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ABSTRACT 

An easy-to-use and accurate multi-frequency path loss model is a necessary tool for heterogeneous 

radio network planning and optimization towards achieving a smart campus. The learning ability 

in artificial intelligence may be exploited to reduce computational complexity and to improve 

prediction accuracy. In this research project, an optimal heterogeneous model was developed for 

path loss predictions in a typical university campus propagation environment using machine 

learning approach. Radio signal measurements were conducted within the campus of Covenant 

University, Ota, Nigeria to obtain the logs of signal path loss at 900, 1800, and 2100 MHz. 

Different path loss prediction models were developed based on Artificial Neural Network (ANN) 

and Support Vector Machine (SVM) learning algorithms. The prediction accuracy and 

generalization ability of the ANN-based model, which has seven input nodes (distance, frequency, 

clutter height, elevation, altitude, latitude, and longitude), single hidden layer with 43 neurons and 

logarithmic sigmoid (logsig) activation function, and a single output neuron (for path loss variable) 

with tangent hyperbolic sigmoid (tansig) activation function, was found to be the best when 

compared to the prediction outputs of SVM-based model, and popular empirical models (i.e. 

Okumura-Hata, COST 231, ECC-33, and Egli). The ANN-based path loss model was trained based 

on Levenberg-Marquardt learning (LM) learning algorithm. The prediction outputs of the ANN-

based path loss model has the lowest Root Mean Square Error (RMSE) of 4.480 dB, Standard 

Error Deviation (SED) of 4.479 dB, and the highest value of correlation coefficient (R) of 0.917, 

relative to the measured path loss values. This finding was further validated by the results of 

Analysis of Variance (ANOVA) and multiple comparison post-hoc tests. In essence, ANN-based 

path loss model was found to be the optimal model for heterogeneous radio network planning, 

deployment, and optimization in a smart campus propagation environment. 

Keywords:  Path Loss Model; Heterogeneous Radio Network; Artificial Neural Network (ANN); 

Support Vector Machine (SVM); Radio Network Planning and Optimization (RNP/O); Smart 

Campus
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

Executives, managers, and administrators in Higher Education Institutions (HEIs) may increase 

system efficiency and reduce running cost of activities on campus by exploiting the potentials of 

emerging enabling technologies such as Internet of Things (IoT), cloud computing, Big Data 

analytics, artificial intelligence, and fifth generation (5G) wireless communications (Adamkó, 

2017; Bakken et al., 2017; Ogawa & Shimizu, 2017; Uskov et al., 2017). For example, location 

intelligence data gathering can help to optimize services, safety, space management, and asset 

utilization. Intelligent parking services can be provided to optimize driving route, reduce traffic 

congestion and minimize incidence of vehicle theft on university campuses through combined 

deployment of Wireless Fidelity (Wi-Fi) communication networks, high resolution video cameras, 

real-time video analytics, and sensor-enabled parking management applications. Also, the use of 

smart lighting systems in classrooms, administrative and residential buildings, and street lights 

will help in optimizing energy efficiency, and reduce carbon footprint. In addition, challenges in 

the areas of waste management, retail service delivery, transportation, water quality, lecture 

delivery, and attendance capturing can be handled through efficient system automation. 

Ultimately, the concept of ‘smart campus’ is tailored towards achieving a sustainable educational 

system by improving learning, working, and living experiences of students, staff, and faculty 

through the use of Information and Communication Technologies (ICTs). 

Mobile communication systems provide the network infrastructure required for efficient and 

seamless delivery of IoT-enabled smart applications and services. Communication between sensor 

nodes, humans, objects, buildings, and machines can be established through different radio access 

technologies such as Wi-Fi, Global System for Mobile communications (GSM), Digital Cellular 

System (DCS), Universal Mobile Telecommunications System (UMTS), and Long Term 

Evolution (LTE). According to 2017 Cisco Visual Networking Index Report (Cisco, 2017), the 

demand for mobile connectivity has continued to increase at an exponential rate across the globe. 

For example, the average monthly mobile data traffic in 2016 was estimated to be 7.2 billion 

Gigabytes (an equivalent of 7.2 Exabytes). A high proportion of this exponential growth in global 

mobile data traffic was attributed to smartphones, IoT device, sensor node, and Machine-to-
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Machine (M2M) wireless connections. Within the next three years, the number of mobile-

connected devices is expected to leap to an estimated total of 12 billion. Hence, the number of 

devices, machines, vehicles, objects, applications, processes, and services that will require mobile 

connectivity for their proper functioning will soon outnumber the projected global human 

population of 7.8 billion by 2021. 

In the light of the above, deployment of more Radio Access Networks (RANs) have become 

expedient to meet the exponential growth in number and demands of mobile users without 

compromising the expected Quality of Service (QoS). On the other hand, commissioning 

additional base stations, especially on campuses that are driven towards system ‘smartness’, will 

address the problem of radio coverage holes in order to improve customer satisfaction. This will, 

in return, boost the revenue base of mobile network operators. However, the need for greater 

cellular network capacity will drastically increase the rate of deployment of base stations, making 

the determination of suitable locations more difficult.  

The design of mobile communication networks requires a good knowledge of the wireless channel 

(N. Faruk, Y. A. Adediran, & A. A. Ayeni, 2013; Oseni, Popoola, Enumah, & Gordian, 2014). It 

largely determines the transmission rate and the quality of signal propagation due to its complexity 

and randomness (Sotirios P Sotiroudis & Katherine Siakavara, 2015). Interactions between 

radiated electromagnetic waves and physical objects in wireless propagation environment often 

result in reflection on large plane surfaces, scattering from surfaces of small size relative to the 

wavelength of transmission, transmission through dense materials like walls or floors, or 

shadowing by obstacles such as buildings and foliage. Therefore, radio waves that are transmitted 

by the base station antennas reach mobile devices through different propagation paths, depending 

on the environment. This often results in signal fading, which may be in small or large scale 

(Rappaport, 1996). Small-scale signal fading occurs due to rapid fluctuations of Received Signal 

Strength (RSS) over a short period of time and small distance (Phillips, Sicker, & Grunwald, 

2013); conversely, large-scale signal fading takes place as average signal strength changes over a 

large distance between the base station and the mobile station (Nasir Faruk, Y. A. Adediran, & A. 

A.  Ayeni, 2013). The effect of large-scale fading is also known as path loss. 

Path loss prediction models are vital tools for radio coverage estimation, determination of base 

station location, frequency allocation, antenna selection, and interference feasibility studies during 
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radio network planning (Popoola, Badejo, Ojewande, & Atayero, 2017). Prior to actual mobile 

network deployment, radio engineers use these models to understand wireless channel 

characteristics and to predict signal attenuation. An accurate path loss prediction model is required 

to estimate the strength of radio signal received as the mobile user moves farther away from the 

serving base station (Fernández Anitzine, Romo Argota, & Fontán, 2012). Radio propagation 

models help in deciding the optimum locations for base stations. Correct choice of base station 

locations will ensure the delivery of highest possible data rate (Rappaport, 1996). The use of path 

loss models for radio network planning and optimization usually saves costs and time (Isabona, 

Konyeha, Chinule, & Isaiah, 2013; Ostlin, Zepernick, & Suzuki, 2010). 

Propagation models can be broadly organized into two categories, namely: deterministic and 

empirical models. Deterministic models are based on theoretical principles of diffraction 

(Luebbers, 1984), ray tracing (Mohtashami & Shishegar, 2012), integral equation (Hufford, 1952), 

and parabolic equation (Zelley & Constantinou, 1999); while empirical models are based on 

practical measurements conducted in a particular environment. Although deterministic models are 

more accurate, they lack computational efficiency. Empirical models such as Okumura-Hata 

model (Hata, 1980), COopération européenne dans le domaine de la recherche Scientifique et 

Technique (COST) 231 model (V Erceg, 1999), and standard propagation model (S. I. Popoola & 

O. F. Oseni, 2014b) are easy to implement with satisfactory computational efficiency in terms of 

time and cost. However, they are not as accurate as deterministic models because they do not 

effectively account for the unique geographical configurations of the propagation environment. 

Meanwhile, the reliability of the radio access network depends on the accuracy of the propagation 

model employed. Hence, the need for significant improvement in the prediction accuracy of 

empirical models while maintaining model simplicity and ease of use. 

Radio propagation environments have been widely categorized into rural, suburban, and urban 

(Rappaport, 1996). These environments are composed of varying unique geographical features 

with different altitude, terrain height information, land usage data, building shape and height 

information, and building surface characteristics. Of all available empirical models, previous 

research works (Al Salameh & Al-Zu'bi, 2015; Faruk, Ayeni, & Adediran, 2013; Ibhaze, Ajose, 

Atayero, & Idachaba, 2016; Nimavat & Kulkarni, 2012; Oseni, Popoola, Abolade, & Adegbola, 

2014a; S. I. Popoola & O. F. Oseni, 2014a; Rath, Verma, Simha, & Karandikar, 2016) have 
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identified the Hata, COST 231, and SPM path loss prediction models as appropriate for radio 

network planning in the 1800 MHz band. These models accounts for propagation path loss based 

on radio parameters including heights of transmitter and receiver antennas, frequency of 

transmission, and distance between the base station and the mobile station. However, the presence 

of various sources of clutter in the propagation environment contributes largely to propagation 

path loss (Oseni, Popoola, Enumah, et al., 2014). Modelling large scale channel fading without 

consideration for altitude, land use, and clutter height results in path loss predictions with large 

deviation from real measurement value poles (Mitra & Reddy, 1987). 

Okumura-Hata model is an empirical formulation of the graphical path loss data that was collected 

at 150-1500 MHz band (Hata, 1980). The separation distance between the transmitter and the 

receiver ranges from one to 20 km. The appropriateness of the empirical model for path loss 

prediction in practical environments has been widely investigated in the literature. Medeisis and 

Kajackas (2000) investigated the suitability of Okumura-Hata model for path loss prediction in 

different Very High Frequency (VHF) and Ultra-High Frequency (UHF) bands. Although the 

empirical model performed fairly well in a built-up environment, the prediction error was 

significant in a rural propagation environment. A least square technique was applied to the model 

to reduce the high prediction error. The prediction accuracy of Okumura-Hata model was enhanced 

by Schneider, Lambrecht, and Baier (1996) with the details of the morphology and buildings in 

the wireless channel. The findings of the authors showed that better prediction accuracy will be 

obtained if morphological data and building data are incorporated into the model for rural/suburban 

and urban environments respectively. Farhoud, El-Keyi, and Sultan (2013) examined the 

applicability of Okumura-Hata model in the GSM 900 MHz band and introduced correction factors 

to improve the accuracy of the model for different regions in Egypt.  

Akhoondzadeh-Asl and Noori (2007) suggested another way of defining the antenna height of the 

base station in Okumura-Hata model. The empirical model was adapted for path loss predictions 

by performing a cubic regression on field measurement data that was collected by Nadir and 

Ahmad (2010). Mardeni and Pey (2010) optimized Okumura-Hata model for urban outdoor 

coverage in the Code Division Multiple Access (CDMA) system in Malaysia. Major differences 

were found in the parameters of Okumura-Hata model when it was applied to railway environment 

at 900 MHz and this findings were reported by Cota, Serrador, Vieira, Beire, and Rodrigues (2013). 
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Begovic, Behlilovic, and Avdic (2012) evaluated the applicability of a set of empirical models for 

WiMAX coverage planning at 3.5 GHz. Adeyemo, Ogunremi, and Ojedokun (2016) optimized 

Okumura-Hata model for LTE signal attenuation in Lagos, Nigeria using the Least Square method. 

The model was also tuned for TErrestrial Trunked RAdio (TETRA) mobile radio applications in 

Saudi Arabia as reported by Alamoud and Schütz (2012). 

COST 231 extends Okumura-Hata model to cover the frequency range of 1500 to 2000 MHz (V 

Erceg, 1999). The transmitter antenna height and the receiver antenna height can be in the range 

of 30-200 m and 1-10 m respectively. In the study conducted in dense urban areas at 1800 MHz 

by Verma and Saini (2016), COST 231 model had the lowest RMSE with the most acceptable SED 

when compared to free space, Stanford University Interim (SUI), and ECC-33 models.  In addition, 

SPM was developed based on the Hata path loss formulas (Popoola, Atayero, Faruk, Calafate, 

Adetiba, et al., 2017; Popoola, Atayero, Faruk, Calafate, Olawoyin, et al., 2017). It determines the 

large-scale fading of received signal strength over a distance range of 1–20 km. Therefore, it is 

appropriate for mobile channel characterization of popular cellular technologies such as GSM. 

Although distance is usually expressed in km in Hata formulas, Standard Propagation Model 

(SPM) accepts distance values in meters. SPM ignores the effects of diffraction, clutter, and 

terrain. It assumed that appropriate settings of the parameters which account for only one clutter 

class will cater for the influence of these external factors on signal propagation. The correction 

function for the mobile receiver antenna height was also ignored for hr ≤ 1.5 m since it has 

negligible values for an average mobile antenna height. 

The learning ability in artificial intelligence may be exploited to reduce computational complexity 

and to improve prediction accuracy. Machine learning techniques may be exploited for path loss 

predictions in rural and urban propagation environments (Salman et al., 2017). Machine learning 

is an adaptive statistical tool that can be used to solve both regression and classification problems. 

The capability of machine learning techniques to model complex nonlinear functional relationships 

provides an opportunity to improve the accuracy of empirical path loss models with better 

computational efficiency. 

1.2. Statement of the Problem 

Signal path loss is very difficult to predict, especially at radio frequencies where signal propagation 

is achieved largely through Non-Line of Sight (NLOS) condition (Ileana Popescu, Nafornita, & 
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Constantinou, 2005). Despite the rich benefits that radio propagation path loss models offer, most 

of the reliable path loss models are computationally expensive to deploy (Axtell, 2000). Also, these 

models require detailed information about the intended propagation environment to produce 

accurate predictions (Huschka, 1994; McLeod, Bai, & Meyer, 2013). The behaviour of a wireless 

channel depends largely on the constituent properties of the propagation environment. Whereas, 

propagation environments differ from places due to the variations in land morphology, terrain, and 

clutters (Ileana Popescu et al., 2005). Therefore, radio propagation models should be designed to 

adequately represent the wireless channel where radio signals are intended to be propagated.  

