (L) Bioethanol (L) Biogas (L) 

Benin Cassava – 2 � 107 – 
Burkina Faso Sugarcane – 2 � 107 – 
Côte d’Ivoire Molasses – 2 � 107 1000 
Ghana Jatropha 5 � 107 – – 
Guinea Cashew – 1 � 107 – 
Mali Molasses – 2 � 107 – 
Malawi Molasses – 1.46 � 108 1000 
Kenya Molasses – 4.13 � 108 – 
Ethiopia Molasses – 8 � 107 1000 
Niger Jatropha 1 � 107 – – 
Nigeria Sugarcane – 7 � 107 – 
Sudan Molasses – 4.08 � 108 – 
Swaziland Molasses – 4.80 � 108 – 
Senegal Molasses – 1.5 � 107 – 
Tanzania Molasses – 2.54 � 108 1000 
Togo Jatropha 1 � 107 – – 
Uganda Molasses – 1.19 � 108 – 

-: data not available. 

Fig. 2. Proposed roadmap for overcoming the current barriers hindering the commercialization of DF process. Adapted and modified from Hong et al. [427].  
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innovations which have a potential for commercialization. Further-
more, investments in scientific research, technological development, 
and scientific meetings will help to advance this field. 
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