The following research gaps were identified to the best of my knowledge: 

a) Although several path loss models have been developed in the literature, most of the 

models were not designed for heterogeneous (multi-frequency bands) radio network 

planning and optimization.  

b) Different radio propagation techniques have been considered but the unique terrain factors 

of a university campus were not adequately accounted for in existing path loss models. 

Particularly, the behaviour of radio signals within the context of Nigerian propagation 

environment is yet to be investigated in the context of heterogeneous networks. 

c) There is a need to experimentally determine: (a) the most appropriate kinds and number of 

input parameters that are required (b) the effect of input data normalization (c) the most 

suitable transfer functions at the hidden and output layers (d) the correct learning algorithm 

and (e) the optimum number of hidden neurons towards achieving an optimal machine 

learning-based path loss model for heterogeneous radio network planning in a smart 

campus. 

 

1.3. Aim and Objectives 

1.3.1. Aim 

This research project is aimed at developing an optimal path loss prediction model for 

heterogeneous radio network planning, deployment, and optimization in a smart campus 

propagation environment using machine learning approach. 
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1.3.2. Objectives 

The objectives of this research project are to: 

a) Acquire and store large heterogeneous datasets of field measured received signal strength 

values and path loss values at varying longitude, latitude, altitude, elevation, clutter height, 

distance, and radio frequencies in a typical smart campus propagation environment. 

b) Develop path loss prediction models for heterogeneous network planning and optimization 

in a smart campus using Artificial Neural Network (ANN) and Support Vector Machine 

(SVM) learning algorithms.  

c) Evaluate the prediction accuracy and generalization ability of widely used empirical path 

loss models and the developed models with respect to the field measured path loss values. 

d) Identify the most suitable path loss prediction model for heterogeneous radio network 

planning, deployment, and optimization in a smart campus propagation environment. 

 

1.4. Research Methodology 

a) An extensive field measurement campaign was conducted to obtain Received Signal 

Strength (RSS) values and path loss values at varying longitude, latitude, altitude, 

elevation, clutter height, distance, and available radio frequencies (900, 1800, and 2100 

MHz) within the campus of Covenant University, Ota, Nigeria. 

b) ANN-based path loss models were developed and implemented in MATrix LABoratory 

(MATLAB 2016a) software by: (i) varying the number of input variable requirement; (ii) 

evaluating the effect of input data normalization; (iii) changing the transfer functions at the 

hidden and output layers; (iv) varying the learning algorithm employed; and (v) increasing 

the number of hidden neuron to achieve the best prediction accuracy and generalization 

ability. SVM-based path loss model was developed and implemented in Waikato 

Environment for Knowledge Analysis (WEKA) software using SMOreg algorithm. 

c) The prediction accuracy and generalization ability of Hata, COST 231, ECC-33, Egli, 

ANN-based, and SVM-based path loss models were evaluated based on the following 

statistical metrics and tests: Mean Absolute Error (MAE), Mean Square Error (MSE), Root 

Mean Square Error (RMSE), Standard Error Deviation (SED), correlation coefficient (R), 

Analysis of Variance (ANOVA), and multiple comparison post-hoc test. 
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d) The path loss prediction model with the least prediction error and the highest correlation 

relative to the measured path loss was considered as optimal for heterogeneous radio 

network planning, deployment, and optimization in a smart campus propagation 

environment. 

 

1.5. Justification for the Research 

There is a continuous exponential increase in the number of wireless devices, mobile applications 

and services that require connectivity to cellular networks in smart campus applications and service 

delivery. With the emerging trends in IoT and M2M communication technologies, more than 100 

billion smart devices and sensors are expected to be connected by 2020. The capacity of the state-

of-the-art cellular networks will not be sufficient to meet the high user requirements of future 

wireless communications. One of the easiest ways of increasing cellular network capacity is to 

deploy more base stations in a given coverage area. This will be done in the future to guarantee 

good quality of signal reception at every point within the coverage area.  

Accurate and efficient path loss models are highly essential for signal power predictions at 

different points within the coverage area during radio network planning. Radio network engineers 

rely on path loss models to: (a) determine optimal locations of base stations; (b) achieve best 

possible data rates; (c) estimate radio coverage; (d) determine the required transmission power; (e) 

aid appropriate selection of antenna height and pattern; (f) perform efficient frequency allocation; 

(g) conduct radio network optimization to ensure acceptable quality of service; and (h) perform 

interference feasibility studies. 

The practical deployment of the contribution of this research project will enhance the efficient and 

seamless delivery of IoT-enabled smart applications and services in a university campus. The 

provision of reliable heterogeneous radio networks in a university campus will promote sustainable 

development in the long run.  

1.6. Scope of Study 

The development of machine-learning based path loss prediction model for heterogeneous radio 

network planning, deployment, and optimization is limited to GSM, DCS, and UMTS wireless 



9 
 

systems. Also, the use case considered in this research project is peculiar to the geographic terrain 

and land morphology of Covenant University campus. 

1.7. Limitation of the Research  

A drive test approach was used for radio signal measurement instead of a Continuous Wave (CW) 

measurement procedure because of unavailability of a wide-spectrum signal generator and a 

corresponding spectrum analyzer. Therefore, the control of radio network parameters is limited in 

drive test approach because it involves the use of commercial (already deployed) BTS. Likewise, 

the scope of this work does not cover current and emerging wireless technologies such as LTE, 

LTE-Advanced, and 5G radio networks. 

1.8. Organization of Dissertation Chapters 

This research project is organized into five chapters as follows: Chapter one presents the contextual 

background of the study, the problem statement of research, significance of the study, aim and 

objectives, research methodology, scope of the research project, and the application areas of 

contributions. Chapter two presents the theoretical background of the study and reviewed existing 

related work that are available in literature. Chapter three explains the methodology adopted in 

this research project. This chapter covers the materials and methods of field measurement 

campaign, model development process, and model performance evaluation. Results obtained are 

presented in Chapter four. The main findings of the research study are discussed in Chapter five. 

Chapter six presents the summary of the research study, recommendations, and contributions to 

scientific knowledge. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Introduction 

In this chapter, the theoretical background of this research project is thoroughly reviewed to 

properly situate the findings of this research study within scientific body of knowledge. First, the 

fundamentals of radio propagation modelling is discussed in the context of wireless 

communication systems which operate at UHF bands. Then, various existing empirical path loss 

prediction models are discussed. Furthermore, model calibration process and the different 

techniques are explained. Finally, the review of related works are presented. 

2.2. Fundamentals of Wireless Communication Systems 

Communication primarily deals with the electrical transmission and reception of information 

signal from one point to another via a physical medium. This is done through a succession of 

processes to eliminate the distance barrier between the point of transmission and the receiver’s 

location. Communication systems overcome the distance barrier, making the diverse information 

needed by different users available and accessible. These systems have found numerous 

applications in telephony, telegraphy, radio and television broadcasting, weather forecasting, 

internet services etc. 

 

Figure 2.1. Elements of a Communication System 

Irrespective of the form of communication adopted, there are three basic elements of a typical 

communication system namely (Proakis & Salehi, 2007): the transmitter, the channel and the 

receiver as shown in Figure 1. The channel is the physical medium that links the transmitter located 
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at a point relative to the receiver(s) situated at a distance away. The transmitter converts the 

original information signal into a form suitable for transmission over the channel through a 

modulation process while the receiver recovers the information signal from the modulated signal 

received through a reverse process known as demodulation (Sklar, 2001). Thus, the channel, being 

the interface between the two ends, plays an active role in the overall performance and efficiency 

of the communication system. It can be viewed objectively that the communication channel is 

pivotal to the efficient performance and operation of communication system since its properties 

determines the capacity and quality of service offered by the system. Depending on the mode of 

transmission, the communication channel may be a guided propagation channel or a free 

propagation channel (Haykin, 1988). Twisted pair cables channels, co-axial cables, and optical 

fibres are guided propagation channels while broadcast channel, mobile radio channel and satellite 

channel are free propagation channels. 

Wireless channel introduces mobility into the public telecommunication network because of its 

ability to propagate through space without physical connections. This channel has a unique feature 

of propagating electromagnetic waves via NLOS paths. The propagation mechanisms of this 

channel are achieved through reflection, scattering, refraction, polarization and diffraction of 

electromagnetic waves over and around the edges and surfaces of the obstacles and obstructions 

present in the propagation environment (Aragon-Zavala, 2008). The transmitted signal reaches the 

mobile receiver through several paths. Hence, the mobile radio channel is a multipath propagation 

channel (Parsons, 2000). Here, multiple copies of the transmitted signal reach the mobile receiver 

from different directions and with different time delays. The propagation paths are of different 

amplitudes, phases, path lengths, and angles of arrival. Consequently, the received signal strength 

varies significantly with the location of the mobile receiver in a very complicated manner. The 

wireless channel is a random and linear time-varying channel because of its statistical nature 

(Simon & Alouini, 2005).   

Wireless communication involves the electrical transmission and reception of voice and data using 

electromagnetic waves in an open space. The information signal is conveyed over a well-defined 

frequency band to the receiver(s). In wireless communication, two primary resources are employed 

namely: the transmitted power and the channel bandwidth (Proakis, Salehi, Zhou, & Li, 1994). 

The transmitted power is the average power of the transmitted signal while the channel bandwidth 
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is the band of frequencies allocated for the transmission of the message signal. The basic system 

design objective is to optimize the two limited resources as efficiently as possible. The frequency 

spectrum is a limited resource which is efficiently shared among numerous applications so as to 

avoid signal interference and it is usually auctioned by the government. Likewise, the mobile 

network operators do not have the luxury of increasing the transmitted power level beyond the 

maximum tolerable radiated power limit set to protect the people living close to the base station 

equipment from exposure to radiation hazards (Ahlbom et al., 2004; Repacholi, 1998, 2001).    

Radio waves have an advantage of the ability to travel over long distances usually without a clear 

Line Of Sight (LOS). This is because they can penetrate into buildings. They can be easily 

generated and may be used for both indoor and outdoor communications. Radio waves are 

omnidirectional such that they can travel in all directions. They can be narrowly focused at high 

frequencies (greater than 100 MHz) using parabolic antennas. They are frequency-dependent in 

that they behave more like light at higher frequencies wherein they have direct paths and difficulty 

in passing through obstacles. The wave gets absorbed easily by rain, dust, snow, fogs etc. whereas 

they behave more like radio at lower frequencies, passing through obstacles and the power falls 

off sharply with distance from the source. This depends on the path loss exponent of the 

propagation environment. One of the basic challenges of radio waves is that they are more prone 

to interference from other sources (Chernov & Silverman, 1960; Rappaport & Sandhu, 1994). 

Air is a frequency-selective channel. Information signal transmitted at different frequencies 

exhibits different behaviour when propagated through the free space. The rate of attenuation of the 

received signal strength increases as the frequency of transmission increases over the same 

distance. The propagation of electromagnetic waves is adversely affected by the atmospheric 

condition of the propagation environment. Electromagnetic waves of higher frequencies with few 

millimetre wavelengths get attenuated easily as the size of the wavelength of transmission tends 

towards the size of atmospheric agents such as rain droplets, dust, snow, fogs etc. Also, the design 

of high frequency communication systems is comparatively expensive in terms of cost and 

technicality; but they are indispensably used because the lower frequency bands are already 

assigned for other applications according to International Telecommunication Union (ITU) 

regulations (ITU, 2008).  
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At Very Low Frequency (VLF), Low Frequency (LF) and Medium Frequency (MF) bands, radio 

waves propagate along the ground. Here, the curvature of the earth is taken into consideration. 

This mechanism is adopted in Amplitude Modulation (AM) broadcasting which uses the MF band. 

At High Frequency (HF) bands, the ground waves tend to be absorbed by the earth. Thus, the 

propagation mechanism utilized is the ionospheric reflections (Bracewell, Budden, Ratcliffe, 

Straker, & Weekes, 1951; Kelso, 1964). The waves that reach the ionosphere (100 – 500 km above 

the earth surface) are reflected and sent back to the earth. The ionospheric reflection produces a 

multipath propagation. The vector sum of the multiple copies of the transmitted signals at the 

receiver results in a faded signal. The VHF transmission is restricted to a LOS transmission due to 

the higher frequency of transmission. Directional antennas are used to focus the transmitted signal 

from point to point. The waves follow direct path such that the LOS path must be strictly 

maintained, else the transmission path will be lost. The reflected waves interfere with the original 

signal which results in fading (Budden, 2009).  

The field of wireless communications has been explored through a surge of research activities 

since the 1960s. The system has introduced mobility such that the users can easily roam anywhere, 

anytime. This eliminates the huge cost of cabling and its infrastructures. The freedom from wires 

also makes the installation easy and neat. Likewise, wireless communication network 

accommodates more users and provides global coverage. 

Nevertheless, the wireless channel is faced with some technical challenges. There are some 

fundamental aspects that make wireless communication challenging than its wire line counterpart. 

The wireless channel exhibits multipath propagation characteristics which subject the transmitted 

signal to fading (Turin, Jana, Martin, & Winters, 2001). Also, the channel is highly susceptible to 

noise, interference and data corruption. The ease of access to the network without a need for wire 

connection makes the channel less secure. Thus, it requires a stronger security mechanism to 

protect data and/or bandwidth. Consequently, the susceptibility of the mobile radio channel to both 

signal fading and interference has made efficient radio network planning a vital part of the pre-

deployment process. Cellular mobile operators and vendors have acknowledged the need for an 

efficient network of better QOS through a systematic radio network design process. This has 

brought radio network planning & optimization into a sharp focus (Laiho, Wacker, & Novosad, 

2006; Lempiäinen & Manninen, 2003). 
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The reliability of the radio network planning process to produce a cost-effective deployment of 

Base Transceiver Stations (BTS) at the best possible sites for optimal network coverage largely 

depend on the degree of accuracy of the propagation prediction models in the network planning 

tools adopted (Oseni, Popoola, Abolade, & Adegbola, 2014b; S. Popoola & O. Oseni, 2014; S. I. 

Popoola & O. F. Oseni, 2014b). Thus, the accuracy of the propagation prediction models plays a 

pivotal role in obtaining an optimal network performance. The prediction models estimates the 

received signal strength at different locations of the area given the necessary radio network 

parameters. The reliability of the accuracy of this depends to a great extent on the degree to which 

the unique localized features in the area under study are taken into consideration in the radio 

propagation models.  

The main cause of poor radio network deployment strategies is rooted in the inability of the 

engineer to accurately represent the propagation environment terrain, clutter type and the presence 

of physical features in the propagation models; whereas, these factors influence the propagation 

mechanism of the transmitted signals. Consequently, all these are responsible for the transmission 

path loss in the radio network. The limitation above has proven to be responsible for the wide 

variation between the results of the predicted received signal strengths and the actual signal 

strengths measured on live network deployed. 

Through the years, much has changed in the field of wireless mobile communication. Despite these 

changes, the fundamental importance of propagation has continued undiminished. All the wireless 

systems are subjected to the variations imposed by the wireless channel, and a good understanding 

of these variations is needed to determine how far and fast can voice and data signals be transmitted 

and to answer the basic question of the number of users that the system can efficiently support. 

Moreover, all the effects of the antennas (both transmit and receive antennas) and the propagation 

environment through which electromagnetic waves propagates must be accounted for in order to 

understand and analyze the performance of wireless communication systems. Although the general 

features of the propagation environment are taken into consideration in the planning tool, it is 

proven that there are yet some minor but consequential characteristics which uniquely distinguish 

the area from other similar areas in other places. 
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2.3 Mathematical Modelling of Radio Propagation Channel 

Radio propagation model is a mathematical formulation for the characterization of radio wave 

propagation as a function of frequency of transmission, distance and other conditions that influence 

the behaviour of the radio channel in a given propagation environment (Abhayawardhana, Wassell, 

Crosby, Sellars, & Brown, 2005). Models are usually developed to predict the behaviour of 

propagation for all similar links under similar constraints. It provides a platform for simulating the 

behavioural characteristics of the radio channel before the proper deployment of the cellular 

mobile network. This is necessary because the mobile communication systems are expensive to 

deploy and any deficiency in the network planning can lead to an unnecessary cost expenses as a 

corrective measure. Path loss models are useful planning tools which allow the radio network 

designer to reach network optimal levels for the base station deployment and configuration while 

meeting the expected service level requirement. In order to explore the capacity of transmission in 

a wireless environment and also to develop suitable algorithms, there is a need to understand the 

concept of mathematical model of the environment. Propagation models are used in the design and 

development of wireless communication networks (Nawrocki, Aghvami, & Dohler, 2006). 

Modelling the propagation channel has been one of the most difficult parts of mobile radio system 

design. The wireless channel places fundamental limitations on the performance of wireless 

communication system. This makes the channel very hostile to radio propagation. The tremendous 

growth of wireless communication systems and especially mobile radio system requires radio 

coverage prediction models that provide accurate results and fast processing time for several types 

of environments. This includes a large number of parameters describing the propagation 

environment. Due to the complexity and instability of radio transmission in wireless 

communication channels, it is very important to get the knowledge about the characteristics of 

wireless communication and use the suitable propagation models.  

Radio propagation models have been developed as suitable, low cost and convenient system design 

alternatives since site measurements are costly. Channel modelling is required to predict path loss 

associated with the design of cellular network base stations, as this informs the design engineers 

how much power a transmitter need to radiate so as to service a given cell site. A typical network 

consists of a transmitter, a receiver and the surrounding environment. A model can be used for a 

certain frequency band to predict, to a high degree of accuracy, the behaviour of radio signal in a 
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particular environment/terrain. The performance of a communication system depends on design 

parameters whose values can be selected by the system designer and environmental parameters 

over which the designer has no control (Jeruchim, Balaban, & Shanmugan, 2006) 

Path loss is the reduction in power density of an electromagnetic wave as it propagates through 

space. This is influenced by terrain contours, environment (urban or rural, vegetation and foliage), 

propagation medium (dry or moist air), the distance between the transmitter and the receiver, and 

the height and location of antennas. Path loss is a major component in the analysis and design of 

the link budget of a telecommunication system (S. I. Popoola & O. F. Oseni, 2014a).  

Radio propagation prediction is one of the fundamentals of radio network planning. The coverage 

planning, frequency planning, capacity planning and interference analysis all rely on the 

propagation predictions. It is therefore vital that the propagation prediction models are as accurate 

as possible, taking into account the practical limitations of the propagation environment. The 

efficiency of the radio network planning process depends largely on the degree of accuracy of the 

propagation prediction models used. The attenuation of radio waves varies with different terrain 

and clutter types. The topography of the planned area, the location of the city, roads, water bodies, 

buildings and other hotspots have direct implication on the propagation predictions. Over the years, 

various propagation path loss models have been developed for the assessment of the performance 

of wireless communication systems for high quality of service delivery. 

2.3.1 Free Space Path Loss Model 

Development of radio propagation models can be retraced back to Friis’ free space simple 

transmission equation of 1940s. Harald T. Friis emphasized the utility of the following simple 

transmission for a radio circuit made up of a transmitting antenna and a receiving antenna in free 

space (Friis, 1946). The ratio of transmitted power to received power is given by Equation (2.1):  

𝑃𝑟

𝑃𝑡
=   

𝐴𝑟𝐴𝑡

𝑑2ƛ2       (2.1) 

 Where  𝑃𝑟 =  Power fed into the transmitting antenna at its input terminals 

  𝑃𝑡  =  Power available at the output terminals of the receiving antenna 

  𝐴𝑟  =  Effective area of the receiving antenna 
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𝐴𝑡  =  Effective area of the transmitting antenna 

D = Distance between antennas 

ƛ  = Wavelength 

The effective area of any antenna (𝐴𝑒𝑓𝑓), whether transmitting or receiving, is defined for the 

condition in which the antenna is used to receive a linearly polarized, plane electromagnetic wave. 

This is represented by Equation (2.2): 

       𝐴𝑒𝑓𝑓   =      
𝑃𝑟

𝑃0
      (2.2) 

In this case, Po is the power flow per unit area of the incident field at the antenna. Thus, the 𝑃𝑟 in 

Equation (2.2) shows that the received power is equal to the power flow through an area that is 

equal to the effective area of the antenna. 

The power flow per unit area at the distance (𝑑) from the transmitter is given by Equation (2.3): 

𝑃0 =  
𝑃𝑡

4𝜋𝑑2        (2.3) 

Substituting Equation (2.3) into Equation (2.2) gives Equation (2.4):  

                                                          𝑃𝑟 =  
𝑃𝑡𝐴𝑒𝑓𝑓

4𝜋𝑑2       (2.4) 

Replacing the isotropic transmitting antenna with a transmitting antenna of effective area 𝐴𝑡 will 

increase the received power by the ratio 
𝐴𝑡

𝐴𝑖𝑠𝑜
 such that: 

        
𝑃𝑟

𝑃𝑡
      =      

𝐴𝑟𝐴𝑡

4𝜋𝑑2𝐴𝑖𝑠𝑜
     (2.5) 

The need for Equation (2.5) is as a result of the fact that the transmitting antenna is not practically 

an ideal isotropic radiator. 

Antennas were characterized by their effective areas; but in practice, antennas are characterized 

by their gains (G) relative to an ideal isotropic radiator as given by Equation (2.6) (Schelkunoff & 

Friis, 1952):  

𝐴 =
ƛ2𝐺

4𝜋
                    (2.6) 
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Substituting Equation (2.6) into Equation (2.5) gives Equation (2.7): 

𝑃𝑟

𝑃𝑡
      =      

ƛ2𝐺𝑡

4𝜋
 . 

ƛ2𝐺𝑟

4𝜋
 . 

1

ƛ2𝑑2
          

 
𝑃𝑟

𝑃𝑡
  = 𝐺𝑡𝐺𝑟 (

ƛ

4𝜋𝑑
)

2

                (2.7) 

Therefore, the inverse square relationship between path loss and distance is given by Equation 

(2.8): 

Path loss    α    
1

𝑑2     (2.8) 

The Friis’ free space path loss is, therefore, expressed in decibel by Equation (2.9): 

𝑃𝑟(dB)  =   𝑃𝑡(dB) +  𝐺𝑡(dB) + 𝐺𝑟(dB) + 20 log (
ƛ

4πd
) 

𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 (𝑑𝐵) = 32.44 + 20𝑙𝑜𝑔(𝑓) + 20𝑙𝑜𝑔(𝑑)    (2.9) 

The free space propagation equation shows that the path loss (which is the ratio of the power 

received to the power transmitted) is inversely proportional to the square of the distance between 

the transmitter and the receiver. This model predicts that the received power decays as a function 

of the Transmitter-Receiver separation distance (Schelkunoff & Friis, 1952).  

However, Friis’ free space path loss model is only a valid predictor for the received power (Pr) for 

the values of d which are in the far-field region of the transmitting antenna. The far-field of a 

transmitting antenna is defined as the region beyond the far-field distance ‘df’ which is related to 

the largest linear dimension of the transmitting antenna aperture and the carrier wavelength.  

W.D Lewis made a theoretical study of transmission between large antennas of equal areas with 

plane phase fonts at their apertures and he found that Equation (2.1) is only valid within a few per 

cent when Equation (2.10): 

𝑑𝑓 ≥  
2𝑑2

ƛ
         (2.10) 

Where d is the largest linear dimension of either of the antennas. 

Additionally, to be in the far-field region, Equation (2.11) and Equation (2.12) must be satisfied. 
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      𝑑𝑓 ≫ 𝑑        (2.11) 

    𝑑𝑓 ≫ ƛ            (2.12) 

More so, the free space propagation model is used to predict received signal strength when the 

transmitter and the receiver have a clear, unobstructed LOS between them. The equation only 

applies to free space conditions with no consideration for environmental influence and physical 

obstructions. Satellite communication systems and microwave LOS links typically undergo free 

space propagation. 

Practically, this cannot be adopted for terrestrial wireless communication system deployment in 

urban areas which are known to be characterized with various material obstructions to the 

propagation of radio waves. These radio waves propagates through environments where they are 

reflected, scattered, and diffracted by walls, terrains, buildings and other objects.  

2.3.2 Maxwell Equation Approach to Radio Propagation Modelling 

Wireless channel poses severe challenge as a medium for reliable high-speed communication. It is 

not only susceptible to noise and interference; but also to other channel impairments which 

changes with time in unpredictable ways due to users’ movement in mobile communication 

systems (Goldsmith, 2005).  

The ultimate details of this propagation can be obtained by solving Maxwell’s equations with 

boundary conditions that express the physical characteristics of these obstructing objects. This 

analysis involves the calculation of the radar cross section of the large and complex structures 

involved. The following assumptions are made in the development of the propagation model using 

Maxwell’s equations: 

1. The propagated signals are in the UHF and Super High Frequency (SHF) bands of 0.3-3 GHz 

and 3-30 GHz respectively. 

2. The transmission distances on the earth are small enough so as to be affected by the earth’s 

curvature. 
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3. All transmitted and received signals are considered to be real since modulators and 

demodulators are built using oscillators that generate real sinusoids (and are not complex 

exponentials). 

4. Channels are typically modelled as having a complex frequency response due to the nature of 

the Fourier Transform. 

The transmitted signal is thus represented by Equation (2.13): 

𝑠(𝑡) = 𝑓[𝑢(𝑡)𝑒𝑗(2𝜋𝑓𝑐𝑡+ ∅0)] 

        = {𝑓[𝑢(𝑡)]cos (2𝜋𝑓𝑐𝑡 +  ∅0)} −  {𝑔[𝑢(𝑡)] sin(2𝜋𝑓𝑐𝑡 +  ∅0)} 

𝑠(𝑡) = 𝑥(𝑡) cos(2𝜋𝑓𝑐𝑡 +  ∅0) − 𝑦(𝑡)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡 +  ∅0)   (2.13) 

Where 𝑢(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) is a complex baseband signal with in-phase component 𝑥(𝑡) =

𝑓[𝑢(𝑡)], quadrature component 𝑦(𝑡) = 𝑔[𝑢(𝑡)], bandwidth 𝐵, and power 𝑃𝑢. The signal 𝑢(𝑡) is 

called the complex envelope of 𝑠(𝑡). 

 The power in the transmitted signal 𝑠(𝑡) is given by Equation (2.14): 

𝑃𝑡 =  
𝑃𝑢

2
       (2.14) 

The received signal will be of the form given by Equation (2.15): 

    𝑟(𝑡) = 𝑓[𝑣(𝑡)𝑒𝑗(2𝜋𝑓𝑐𝑡+ ∅0)]     (2.15) 

Where the complex baseband signal 𝑦(𝑡) will depend on the channel through which 𝑠(𝑡) 

propagates. 

Suppose 𝑠(𝑡) of power 𝑃𝑡 is transmitted through a given channel, with corresponding received 

signal 𝑟(𝑡) of power 𝑃𝑟, where 𝑃𝑟 is averaged over any random variations due to shadowing. Then, 

linear path loss of the channel is defined as the ratio of transmit power to receive power as given 

by Equation (2.16). 

    𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 =  
𝑃𝑡

𝑃𝑟
     (2.16) 

Path loss of the channel is defined as the decibel value of the linear path loss or, equivalently, the 

difference between the transmitted and received power as given by Equation (2.17): 
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   𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 = 10 𝑙𝑜𝑔 (
𝑃𝑡

𝑃𝑟
)     (2.17) 

However, the analysis involves the calculation of the radar cross section of the large and complex 

structures. This is responsible for many difficulties frequently encountered in the process of 

calculation because the necessary parameters are not available on most occasions. To this effect, 

various approximation techniques have been developed to characterize signal propagation without 

resorting to Maxwell equations. 

2.3.3 Empirical Radio Propagation Path Loss Models 

Empirical models are those based on observations and measurements alone. These models are 

mainly used to predict the path loss, but models that predict rain-fade and multipath have also been 

proposed (Seybold, 2005). The deterministic models make use of the laws governing 

electromagnetic wave propagation to determine the received signal power at a particular location. 

Deterministic models often require a complete three-dimensional (3D) map of the propagation 

environment. An example of a deterministic model is a ray tracing model (Glassner, 1989; 

Schaubach, Davis, & Rappaport, 1992). Stochastic models, on the other hand, model the 

environment as a series of random variables (Abhayawardhana et al., 2005). These models are the 

least accurate but require the least information about the environment and use much less processing 

power to generate predictions.  

The empirical models account in principle, for all the major mechanisms which are encountered 

in macro-cell prediction. However, to use such models would require detailed knowledge of the 

location, dimension and constitutive parameters of every tree, building and terrain feature in the 

area to be covered. This is too complex and would anyway yield an unnecessary amount of detail. 

One of the appropriate ways of accounting for these complex effects is through an empirical model. 

To design and develop such model, an extensive set of actual path loss measurements is made, and 

an appropriate function is fitted to the measurements, with parameters derived for the particular 

environment, frequency and antenna heights so as to minimize the error between the model and 

the measurements. Each measurement represents an average of a set of samples taken over a small 

area (around 10–50m), in order to filter out the effects of fast fading (Clarke, 1968). The model 

can then be used to design systems operated in similar environments to the original measurements.  
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2.3.3.1 Okumura-Hata Path Loss Model 

Okumura’s model is one of the most widely used empirical models for signal prediction in urban 

areas (Hata, 1980). This model is applicable for frequencies in the range 150 MHz to 1920 MHz 

and distances of 1 km to 100 km. The base station antenna height ranges from 30 m to 1000 m. 

The frequency range can be extrapolated up to 3 GHz for distances ranging from 1 km to 100 km. 

Hata made extensive measurements in Tokyo city in Japan and present the results in an empirical 

path loss model. This model is discovered to be reasonably accurate that it is still in use in wireless 

communication industry, especially in Japan where the measurement campaigns were done. The 

propagation model is characterized with the following variables: 

(a) frequency of operation  

(b) transmitter and receiver antenna heights 

(c) terrain parameters 

The resulting simple path loss equation is given by Equation (2.18) (Hata, 1980): 

 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 (𝑑𝐵) = 𝐿𝑓 + 𝐴𝑚𝑢(𝑓, 𝑑) − 𝐺(ℎ𝑡) − 𝐺(ℎ𝑟) − 𝐺𝐴𝑅𝐸𝐴   (2.18) 

Where 𝐿𝑓   = free Space Path Loss 

 𝐴𝑚𝑢(𝑓, 𝑑) =  median attenuation relative to free space 

 𝐺(ℎ𝑡)  = base station antenna height gain factor 

 𝐺(ℎ𝑟)  = mobile station antenna height gain factor 

 𝐺𝐴𝑅𝐸𝐴    =  gain due to the type of environment 

 𝑓   =  frequency in MHz 

 ℎ𝑡   = transmitter antenna height in meters 

 ℎ𝑟   =  receiver antenna height in meters 

𝑑   =  distance between transmitter and receiver antennas 

 𝐺(ℎ𝑡) = 20 𝑙𝑜𝑔 (
ℎ𝑡

200
)                              for 1000m < ht < 3m (2.19) 
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𝐺(ℎ𝑟) = 10 𝑙𝑜𝑔 (
ℎ𝑟

3
)                                 for hr ≤ 3m (2.20) 

 𝐺(ℎ𝑟) = 20 𝑙𝑜𝑔 (
ℎ𝑟

3
)          for 10m > hr > 3m  (2.21) 

The set of curves below provide the values of 𝐴𝑚𝑢(𝑓, 𝑑) and 𝐺𝐴𝑅𝐸𝐴  at different frequency of 

operation between 150 MHz and 3000 MHz. These curves as shown in the figure below were 

developed from extensive measurements using vertical Omni-directional antennas at both the base 

and mobile stations, and are plotted as a function of frequency in the range 100 MHz to 1920 MHz 

and as a function of distance from the base station in the range 1 km to 100 km. To determine path 

loss using Okumura’s model, the free space path loss between the points of interest is first 

determined, and then 𝐴𝑚𝑢(𝑓, 𝑑), as read from the curves, is added to it along with correction 

factors to account for the type of terrain. 

 

  Figure 2.2. Median Attenuation and Area Gain Factor (Hata, 1980) 

Okumura Hata path loss model is wholly based on measured data and does not provide any 

analytical explanation. This model is considered to be among the simplest and best in terms of 

accuracy in path loss prediction for cellular and land mobile radio system in cluttered 
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environments. Typically, the SED between the predicted and measured path loss values is between 

10 dB and 14 dB. The major disadvantage with the model is its slow response to rapid changes in 

terrain. Therefore, the model is fairly good in urban and suburban areas, but not as good in rural 

areas.    

2.3.3.2 Hata Path Loss Model 

Hata (1980) developed a model which is an empirical formulation of the graphical path loss data 

provided by Okumura; and is valid from 150 MHz to 1500 MHz. Here, the urban area propagation 

path loss is presented as a standard formula and correction equations are provided for application 

to other situations. The standard formula for median path loss in urban areas is given by Equation 

(2.22): 

𝑃𝐿𝑢𝑟𝑏𝑎𝑛(𝑑𝐵) = 69.55 + 26.16 log(𝑓𝑐) −  13.82 log(ℎ𝑡) − 𝑎(ℎ𝑟)

+ [44.9 − 6.55 log(ℎ𝑡)]log (𝑑) 

     (2.22) 

where  𝑓𝑐  =  Frequency (in MHz) from 150 MHz to 1500 MHz 

ℎ𝑡  =  Effective transmitter antenna height (in metres): 30 m to 200 m 

 ℎ𝑟  =  Effective receiver antenna height (in metres): 1 m to 10 m 

 𝑑  =  Separation distance (in km): 1 km to 20 km 

 𝑎(ℎ𝑟) =  Correction factor for effective mobile antenna height  

For a small to medium-sized city, 

𝑎(ℎ𝑟) = [1.1 log(𝑓𝑐) − 0.7]ℎ𝑟 − [1.56 log(𝑓𝑐) − 0.8]   (2.23) 

For a large city, 

 𝑎(ℎ𝑟) = 8.29 [log(1.54ℎ𝑟)]2 −  1.1   for fc ≤ 300 MHz  (2.24) 

 𝑎(ℎ𝑟) = 3.2 [log(11.75ℎ𝑟)]2 −  4.97  for fc ≥ 300 MHz  (2.25) 

For a suburban area, 

 𝑃𝐿𝑠𝑢𝑏𝑢𝑟𝑏𝑎𝑛 =  𝑃𝐿𝑢𝑟𝑏𝑎𝑛(𝑑𝐵) − 2[log  (
𝑓𝑐

28
)]2 −  5.4     (2.26) 
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For an open rural area, 

 𝑃𝐿𝑟𝑢𝑟𝑎𝑙 =  𝑃𝐿𝑢𝑟𝑏𝑎𝑛(𝑑𝐵) − 4.78[log  (𝑓𝑐)]2 − 18.33 log(𝑓𝑐) − 40.98  (2.27) 

The predictions of the Hata model compare very closely with the original Okumura model, as long 

as d exceeds 1 km. The formula shows that the Base Station antenna height has a strong effect on 

the degree of path loss because it appears as a multiplicative factor for the logarithmic distance. 

This model is well suited for large cell mobile systems, but not Personal Communication System 

(PCS) which have cells of the order of 1 km radius. 

Unfortunately, Okumura model does not lend itself well to computer analysis. For this reason, 

Hata (1980) established parametric equations that fit the curves reported by Okumura. Using 

Hata’s model, an engineer need only to plug the parameters into the empirically derived formulas.  

2.3.3.3 COST-231 Extensions 

COST extended the Hata model for scientific frequencies of interest (Action, 1999). The model, 

which was renamed COST – Hata model, is applicable for only cases in which the antenna heights 

are above the rooftops of the surrounding buildings. The COST committee also suggests a 

combination of work done by Walfisch and Ikegami to come up with a model called COST–

Walfisch–Ikegami (or COST-WI), characterizing urban environments. Here, the heights of 

buildings, the widths of roads, the building spacing, and the road orientation relative to the 

transmitter are taken into account. All of the parameters are characteristic of the entire coverage 

area. 

2.3.3.4 COST 231–Hata Path Loss Model 

COST 231 has extended Hata’s model to the frequency band of 1500 MHz ≤ fc ≤ 2000 MHz by 

analyzing Okumura’s propagation curves in the upper frequency band. The proposed model for 

path loss is given by Equation (2.28): 

𝑃𝐿(𝑑𝐵) = 46.3 + 33.9 log(𝑓𝑐) − 13.82 log(ℎ𝑡) − 𝑎(ℎ𝑟) + [44.9 − 6.55 log(ℎ𝑡)] log  (𝑑) + 𝐶𝑚 

              (2.28) 

For small to medium-sized city,  

 𝑎(ℎ𝑟) = [1.1 log(𝑓𝑐) − 0.7]ℎ𝑟 − [1.56 log(𝑓𝑐) − 0.8]    (2.29) 
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  For a large city, 

 𝑎(ℎ𝑟) = 8.29 [log(1.54ℎ𝑟)]2 −  1.1   for fc ≤ 300 MHz  (2.30) 

 𝑎(ℎ𝑟) = 3.2 [log(11.75ℎ𝑟)]2 −  4.97  for fc ≥ 300 MHz  (2.31) 

and,  

 𝐶𝑚 = {
      0 dB         for medium − sized city and suburban areas

3 dB                                             for metropolitan areas
           (2.32) 

Range of parameters 

 f : 1500 – 2000 MHz 

 ht : 30 – 200 m 

 hr : 1 – 10 m 

 d : 1 km – 20 km 

To show the COST-231 Hata model in a simpler form, the model (Ray, 2007) is given by Equation 

(2.33):  

𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 (𝑑𝐵) =  𝐿𝑜 + 𝑛𝑙𝑜𝑔(𝑓) − 13.82 log(ℎ𝑏) −  𝐶𝐻 + [𝜎 − 6.55 log(ℎ𝑏)] log(𝑑) + 𝐶𝑚

 (2.33) 

Where L = Median path loss in decibel (dB)  

f  = Frequency of transmission, in megahertz (MHz)  

hb = Base station antenna height, in meters (m)  

d   = Link distance, in kilometer (km)  

CH   =  Mobile station antenna height correction factor  

and 

L0 =  46.3  

σ  =  44.9  
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n  =  33.9  

2.3.3.5 Standard Propagation Model 

Standard Propagation Model (SPM) is based on the Hata formulas and is suitable for predictions 

in the 150 – 3500 MHz frequency band over long distances ranging from 1 – 20 km. It is best 

suited to GSM 900 and GSM 180, UMTS, CDMA 2000, Worldwide Interoperability for 

Microwave Access (WiMAX) and LTE radio technologies (Oseni, Popoola, et al., 2014b; S. 

Popoola & O. Oseni, 2014; S. I. Popoola & O. F. Oseni, 2014b) 

The model is based on the formula given by Equation (2.34): 

𝑃𝑟 =  𝑃𝑡 − {𝐾1 +  𝐾2 log(𝑑) + 𝐾3 log(ℎ𝑡) +  𝐾4. 𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 + 𝐾5 𝑙𝑜𝑔(𝑑). 𝑙𝑜𝑔(ℎ𝑡) +

 𝐾6. ℎ𝑟 +  𝐾7 log(ℎ𝑟) + 𝐾𝑐𝑙𝑢𝑡𝑡𝑒𝑟 . 𝑓𝑐𝑙𝑢𝑡𝑡𝑒𝑟 +  𝐾ℎ𝑖𝑙𝑙}      (2.34) 

Where, 

 𝑃𝑟  = Received power in dBm 

 𝑃𝑡  = Transmitted power (EIRP) in dBm 

 𝐾1  = Constant offset in dB 

 𝐾2  = Multiplying factor for log(𝑑) 

 𝑑  = Distance between the receiver and the transmitter in metres 

 𝐾3  =  multiplying factor for log(ℎ𝑡) 

 ℎ𝑡  = Effective transmitter antenna height in metres 

 𝐾4  = Multiplying factor for diffraction calculation 

 𝐾5  = Multiplying factor for 𝑙𝑜𝑔(𝑑). 𝑙𝑜𝑔(ℎ𝑡) 

 𝐾6  = Multiplying factor for ℎ𝑟 

 𝐾7  = Multiplying factor for log(ℎ𝑟) 

 ℎ𝑟  = Effective mobile receiver antenna height in metres 

 𝐾𝑐𝑙𝑢𝑡𝑡𝑒𝑟 = Multiplying factor for 𝑓𝑐𝑙𝑢𝑡𝑡𝑒𝑟 
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 𝑓𝑐𝑙𝑢𝑡𝑡𝑒𝑟  = Average of the weighted losses due to clutter 

 𝐾ℎ𝑖𝑙𝑙  = Corrective factor for hilly region 

 The SPM formula is derived from the basic Hata formula given by Equation (2.35): 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) + 𝐴3𝑙𝑜𝑔(ℎ𝑡) +  [𝐵1 +  𝐵2𝑙𝑜𝑔(ℎ𝑡) +  𝐵3. ℎ𝑡][𝑙𝑜𝑔(𝑑)] − 𝑎(ℎ𝑟) −

 𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟           (2.35) 

Where, 

 𝐴1 … 𝐵3 : Hata parameters 

 𝑓  : Frequency in MHz 

 ℎ𝑡  : Effective transmitter antenna height in metres 

 𝑑  : Distance in Km 

 𝑎(ℎ𝑟)  : Mobile receiver antenna height in metres 

 𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟 : Clutter correction function 

It was observed that the distance in Hata formula is in km as opposed to the SPM, where the 

distance is given in metres. The typical values of the Hata parameters are: 

 𝐴1 =  {
69.55                                   𝑓𝑜𝑟 900 𝑀𝐻𝑧
46.30                     𝑓𝑜𝑟 1800 𝑀𝐻𝑧           

 

𝐴2 =  {
26.16                               𝑓𝑜𝑟 900 𝑀𝐻𝑧

  33.90                    𝑓𝑜𝑟 1800 𝑀𝐻𝑧           
 

 𝐴3 =  −13.82 

 𝐵1 = 44.90 

 𝐵2 =  −6.55 

 𝐵3 = 0 

Thus, for GSM 900,  

𝑃𝐿 (𝑑𝐵) =  69.55 +  26.16 𝑙𝑜𝑔(𝑓) − 13.82 𝑙𝑜𝑔(ℎ𝑡) + [44.9 − 6.55 𝑙𝑜𝑔(ℎ𝑡)][𝑙𝑜𝑔(𝑑)] −

𝑎(ℎ𝑟) −  𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟          (2.36) 
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For GSM 1800, 

𝑃𝐿 (𝑑𝐵) =  46.3 +  33.9 𝑙𝑜𝑔(𝑓) − 13.82 𝑙𝑜𝑔(ℎ𝑡) +  [44.9 − 6.55 𝑙𝑜𝑔(ℎ𝑡)][𝑙𝑜𝑔(𝑑)] −

𝑎(ℎ𝑟) −  𝐶𝑐𝑙𝑢𝑡𝑡𝑒𝑟          (2.37) 

It was noted that the influence of diffraction and clutter correction can be ignored since the 

consideration is on standard formulas. With the appropriate settings of the A1 and K1, and taking 

only one clutter class into consideration, the clutter correction factor can be set to zero without 

altering the validity of the equations. The correction function for the mobile receiver antenna 

height can also be ignored for hr ≤ 1.5 m since it has negligible values for realistic mobile antenna 

heights. Then, the Hata formula becomes Equation (2.38): 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) + 𝐴3𝑙𝑜𝑔(ℎ𝑡) +  [𝐵1 +  𝐵2𝑙𝑜𝑔(ℎ𝑡)][𝑙𝑜𝑔(𝑑)]   (2.38) 

The SPM formula can also be reduced to: 

𝑃𝐿 (𝑑𝐵) = 𝐾1 +  𝐾2 log(𝑑) +  𝐾3 log(ℎ𝑡) +  𝐾5 𝑙𝑜𝑔(𝑑). 𝑙𝑜𝑔(ℎ𝑡) +  𝐾6. ℎ𝑟 +  𝐾7 log(ℎ𝑟)   (2.39) 

Rewriting the simplified Hata equation with distance in metres as in SPM we have, 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) + 𝐴3𝑙𝑜𝑔(ℎ𝑡) +  [𝐵1 +  𝐵2𝑙𝑜𝑔(ℎ𝑡)] [𝑙𝑜𝑔 (
𝑑

1000
)] 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) +  𝐴3𝑙𝑜𝑔(ℎ𝑡) +  [𝐵1 +  𝐵2𝑙𝑜𝑔(ℎ𝑡)][𝑙𝑜𝑔(𝑑 𝑥 10−3)] 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) + 𝐴3𝑙𝑜𝑔(ℎ𝑡) +  𝐵1𝑙𝑜𝑔(𝑑 𝑥 10−3) + 𝐵2𝑙𝑜𝑔(ℎ𝑡). 𝑙𝑜𝑔(𝑑 𝑥 10−3) 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) + 𝐴3𝑙𝑜𝑔(ℎ𝑡) +  𝐵1𝑙𝑜𝑔(𝑑) +  𝐵1𝑙𝑜𝑔(10−3)

+  𝐵2𝑙𝑜𝑔(ℎ𝑡). [𝑙𝑜𝑔(𝑑) +  𝑙𝑜𝑔(10−3)] 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) + 𝐴3𝑙𝑜𝑔(ℎ𝑡) +  𝐵1𝑙𝑜𝑔(𝑑) − 3𝐵1 + [𝐵2𝑙𝑜𝑔(ℎ𝑡)][𝑙𝑜𝑔(𝑑 ) − 3] 

𝑃𝐿 (𝑑𝐵) =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) − 3𝐵1 +  [𝐴3 − 3𝐵2][𝑙𝑜𝑔(ℎ𝑡)] +  𝐵1𝑙𝑜𝑔(𝑑) +  𝐵2𝑙𝑜𝑔(ℎ𝑡). 𝑙𝑜𝑔(𝑑) 

(2.40) 

Equating the coefficients of the Equation (2.39) and Equation (2.40): 

 𝐾1 =  𝐴1 +  𝐴2𝑙𝑜𝑔(𝑓) − 3𝐵1 

 𝐾2 =  𝐵1 
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 𝐾1 =  𝐴3 − 3𝐵2 

 𝐾5 =  𝐵2 

 𝐾6 =  𝐾7 = 0 

Therefore, the SPM formula for GSM 900 is given by Equation (2.41):  

𝑃𝐿 (𝑑𝐵) =  12.5 +  44.9 𝑙𝑜𝑔(𝑑) + 5.83 𝑙𝑜𝑔(ℎ𝑡) − [6.55 𝑙𝑜𝑔(𝑑). 𝑙𝑜𝑔(ℎ𝑡)]               (2.41) 

Also, the SPM formula for DCS 1800 is given by Equation (2.42): 

 𝑃𝐿 (𝑑𝐵) =  22 +  44.9 𝑙𝑜𝑔(𝑑) + 5.83 𝑙𝑜𝑔(ℎ𝑡) −  [6.55 𝑙𝑜𝑔(𝑑). 𝑙𝑜𝑔(ℎ𝑡)]  (2.42) 

2.3.3.6 Bertoni - Walfisch Path Loss Model 

Bertoni – Walfisch model is the first model which takes into account the effects of buildings on 

radio propagation channel in path loss modeling (Walfisch & Bertoni, 1988). The model assumes 

that propagation takes place over rows of buildings having equal heights and equal spacing 

arranged in a perfect grid. The model has been adopted by ITU for International Mobile 

Telecommunications (IMT-2000)/3G standard.  

Walfisch & Bertoni (1998) proposed a semi-empirical model that is applicable to propagation 

through buildings in built-up environments. The model assumes building heights to be uniformly 

distributed and the separation between buildings are equal. The figure below illustrates the 

building geometry and parameters in the Bertoni - Walfisch model. 

 

Figure 2.3. Propagation Geometry for Bertoni - Walfisch Model (Walfisch & Bertoni, 1988) 

The model has three components namely:  

(a) the free space loss (Lf); 
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(b) the loss due to diffraction by rooftops (Lrt); and 

(c) the diffraction and scatter loss from rooftop down the street (Lrs) 

Therefore, 

  𝑃𝐿(𝑑𝐵) =  𝐿𝑓 +  𝐿𝑟𝑓 +  𝐿𝑟𝑠     (2.43) 

Where   𝐿𝑓 =  (
ƛ

4π𝑟2
) 

𝐿𝑓(𝑑𝐵) = 32.44 + 20𝑙𝑜𝑔(𝑓) + 20𝑙𝑜𝑔(𝑑)      

  𝐿𝑟𝑓 = {0.1 (
sinα √𝑑/ƛ

0.03
)

0.9

}

2

 

Here, sin α is in terms of the transmitter height (ht), the building height (hb) and the distance R as 

given by: 

    sinα =
ℎ𝑡 − ℎ𝑏

𝑅
 

                          𝐿𝑟𝑓 = 0.01 (
ℎ𝑡 − ℎ𝑏

𝑅
)

1.8

(
𝑑

ƛ
)

0.9

 

    𝐿𝑟𝑠 = (
ƛ𝜌

ℎ𝑏−ℎ𝑟
) . (

1

2𝜋2) 

The total path loss is thus given by Equation (2.44): 

𝑃𝐿(𝑑𝐵) = 89.5 − 10 log {
𝜌𝑑0.9

(ℎ𝑏−ℎ𝑟)2
} + 21 log (𝑓𝑚) −  18 log  (ℎ𝑡 −  ℎ𝑏) +  38 log  𝑅 (2.44) 

where  ρ  = √(
𝑑

2
)

2

+  (ℎ𝑏 − ℎ𝑟)2 

  fm : frequency in MHz 

  ht : transmitter antenna height in metres 

  hr : receiver antenna height in metres 

  d : separating distance between buildings in metres 

R : distance between transmitter and the receiver in metres 
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2.3.3.7 Stanford University Interim (SUI) Model 

Institute of Electrical and Electronic Engineering (IEEE) 802.16 Broadband Wireless Access 

working group proposed the standards for the frequency band below 11GHz containing the channel 

model developed by Stanford University namely SUI model (Milanovic, Rimac-Drlje, & Bejuk, 

2007). This prediction model comes from the extension of Hata model with frequency larger than 

1900 MHz. The correction parameters are allowed to extend this model up to 3.5 GHz band. In the 

USA, this model is defined for the Multipoint Microwave Distribution System (MMDS) for the 

frequency band from 2.5GHz to 2.7GHz. 

The following are the range of parameters involved: 

Base station (transmitter) antenna height : 10 – 80m 

Mobile station (receiver) antenna height : 2 – 10m 

Cell radius     : 0.1 – 8km 

The SUI model describes three types of terrain, they are terrain A, B and C. there is no declaration 

about any particular environment. The basic path loss expression is given as: 

  𝑃𝐿(𝑑𝐵) = 𝐴 + 10𝛾 𝑙𝑜𝑔 (
𝑑

𝑑𝑜
) +  𝑋𝑓 +  𝑋ℎ + 𝑆         𝑓𝑜𝑟 𝑑 > 𝑑𝑜                (2.45) 

where  d = distance between Tx and Rx antennas in metres 

  do = 100 m 

  ƛ = wavelength in metres 

  Xf = correction factor for frequency above 2 GHz (in MHz) 

  Xh = correction factor for receiver antenna height in metres 

  S = correction factor for shadowing (dB) 

  γ = path loss exponent 

𝐴 = 20 𝑙𝑜𝑔 (
4𝜋𝑑0

ƛ
) 
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γ = a − bℎ𝑟 (
𝑐

ℎ𝑟
) 

The parameter hr is the receiving antenna height in metres which is between 10m and 80m. The 

constants a, b and c depend on the type of terrain.  

Note that,   

γ = 2 for free space propagation 

         3 < γ < 5 for Urban NLOS 

   γ  > 5 for indoor propagation 

Table 2.1. SUI Model Parameters (Milanovic et al., 2007) 

Model Parameter Terrain A Terrain B Terrain C 

A 4.6 4.0 3.6 

b (m-1) 0.0075 0.0065 0.005 

C (m) 12.6 17.1 20 

 

𝑋𝑓 = 6 𝑙𝑜𝑔 (
𝑓

2000
) 

𝑋ℎ = {
−10.8 log (

ℎ𝑟

2000
)       𝑓𝑜𝑟 𝑡𝑒𝑟𝑟𝑎𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵

−20 log (
ℎ𝑟

2000
)                 𝑓𝑜𝑟 𝑡𝑒𝑟𝑟𝑎𝑖𝑛 𝐶

 

Where f is the frequency of operation in MHz 

For the above correction factors, this model is extensively used for the path loss prediction of all 

three types of terrain in rural, urban and suburban environments.  

2.3.3.8 ECC-33 Path Loss Model 

Hata – Okumura model is one of the most extensively used empirical propagation models which 

are based on the Okumura model (Rappaport, 1996). This model is suited for the UHF band. The 

tentatively proposed propagation model of Hata-Okumura model with report (Abhayawardhana et 

al., 2005) is referred to as ECC-33 model. In this model, path loss is given by Equation (2.46): 
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𝑃𝐿(𝑑𝐵) =  𝐴𝑓𝑠 +  𝐴𝑏𝑚 −  𝐺𝑡 −  𝐺𝑟    (2.46)  

Where 𝐴𝑓𝑠   = free space attenuation 

 𝐴𝑏𝑚 =  basic median path loss 

 𝐺𝑡  =  transmitter antenna height gain factor 

 𝐺𝑟  =  receiver antenna height gain factor 

  𝐴𝑓𝑠 = 92.4 + 20 log(𝑑) + 20 log(𝑑) 

  𝐴𝑏𝑚 = 20.41 + 9.83 log(𝑑) + 7.894 log(𝑓) + 9.56 [log(𝑓)]2 

𝐺𝑡 = [𝑙𝑜𝑔 (
ℎ𝑡

200
)] [13.958 +  5.8 (log d)2] 

For medium-sized cities, 

  𝐺𝑟 = [42.57 + 13.7 log(𝑓)][log(ℎ𝑟) − 0.585] 

For large cities, 

  𝐺𝑟 = 0.759ℎ𝑟 − 1.862 

2.3.3.9 COST-231 Walfisch-Ikegami (WI) Model  

This model is most suitable for flat suburban and urban areas that have uniform building height 

(Har, Watson, & Chadney, 1999).  

The equation of the proposed model is given by Equation (2.47) and Equation (2.48): 

𝑃𝐿(𝑑𝐵) = 42.6 + 26 log(𝑓) + 20 log(𝑑)              𝑓𝑜𝑟 𝐿𝑂𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛   (2.47)  

𝑃𝐿(𝑑𝐵) =  𝐿𝑓 +  𝐿𝑟𝑓 +  𝐿𝑟𝑠                     𝑓𝑜𝑟 𝑢𝑟𝑏𝑎𝑛 𝑎𝑛𝑑 𝑠𝑢𝑏𝑢𝑟𝑏𝑎𝑛 𝑖𝑓𝐿𝑟𝑡𝑠 + 𝐿𝑚𝑠𝑑 > 0    (2.48) 

Lf  =  free space path loss 

 Lrts =  roof top to street diffraction 

Lmsd =  multi-screen diffraction loss 

𝐿𝑓(𝑑𝐵) = 32.44 + 20 𝑙𝑜𝑔 (𝑓) + 20 𝑙𝑜𝑔 (𝑑) 
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𝐿𝑟𝑡𝑠 =  −16.9 − 10 log  (𝑤) + 10 log (𝑓) + 20 log  (ℎ𝑟) + 𝐿𝑜𝑟           𝑓𝑜𝑟 ℎ𝑟𝑜𝑜𝑓 > ℎ𝑟     

 

Figure 2.4. Diffraction Angle and Urban Scenario (Har et al., 1999) 

where 

𝐿𝑜𝑟 = {

−10 + 0.354𝜙                      𝑓𝑜𝑟       0 ≤ 𝜙 ≤ 35

2.5 + 0.075(𝜙 − 35)      𝑓𝑜𝑟     35 ≤  𝜙 ≤ 55

4 − 0.114(𝜙 − 55)             𝑓𝑜𝑟 55 ≤  𝜙 ≤ 90
 

Note that  ∆ℎ𝑟 = ℎ𝑟𝑜𝑜𝑓 − ℎ𝑟 

    ∆ℎ𝑏𝑎𝑠𝑒 = ℎ𝑏𝑎𝑠𝑒 −  ℎ𝑟𝑜𝑜𝑓 

    𝐿𝑚𝑠𝑑 = 𝐿𝑏𝑠ℎ + 𝐾𝑎 + 𝐾𝑑 log(𝑑) + 𝐾𝑓 log (𝑓) − 9 log(𝑓) − 9 log(𝐵) 𝑓𝑜𝑟 𝐿𝑚𝑠𝑑> 0  

    𝐿𝑚𝑠𝑑 = 0        𝑓𝑜𝑟 𝐿𝑚𝑠𝑑 < 0  

Where     𝐿𝑏𝑠ℎ = {
−18 log(1 +  ∆ℎ𝑏𝑎𝑠𝑒)        𝑓𝑜𝑟 ℎ𝑏𝑎𝑠𝑒 > ℎ𝑟𝑜𝑜𝑓

0                                      𝑓𝑜𝑟  ℎ𝑏𝑎𝑠𝑒 ≤ ℎ𝑟𝑜𝑜𝑓
 

               Ka =   54                                            𝑓𝑜𝑟 ℎ𝑏𝑎𝑠𝑒 > ℎ𝑟𝑜𝑜𝑓 

    Ka = 54 − 0.8∆ℎ𝑏𝑎𝑠𝑒                   𝑓𝑜𝑟 𝑑 ≥ 0.5𝑘𝑚 𝑎𝑛𝑑 ℎ𝑏𝑎𝑠𝑒 ≤ ℎ𝑟𝑜𝑜𝑓 

    Ka =   54 − 0.8∆ℎ𝑏𝑎𝑠𝑒 (
𝑑

0.5
)                  𝑓𝑜𝑟 𝑑 < 0.5𝑘𝑚 𝑎𝑛𝑑 ℎ𝑏𝑎𝑠𝑒 ≤ ℎ𝑟𝑜𝑜𝑓 
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               Kd = {

18                          𝑓𝑜𝑟  ℎ𝑏𝑎𝑠𝑒 > ℎ𝑟𝑜𝑜𝑓

18 ∓ 15 (
∆ℎ𝑏𝑎𝑠𝑒

ℎ𝑟𝑜𝑜𝑓
)              𝑓𝑜𝑟 ℎ𝑏𝑎𝑠𝑒 ≤  ℎ𝑟𝑜𝑜𝑓

 

             𝐾𝑓 = {
−4 + 0.7 (

𝑓

925
−  1)       𝑓𝑜𝑟 𝑠𝑢𝑏𝑢𝑟𝑏𝑎𝑛 𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑠𝑖𝑧𝑒𝑑 𝑐𝑖𝑡𝑖𝑒𝑠 

−4 + 1.5 (
𝑓

925
−  1)                                                    𝑓𝑜𝑟 𝑢𝑟𝑏𝑎𝑛 𝑐𝑖𝑡𝑖𝑒𝑠 

 

where f : frequency in GHz 

 B : building to building distance 

 d : Tx- Rx separation distance 

 w : street width 

 ϕ : street orientation angle with respect to direct radio path 

2.3.3.10 Ericsson Model 

This model also stands on the modified Okumura - Hata model to allow room for changing in 

parameters according to the propagation environment. Path loss according to this model is given 

by (Milanovic et al., 2007): 

𝑃𝐿(𝑑𝐵) = 𝑎0 +  𝑎1 log(𝑑) +  𝑎2 log(ℎ𝑏) +  [𝑎3 log(ℎ𝑏) log(𝑑)] − 3.2[log(11.75ℎ𝑟)2] + 𝑔(𝑓) 

(2.49) 

Where 𝑔(𝑓) = 44.49 log(𝑓) − 4.78[log(𝑓)]2 

 f  =  frequency in MHz 

Table 2.2. Values of Parameters for Ericsson Model (Milanovic et al., 2007) 

Environment a0 a1 a2 a3 

Urban 36.2 30.2 12.0 0.1 

Suburban 43.20 68.93 12.0 0.1 

Rural 45.95 100.6 12.0 0.1 
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2.3.3.11 Lee Path Loss Model  

Lee path loss model has been widely used in the prediction of path loss in macro cell applications, 

particularly for systems operating near 900 MHz and for ranges greater than 1.6 km (Vinko Erceg 

et al., 1999). The Lee model specifies distinct parameters for varying region types. Lee model 

should not be expected to be accurate outside a relatively narrow range of frequencies near 900 

MHz.  

The Lee model is given by Equation (2.50) (Lee, 1985): 

𝑃𝐿 (𝑑𝐵) = 𝐿0 +  𝛿 log(𝑑) − 10 log(𝐹𝐴)      (2.50) 

Where PL  =  the median path loss with unit in decibel (dB)  

L0  =  the reference path loss along 1km; unit in dB 

δ  =  the slope of the path loss curve; unit in dB 

d  =  the distance on which the path loss is to be calculated; unit in metres (m)  

FA  =  the adjustment factor.  

In a given location, the L0 and δ parameters should be determined empirically through a set of 

measurements. 

2.4 Model Calibration Techniques 

Model calibration is a process in which an existing propagation prediction model is tuned (or 

adjusted) to accurately fit the actual measurement data collected on the network sites. This process 

is targeted at improving the degree of accuracy of the model so as to truly represent the real 

physical environment of the propagation scenarios (Lempiäinen & Manninen, 2003). A number of 

approaches to achieving this have over the years been developed.  

2.4.1 Statistical Model Calibration Method 

This method is based on the modification of the coefficients of the propagation prediction models. 

These coefficients are the parameters that have been found through statistical analysis to be 

responsible for the relationship of the models with the quantity to be predicted (Ghassemzadeh, 

Jana, Rice, Turin, & Tarokh, 2002; Mao, Anderson, & Fidan, 2007). In this approach, an 
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appropriate empirical propagation model is selected from the existing radio propagation models. 

Thereafter, the selected model is used to predict the received signal strengths of the given cellular 

mobile network. The actual field measurement data are collected on a live network through drive 

tests. Subsequently, the collected data is dutifully analyzed to filter out error-related measurement 

points that may affect the accuracy of the calibration process. This iteration is repeated several 

times to minimize the error between the predicted results obtained and the field measured data 

(Lempiäinen & Manninen, 2003).  

The statistical method implicitly takes all the environmental factors into account regardless of 

whether they can be separately recognized. By direct implication, the accuracy of the approach 

depends not only on the accuracy of the collection procedures of the field measurement data, but 

also on the similarities between the environment under study and the environment where the 

measurements were taken. Nevertheless, the statistical calibration method is widely used because 

of its simplicity, flexibility and computational efficiency. It achieves reasonably good prediction 

results when the propagation environment under study is fairly homogenous and similar to the 

environment where the measurements were taken. 

With the recent development of the automated received signal measurement devices and systems 

with Global Positioning System (GPS) logging, it has become relatively easy to record large 

amounts of measurement data. 

2.4.2 Deterministic Model Calibration Method 

This approach is based on the physical laws governing the interaction of EM waves with the 

physical elements of the propagation environment. These laws are purely derivatives of the 

Maxwell equations. Here, a suitable propagation model is selected. This requires detailed data 

describing the area morphology, topology, street orientation etc. The data are used in the tuning 

process such that the resulting model represents the real environment and in turn adjust the model 

coefficients. The iteration is repeated so as to minimize the errors in the model approximating the 

real environment (Rappaport & Sandhu, 1994). The modelling is simplified by the use of path loss 

approximation models for diffraction, reflection, refraction, and absorption. 

For the deterministic model to be effective there is a need for a detailed description of the objects 

present in the propagation environment. Thus, the limitation of this method of calibration is that it 
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requires extensive and detailed information of the terrain and physical objects present in the 

environment under study. Consequently, it requires significant computational resources in order 

to account for all of such information for the propagation prediction calculations to be performed. 

The uniqueness of the approach is that it predicts the received signal strength at a precise point in 

space by taking into consideration the specific propagation environment’s peculiarities and 

features involved. Thus, the method is considered to be site-specific. 

2.4.3 Semi-Deterministic Model Calibration Method 

This method requires more information about the propagation environment than the statistical 

method but less than that of the deterministic. It provides a tradeoff between the two earlier 

discussed approaches. Its inclusion of deterministic correction factors improves the accuracy of 

the statistical models. This method facilitates the statistical propagation model to simulate the real 

propagation environment as close as possible. Consequently, the resulting models are easy to 

implement but offer less efficiency when compared to statistical models. Nevertheless, they 

provide the optimal choice of tradeoffs between accuracy and ease of use of the resulting 

propagation models (Subrt & Pechac, 2011). 

2.4.4 Site-Specific Model Calibration Method 

This method is targeted at improving the reliability of radio network planning and also to increase 

the degree of accuracy of the existing propagation prediction models for better planning and 

maintenance of radio communication network. However, the approach is built around the earlier 

discussed methodologies (EC Mukubwa, Karien, & Chatelain, 2006). The concept of this method 

is to develop a way of tuning propagation models for a single cell as opposed to the current cluster 

tuning approach. The approach is appreciated by radio network operators in cases where there are 

problematic cell sites within the cluster. The prediction method can only be used for cells within a 

similar environment (EM Mukubwa, 2006). 

Once the suitable propagation prediction model is selected, it must be calibrated to model a specific 

cell site. The calibration process involves modifying the model parameters to accurately 

approximate relevant measurement data. The propagation measurement data is used to calibrate 

these propagation models. These measurement data is obtained through actual field measurements 

taken at various locations throughout the cell. Precise measurement can be determined using a 
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GPS. Typically, a large amount of the measurement may be required to accurately calibrate the 

model. Once the data is collected, it is converted to a suitable format and used to characterize the 

cell site to its location (Lempiäinen & Manninen, 2003). The calibration process uses the field data 

collected to define parameters, variable coefficients and constants of equations used in modelling 

the cell coverage. 

2.5. Review of Related Works 

Machine learning offers useful statistical tools for complex nonlinear regression problems and thus 

can be exploited to obtain more accurate path loss predictions at low computational cost. Feed-

forward neural networks have been widely applied to estimate path loss under diverse 

circumstances.  

A. Bhuvaneshwari, Hemalatha, and Satyasavithri (2017) identified COST 231 as the most 

appropriate for path loss predictions at GSM 900 MHz in dense urban area of Hyderabad city. The 

authors reduced the prediction errors by implementing the empirical model using dynamic neural 

networks. The Layer Recurrent Neural Network (LRNN) that was trained based on Levenberg-

Marquardt (LM) learning algorithm was found to produce the best results but the model training 

takes longer time. T. A. Benmus, Abboud, and Shatter (2016) developed a neural network model 

based on measurement collected at 900 MHz, 1800 MHz, and 2100 MHz in the dense urban, urban, 

dense suburban, suburban, and rural environments of the capital of Libya Tripoli. The developed 

model had a better prediction accuracy when compared to Hata model. Zineb and Ayadi (2016) 

developed a novel model for indoor radio propagation for commonly available frequency bands 

(GSM, UMTS and Wi-Fi) using Multi-Layer Perceptron Neural Network (MLP-NN) and back-

propagation training algorithm.  

Delos Angeles and Dadios (2016) trained and validated feed-forward neural network with 

Longley-Rice model simulation results instead of using field measurement data. The developed 

neural network model outperformed both free space and Egli models. Zaarour, Affes, Kandil, and 

Hakem (2015) addressed the challenge of developing a path loss model at 60 GHz for a confined 

and harsh environment such as an underground mine using MLP and Radial Basis Function (RBF) 

neural networks. S. P. Sotiroudis and K. Siakavara (2015) developed ensemble ANNs that 

produced good prediction accuracy with optimal input data. S. P. Sotiroudis, S. K. Goudos, K. A. 

Gotsis, K. Siakavara, and J. N. Sahalos (2013) applied Differential Evolution (DE) algorithms to 
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ANN-based path loss modeling. Fernández Anitzine et al. (2012) investigated different methods 

of selecting the training dataset that is just sufficient for accurate path loss predictions. Different 

neural networks were developed for LOS and NLOS scenarios. The review of other related works 

is summarized in Table 2.3. 
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Table 2.3. Review of Related Works 

S|N Author(s) Year Location of 

Study 

Scenario Frequency 

Band(s) 

Clutter 

Class(es) 

Contribution(s) Comment(s) 

1 Angeles and 

Dadios (2015) 

2015 People’s 

Park, 

Tagaytay 

City, 

Philippines 

Outdoor 600 MHz 

Digital 

Television 

(TV) band 

Arbitrary The authors claimed that 

the developed ANN 

model performed better 

than empirical models 

with the ability to adapt 

to arbitrary environment 

Datasets were not 

real field 

measurements but 

simulation results 

of Longley-Rice 

model 

2 Ayadi, Zineb, 

and Tabbane 

(2017) 

2017 Tunis City, 

Tunisia 

Outdoor UHF bands 

(450 MHz, 

850 MHz, 

1800 MHz, 

2100 MHz, 

2600 MHz) 

Urban, 

suburban, 

and rural 

A new model was 

developed, instead of 

calibrating an existing 

one, to achieve a better 

precision. 

The performance 

of the developed 

model was only 

compared with 

standard 

propagation model 

and ITU-R 

P.1812-4 model 

3 Tammam A 

Benmus, 

2015 Great 

Tripoli, 

Libya 

Outdoor 900 MHz, 

1800 MHz, 

Dense urban, 

urban, dense 

suburban, 

A model that is suitable 

for Tripolis, Lybia was 

developed. 

The accuracy of 

the model was 
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Abboud, and 

Shatter (2015) 

and 2100 

MHz 

suburban, 

and rural 

only compared to 

that of Hata model 

4 A 

Bhuvaneshwari, 

Hemalatha, and 

Satyasavithri 

(2016) 

2016 Hyderabad 

City, India 

Outdoor GSM 900 

frequency 

band 

Dense urban COST 231 Hata model 

was implemented using 

dynamic neural 

networks (Focused Time 

Delay Neural Network, 

Distributed Time Delay 

Neural Network, and 

Layer Recurrent Neural 

Network) 

The accuracy of 

the model was at 

the cost of 

increased 

computation time. 

5 Cerri, Cinalli, 

Michetti, and 

Russo (2004) 

2014 Ancona, Italy Indoor 900 MHz Urban The authors developed 

ANN model to account 

for the effect of 

buildings on path loss. 

The network 

training samples 

were obtained by 

Ray Tracing 

simulation. 

6 Cruz and Caluyo 

(2014) 

2014 Philippines Indoor 677 MHz Urban The authors developed a 

heuristic path loss model 

to estimate indoor losses 

caused by signal 

The model was not 

validated by other 

heuristic 

techniques 
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penetration inside 

residences 

7 Eichie, Oyedum, 

Ajewole, and 

Aibinu (2017b) 

2017 Minna, Niger 

State, 

Nigeria 

Outdoor 1800 MHz Rural and 

suburban 

ANN models were 

developed for rural and 

suburban routes in 

Minna and its environs. 

Comparisons were 

only made with 

basic empirical 

models but not 

with other machine 

learning based 

approach. 

8 Fernández 

Anitzine et al. 

(2012) 

2012 Spain Indoor, 

Outdoor 

900 and 

1800 MHz 

Urban The authors developed 

ANN model with 

optimum selection of 

training set. 

Although the 

multipath effect 

was eliminated, 

the measurements 

contain slow 

channel variations. 

9 Ferreira, Matos, 

and Silva (2016) 

2016 Rio de 

Janeiro, 

Brazil 

Outdoor 1140 MHz Urban Hybrid application of 

ITU-R model and ANN 

model for efficient 

prediction. 

More 

measurements are 

needed from 

different types of 

regions. 
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10 Gschwendtner 

and Landstorfer 

(1996) 

1996 Mannheim, 

Germany 

Outdoor N/A Urban A hybrid modeling 

approach was 

introduced using 

environmental 

parameters. 

The results of the 

study was only 

compared with 

COST Walfisch-

Ikegami model 

11 Kalakh, Kandil, 

and Hakem 

(2012) 

2012 N/A Undergro

und 

tunnel 

3-10 GHz Mine 

environment 

Developed path loss 

model for Ultra-

Wideband propagation 

channel 

Neural network is 

a feasible solution 

for channel 

modeling in 

environments that 

are considered to 

be harsh. 

12 McLeod, Bai, 

and Meyer  

2010 United States 

of America 

Outdoor 2.4 GHz Rocky/mount

ainous area 

Additional performance 

was gained by 

implementing a trained 

model in a parallel 

manner with a Graphical 

Processing Unit. 

The network is 

tasked to 

generalize 

solutions across all 

possible point 

tuples. 
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13 Ostlin et al. 

(2010) 

2010 Australia Outdoor IS-95 

CDMA 

band 

Rural Evaluated the prediction 

accuracy, time, and 

generalization ability of 

simple neuron model 

and feed-forward 

networks with different 

number of hidden layers 

and neurons. 

The performances 

of the model was 

only compared 

with ITU-R 

P.1546 and 

Okumura-Hata 

model. 

14 Ileana Popescu, 

Kanatas, 

Constantinou, 

and Naforniţǎ 

(2002) 

2002 Kavala, 

Greece 

Outdoor 1890 MHz Urban A general regression 

neural network model 

was designed and 

implemented. 

Comparison was 

limited to 

empirical models. 

15 I Popescu, 

Nafomita, 

Constantinou, 

Kanatas, and 

Moraitis (2001) 

2001 Kavala, 

Greece 

Outdoor 1890 MHz Urban Designed neural 

network models for LOS 

and NLOS cases 

Comparison was 

limited to 

empirical models. 
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16 Ileana Popescu 

et al. (2005) 

2005 Oai Village, 

Santorini 

Island, 

Greece 

Outdoor 1890 MHz Rural Investigated error 

correction model. 

Hybrid model 

proved to be 

highly adaptive 

17 S. Sotiroudis, S. 

Goudos, K. 

Gotsis, K. 

Siakavara, and J. 

Sahalos (2013) 

2013 Thessaloniki, 

Greece 

Outdoor N/A Urban Applied the combination 

of DE and LM 

algorithms. 

The combination 

achieved produced 

convergence. The 

model was trained 

with Ray Tracing 

simulation results. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1. Introduction 

The research methodology adopted in this study is the Design Science Research (DSR) approach. 

An overview of the research methodology is depicted using the flowchart shown in Figure 3.1. In 

this chapter, the physical environment of the study area is described as a typical wireless 

propagation channel of heterogeneous radio networks in a smart university campus. Radio signal 

measurements are conducted to obtain the strengths of radio signals received at varying separation 

distances between fourteen base station transmitters and two mobile receivers. Geographic and 

network information (i.e. longitude, latitude, elevation, altitude, frequency, clutter height, and 

RSS) recorded are stored in a local database. These data are further processed to remove duplicates 

and extraneous data points. Machine learning-based path loss models are developed using ANN 

and SVM techniques. Finally, prediction accuracy and generalization ability of popular empirical 

models (Hata, COST 231, ECC-33, and Egli), ANN-based models, and SVM models are evaluated 

using MAE, MSE, RMSE, SED, R, ANOVA, and multiple comparison post-hoc test. 

3.2. Description of the Smart Campus Propagation Environment 

Extensive field measurement campaign was conducted within the campus of Covenant University 

using drive test approach. The university campus is located along kilometer 10, Idi-Iroko road, 

Ota, Canaanland, Ogun State, Nigeria (Latitude 6°40'30.3"N, Longitude 3°09'46.3"E). The 

physical environment of Covenant University campus is made up of ultra-modern lecture halls, 

high-rise administrative buildings, four-storey residential buildings, high-rise research and 

innovation hub, a standard stadium complex, a modern health center facility, trees planted along 

roadsides, flowers, parks and gardens, street lights, signposts, and billboards. A satellite imagery 

of the physical environment is shown in Figure 3.2. Most of these physical structures have 

considerable heights such that they obstruct Line of Sight LOS but produce NLOS signal paths for 

wireless communications at radio frequencies. 
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Figure 3.1. Flowchart of Research Methodology 
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Figure 3.2. Physical environment of Covenant University campus 

3.3. Radio Signal Measurement Campaign 

A drive test experimental setup was designed for the field measurement campaign. The equipment, 

devices, and tools that constitute the experimental setup include: six commercial transceivers with 

fourteen (14) directional antennas, two mobile receivers, a GPS receiver, a radio signal 

measurement software that runs on a Personal Computer (PC), and a motor vehicle. Ericsson RBS 

2216, Ericsson RBS 2116, and Ericsson RBS 6201 base station transceivers were used for radio 

signal transmission at 900, 1800, and 2100 MHz respectively. Sectorial antennas of 13 dBi gain, 

120 degree horizontally polarized sector panel were used to radiate electromagnetic signals which 

emanate from Ericsson RBS 2216 transmitters. 18 dBi gain, 65 degree vertically polarized 

antennas were used for radio wave transmission at 1710-1880 MHz frequency range. 17 dBi gain, 

90 degree vertically polarized antennas were utilized for radio propagation at 2090-2290 frequency 

range. Two Sony Ericsson w995 mobile phones, with processing speed of 369 MHz and a 

removable Li-Po 930 mAh battery each, were used for radio signal reception at 900, 1800, and 

2100 MHz. A Universal Serial Board (USB) magnet mount GPS receiver, BU-353-S4, was used 

to track mobile receiver’s location at a given time. A 64-bit Windows Operating System (OS), 4 

GB Random Access Memory (RAM) laptop with Intel® Core™ i5, M520 @2.40 GHz central 

processing capacity was used for data logging and storage.  



51 
 

Radio signal measurements were conducted along 14 drive test survey routes within Covenant 

University campus in order to adequately represent the wireless channel characteristics of a typical 

smart campus propagation environment. Information about the geographic location and the altitude 

of the radio transmitters are provided in Table 3.1. The drive test survey routes were carefully 

planned using the terrain map of the study area shown in Figure 3.3. Strength of radio signals 

received (RSS) from respective transmitters were measured, recorded, and stored as the mobile 

receivers are driven along the each survey route using TEMS™ Investigation software developed 

by InfoVista®. The amount of radio signal power transmitted by each of the transmitters was 43 

dB and the selected mobile receiver has a minimum sensitivity of -100 dBm. 

The empirical measurements covered six (6) commercial transceivers with fourteen (14) 

directional antennas namely: A2GS1, A2GS2, A2GS3, A3GS1, AW3GS2, A3GS3, E2GS1, 

E2GS3, E3GS1, E3GS3, M2GS1, M2GS3, M3GS1, and M3GS3. Radio signal transmission and 

reception were performed at 900, 1800, and 2100 MHz operating frequencies, as expected of GSM, 

DCS, and UMTS wireless systems respectively, in the directions of the base station antennas. 

Continuous measurement of longitude, latitude, elevation, altitude, frequency, clutter height, and 

RSS were recorded. 

 

Figure 3.3. Drive test survey routes 
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Table 3.1. Geographic locations of base station transmitters 

S|N BTS ID Longitude Latitude Altitude (m) 

1 A2GS1 3.162867 6.675068 50 

2 A2GS2 3.162867 6.675068 50 

3 A2GS3 3.162867 6.675068 50 

4 A3GS1 3.162867 6.675068 50 

5 A3GS2 3.162867 6.675068 50 

6 A3GS3 3.162867 6.675068 50 

7 E2GS1 3.164015 6.675253 52 

8 E2GS3 3.164015 6.675253 52 

9 E3GS1 3.164015 6.675253 52 

10 E3GS3 3.164015 6.675253 52 

11 M2GS1 3.16393 6.675245 52 

12 M2GS3 3.16393 6.675245 52 

13 M3GS1 3.16393 6.675245 52 

14 M3GS3 3.16393 6.675245 52 

 

3.4. Data Preprocessing  

Data collected through drive test (i.e. longitude, latitude, elevation, frequency, and RSS) were 

exported from TEMS™ Investigation software developed by InfoVista® into a spreadsheet file 

format. Mapping and location analysis of RSS data collected at 900, 1800, 2100 MHz radio 

frequencies within Covenant University campus was performed using a desktop Geographic 

Information System (GIS) software, MapInfo Pro™, produced by Pitney Bowes. Appropriate data 

filtering and sorting were performed using Microsoft Excel 2013 to remove data instance 
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duplicates. In this research project, data instance is considered to be duplicated if another data 

instance with the same values of longitude, latitude, elevation, altitude, frequency, clutter height, 

distance have been previously captured in the dataset. The whole experimental field measurement 

process was accurately represented in ATOLLTM v3.1 radio network planning software produced 

by Forsk®. Altitude and clutter height data for respective longitude and latitude points recorded 

were obtained from the Digital Terrain Map (DTM) of the propagation environment shown in 

Figure 3.4. Separation distances between the base station transmitters and the mobile receivers 

were computed for all the data instances using ATOLL software. Corresponding path loss values 

were calculated for each data instance of RSS using Equation (3.1): 

𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖(𝑑𝐵) = 43 𝑑𝐵 − 𝑅𝑆𝑆𝑖                                           (3.1) 

The complete filtered and sorted data with nine variables (i.e. longitude, latitude, elevation, 

altitude, frequency, clutter height, distance, RSS, and path loss) were randomly divided into two 

parts: 75% training dataset and 25% testing dataset for path loss model development and 

evaluation.  

 

Figure 3.4. Digital Terrain Map of the propagation environment 



54 
 

3.5. Development of ANN-Based Path Loss Prediction Models 

An optimal ANN-based path loss model is expected to produce high prediction accuracy and 

demonstrate good generalization ability. In order to ensure that these performance criteria are 

satisfied, series of experimentations were performed to determine the most appropriate neural 

network architecture for radio propagation modeling in a heterogeneous smart campus 

environment. Model development, validation, testing, and evaluation were performed using the 

Neural Network Toolbox in MATLAB 2016a produced by MathWorks Inc. First, the minimum 

input variable(s) required for ANN-based path loss prediction model development was established. 

Then, effect of input data normalization on prediction accuracy and generalization ability was 

investigated. Furthermore, the most suitable activation function for ANN-based path loss model 

development was determined. Also, the most appropriate neural network training algorithm was 

identified. Finally, the number of neuron required at the hidden layer was experimentally 

determined.   

In order to determine the minimum input variable(s) that guarantee(s) sufficiently high prediction 

accuracy and good generalization ability, six scenarios were investigated through extensive 

experimentations. At first, ANN models were developed based on single input requirement (i.e. 

distance). Consequently, the number of input variable was systematically increased to include 

frequency, clutter height, elevation, altitude, latitude and longitude as presented in Algorithm 3.1. 

The output variable of the ANN-based path loss models is the path loss vector. The procedure 

highlighted in Algorithm 3.1 was repeated 10 times for each of the six use cases under 

investigation. Therefore, a total of 60 ANN-based path loss models were trained and tested to 

assess the set objective using training and testing datasets respectively. 

Response of ANN-based path loss models to input data normalization was investigated by 

implementing the algorithm presented in Algorithm 3.2. In this case, seven input variables (i.e. 

distance, frequency, clutter height, elevation, altitude, latitude, longitude) were used for model 

development. All data instances of the input training and testing matrices were normalized (-1, 1) 

using min-max method. The mathematical formulation is given by Equation 3.2: 

𝐴𝑖 = −0.9 + [
1.8(𝐾𝑖− 𝐾min ) 

𝐾𝑚𝑎𝑥− 𝐾𝑚𝑖𝑛
 ]                            (3.2) 
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Algorithm 3.1. Development of ANN Models with Varying Input Parameters 

0   start 

1           switch training input variable data, testing input variable data 

2              case a: load distance; caseID =1;  

3              case b: load distance, frequency; caseID =2; 

4              case c: load distance, frequency, clutter height; caseID =3; 

5              case d: load distance, frequency, clutter height, elevation; caseID =4; 

6              case e: load distance, frequency, clutter height, elevation, altitude; caseID = 5; 

7         case f: load distance, frequency, clutter height, elevation, altitude, latitude, 

longitude; caseID =6; 

8           end switch  

9           REPEAT 

10         load training and testing output variable (path loss) data; caseID =1; 

11           for number of iteration = 1 to 10 

12                configure a single hidden layer neural network model architecture  

13                    set number of hidden neuron to 10 

14                    set activation function at the hidden layer to hyperbolic tangent sigmoid 

15                    set activation function at the output layer to hyperbolic tangent sigmoid 

16                    set neural network training rule to Levenberg Marquardt  

17                     divide training dataset into 70% training, 15% validation, and 15% testing 

18                train neural network model for path loss predictions    

19                   set learning rate to 0.1 and number of epochs to 1000 

20                   set maximum validation failures to 1000 

21                   set performance goal to zero 

22                evaluate model prediction accuracy  

23                   compute training time, MAE, MSE, RMSE, SED, R 

24                evaluate model generalization ability  

25                   compute MAE1, MSE1, RMSE1, SED1, R1; caseID =caseID + 1; 

26         end for caseID; UNTIL caseID > 6; 

27 stop  
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Algorithm 3.2. Effect of Input Data Normalization on ANN Model Performance 

0   start 

1           load training input variable data, testing input variable data 

2                    distance, frequency, clutter height, elevation, altitude, latitude, longitude 

3           load training and testing output variable (path loss) data 

4           switch raw input data, normalized input data 

5                       case a: load raw training input data, raw testing input data; caseID =1;  

6                       case b: normalize training input data, testing input data; caseID = 2; 

7           end switch; caseID = 1; 

8           REPEAT 

9              for number of iteration = 1 to 10 

10                configure a single hidden layer neural network model architecture  

11                    set number of hidden neuron to 10 

12                    set activation function at the hidden layer to hyperbolic tangent sigmoid 

13                    set activation function at the output layer to hyperbolic tangent sigmoid 

14                    set neural network training rule to Levenberg Marquardt  

15                     divide training dataset into 70% training, 15% validation, and 15% testing 

16                train neural network model for path loss predictions    

17                   set learning rate to 0.1 

18                   set maximum number of epochs to 1000 

19                   set maximum validation failures to 1000 

20                   set performance goal to zero 

21              evaluate model prediction accuracy  

22                   compute training time, MAE, MSE, RMSE, SED, R 

23              evaluate model generalization ability  

24                   compute MAE1, MSE1, RMSE1, SED1, R1  

25         end for; caseID = caseID + 1; 

26         UNTIL caseID > 2; 

27 stop  
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Where 

𝐴𝑖 = normalized input matrix 

𝐾𝑚𝑖𝑛 = column vector of minimum values in raw input matrix 

𝐾𝑚𝑎𝑥 = column vector of maximum values in raw input matrix 

At the end of the experimentations, a total of 20 ANN-based path loss models were developed: 10 

of the models were developed based on raw input matrix while the remaining 10 models were 

developed based on normalized input matrix.  

In the process of training neural network models, either of these three activation/transfer functions 

are most commonly employed at the hidden and output layers: linear (purelin), logarithmic 

sigmoid (logsig), and hyperbolic tangent sigmoid (tansig). The mathematical expressions for 

logsig and tansig activation functions are given by Equation 3.3 and Equation 3.4 respectively. 

Combination of these three transfer functions in pair resulted in nine use cases. The nine scenarios 

were experimented based on the algorithm presented in Algorithm 3.3. Ten iterations were 

performed in each case, and a total of 90 ANN-based path loss models were realized.  

Table 3.2. Training algorithm for ANN model development 

Acronymn Algorithm Description 

LM trainlm Levenberg-Marquardt 

BFG trainbfg BFGS Quasi Newton 

RP trainrp Resilient Backpropagation 

SCG transcg Scaled Conjugate Gradient 

CGB traincgb Conjugate Gradient with Powell/Beale Restarts 

CGF traincgf Fletcher-Powell Conjugate Gradient 

CGP traincgp Polak-Ribiere Conjugate Gradient 

OSS trainoss One Step Secant 

GDX traingdx  Variable Learning Rate Backpropagation 
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Algorithm 3.3. Development of ANN Models with Varying Activation Functions 

0   start 

1           load training input variable data, testing input variable data 

2                    distance, frequency, clutter height, elevation, altitude, latitude, longitude 

3           load training and testing output variable (path loss) data 

4           for number of iteration = 1 to 10 

5                configure a single hidden layer neural network model architecture  

6                    set number of hidden neuron to 10 

7                    switch hidden layer and output layer activation functions 

8                                case a: purelin, purelin; caseID = 1; 

9                                case b: logsig, purelin; caseID = 2; 

10                              case c: tansig, purelinI; caseID = 3; 

11                              case d: purelin, logsig; caseID = 4; 

12                              case e: logsig, logsig; caseID = 5;  

13                              case f: tansig, logsig; caseID = 6; 

14                              case g: purelin, tansig; caseID = 7; 

15                              case h: logsig, tansig; caseID = 8; 

16                              case i: tansig, tansig; caseID = 9; 

17                    end switch; caseID = caseID + 1; REPEAT 

18                  set neural network training rule to Levenberg Marquardt  

19                  divide training dataset into 70% training, 15% validation, and 15% testing 

20              train neural network model for path loss predictions    

21                  set learning rate to 0.1, epochs to 1000, and validation failures to 1000 

22              evaluate model prediction accuracy  

23                   compute training time, MAE, MSE, RMSE, SED, R 

24              evaluate model generalization ability  

25                   compute MAE1, MSE1, RMSE1, SED1, R1  

26         end for 

27         caseID =caseID + 1; UNTIL caseID > 9; 

28 stop  
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Algorithm 3.4. Development of ANN Models with Varying Learning Rules 

0   start 

1           load training input variable data, testing input variable data 

2                    distance, frequency, clutter height, elevation, altitude, latitude, longitude 

3           load training and testing output variable (path loss) data 

4           for number of iteration = 1 to 10 

5                 configure a single hidden layer neural network model architecture  

6                       set number of hidden neuron to 10 

7                       set activation function at the hidden layer to tansig 

8                       set activation function at the output layer to tansig 

9                       switch learning algorithm 

10                                  case a: trainlm 

11                                  case b: trainbfg 

12                                  case c: trainrp 

13                                  case d: trainscg 

14                                  case e: traincgb  

15                                  case f: traincgf 

16                                  case g: traincgp 

17                                  case h: trainoss 

18                                  case i: traingdx 

19               end switch 

20               divide training dataset into 70% training, 15% validation, and 15% testing 

21               train neural network model for path loss predictions    

22               set learning rate to 0.1, epochs to 1000, and validation failures to 1000 

23               evaluate model prediction accuracy  

24                   compute training time, MAE, MSE, RMSE, SED, R 

25              evaluate model generalization ability  

26                   compute MAE1, MSE1, RMSE1, SED1, R1  

27         end for 

28 stop 
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𝑙𝑜𝑔𝑠𝑖𝑔(𝐾) =  
1

1+ 𝑒−𝐾
                                                              (3.3) 

𝑡𝑎𝑛𝑠𝑖𝑔(𝐾) =  
1

(1+ 𝑒−2𝐾)−1
                                                       (3.4) 

ANN models may be trained based on any of the learning rules presented in Table 3.2. 90 ANN-

based path loss models were trained based on Levenberg-Marquardt, BFGS Quasi Newton, 

Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale 

Restarts, Fletcher-Powell Conjugate Gradient, Polak-Ribiere Conjugate Gradient, One Step 

Secant, and Variable Learning Rate Backpropagation learning algorithms. The procedure taken 

for the experimentation is explained in Algorithm 3.4. 

The choice of the number of neurons used at the hidden layer is a very important factor in avoiding 

poor model generalization (if number of hidden neuron is insufficient) and model complexity (if 

hidden neurons used are too many). The most suitable number of hidden neuron, which guarantees 

good model generalization as well as model simplicity, was determined through repeated 

experimentations. The number of hidden neuron was varied between 1 and 50 with an incremental 

step size of 1. The experimental process was carried out by implementing the algorithm described 

in Algorithm 3.5. 

 3.6. Development of SVM-Based Path Loss Prediction Models 

Most influencing input variable attributes were selected using 10-fold validation approach. CFS 

Subset Evaluator and Greedy Stepwise methods were used to search and evaluate the influence of 

seven independent attributes (i.e. longitude, longitude, latitude, elevation, altitude, frequency, 

clutter height, and distance) on a dependent variable (path loss). These algorithms were 

implemented in a Java-based machine learning software, WEKA, produced at the University of 

Waikato, New Zealand. Furthermore, a SVM-based path loss model was developed using SMOreg 

regression algorithm based on the algorithm presented in Algorithm 3.6. Model parameters and 

kernel evaluations were obtained for path loss predictions in heterogeneous smart campus 

environment. 
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Algorithm 3.5. Development of ANN Models with Varying Number of Hidden Neuron 

0   start 

1           load training input variable data, testing input variable data 

2                    distance, frequency, clutter height, elevation, altitude, latitude, longitude 

3           load training and testing output variable (path loss) data 

4           for number of hidden neuron = 1 to 50 

5                 for number of iteration = 1 to 10 

6                      configure a single hidden layer neural network model architecture  

7                           set number of hidden neuron to 10 

8                           set activation function at the hidden layer to tansig 

9                           set activation function at the output layer to tansig 

10                         set neural network training rule to Levenberg Marquardt  

11                      divide training dataset into 70% training, 15% validation, and 15% testing 

12                    train neural network model for path loss predictions    

13                         set learning rate to 0.1 

14                         set maximum number of epochs to 1000 

15                         set maximum validation failures to 1000 

16                         set performance goal to zero 

17                    evaluate model prediction accuracy  

18                         compute training time, MAE, MSE, RMSE, SED, R 

19                    evaluate model generalization ability  

20                         compute MAE1, MSE1, RMSE1, SED1, R1  

21               end for 

22         end for 

23 stop  
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Algorithm 3.6. Development of SVM Model with Polynomial Kernel Function 

0   start 

1           load training input vector (p), testing input vector (𝒑𝒕) 

2                    distance, frequency, clutter height, elevation, altitude, latitude, longitude 

3           load training target vector (t) and testing target vector (𝒕𝒂) 

4           estimate model coefficients v, h, C, σ 

5                compute 𝒓𝒆𝒈𝒖𝒍𝒂𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎 =  
𝟏

𝟐
‖𝒗𝟐‖ 

6                compute 𝑮𝝈(𝒕, 𝒛) =  {
|𝒅 − 𝒚|            − 𝝈|𝒅 − 𝒚| ≥  𝝈
𝟎                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

  

7                compute 𝒆𝒎𝒑𝒊𝒓𝒊𝒄𝒂𝒍 𝒆𝒓𝒓𝒐𝒓 = 𝑸 ×
𝟏

𝒎
∑ 𝑮(𝒕𝒌, 𝒛𝒌)𝒎

𝒌=𝟏   

8           minimize the regularized risk function 

9                𝑳𝑺𝑽𝑴(𝑸) = 𝒆𝒎𝒑𝒊𝒓𝒊𝒄𝒂𝒍 𝒆𝒓𝒓𝒐𝒓 + 𝒓𝒆𝒈𝒖𝒍𝒂𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎 

10         add positive slack variables 𝒖𝒌, 𝒖𝒌
∗  

11         minimize 𝑳𝑺𝑽𝑴(𝒗, 𝒖∗) = 𝒆𝒎𝒑𝒊𝒓𝒊𝒄𝒂𝒍 𝒆𝒓𝒓𝒐𝒓 + (𝑸 ∑ (𝒖𝒌 + 𝒖𝒌
∗ )𝒎

𝒌=𝟏   

12              subjected to 𝒕𝒌 − 𝒗𝒇(𝒑𝒌) − 𝒉𝒌 ≤  𝝈 +  𝒖𝒌 

13                                           𝒗𝒇(𝒑𝒌) +  𝒉𝒌 − 𝒕𝒌  ≤  𝝈 +  𝒖𝒌
∗ ,      𝒖𝒌

∗ ≥ 𝟎  

14         introduce Lagrange multipliers 

15              compute kernel function 𝑹(𝒑, 𝒑𝒌) = 𝒇(𝒑𝒌)∗𝒇(𝒑𝒊)  

16              compute 𝚽(𝐩, 𝒆𝒌, 𝒆𝒌
∗ ) =  ∑ (𝒆𝒌 − 𝒆𝒌

∗ )𝒎
𝒌=𝟏 𝑹(𝒑, 𝒑𝒌) + 𝒉 

17              define kernel parameter b 

18              apply polynomial kernel function 

19                         𝑲(𝒑𝒌, 𝒑𝒊) = (𝒑𝒌
∗𝒑𝒊 + 𝟏)𝒃 

20              evaluate model prediction accuracy  

21                         compute training time, MAE, MSE, RMSE, SED, R 

22              evaluate model generalization ability  

23                         compute MAE, MSE, RMSE, SED, R  

24              end for 

25       end for 

26 stop  
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3.7. Statistical Evaluation of Empirical, ANN, and SVM Path Loss Models 

Prediction accuracy and generalization ability of all the developed ANN-based path loss models 

and the SVM-based path loss models were evaluated based on their MAE, MSE, RMSE, SED, and 

R, with respect to the path loss values in both training data and testing data respectively. The values 

of MAE, MSE, RMSE, SED, and R were obtained by using Equations (3.5)-(3.9) respectively.  

𝑀𝐴𝐸 (𝑑𝐵) =  
1

𝑘
 ∑ (𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖

𝑘
𝑖=1 − 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)                             (3.5)                                               

𝑀𝑆𝐸 (𝑑𝐵) =   
1

𝑘
 ∑ (𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖

𝑘
𝑖=1 − 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2                           (3.6)                                                        

𝑅𝑀𝑆𝐸 (𝑑𝐵) =  √ 
1

𝑘
 ∑ (𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖

𝑘
𝑖=1 − 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)2                          (3.7)                         

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑑𝐵) =

√ 
1

𝑘
 ∑ (|𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖 − 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖|

𝑘
𝑖=1 − 𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟)2                             (3.8) 

𝑅 =  
∑ (𝑀𝑖− 𝑃𝑚𝑒𝑎𝑛)2𝑘

𝑖=1 − ∑ (𝑃𝑖− 𝑀𝑖)2𝑘
𝑖=1

∑ (𝑀𝑖− 𝑃𝑚𝑒𝑎𝑛)2𝑘
𝑖=1

                                                                                (3.9) 

Empirical models (Hata, COST 231, ECC-33, and Egli) which are commonly used were employed 

for path loss predictions based on the distance input vector provided in training and testing datasets. 

In addition, ANOVA and multiple comparison post-hoc tests were performed to understand 

whether the differences between the mean measured path loss, and the mean path loss predictions 

produced by Hata model, COST 231 model, ECC-33 model, and Egli model, optimal ANN-based 

model, and SVM-based model are statistically significant. ANOVA and multiple comparison post-

hoc analyses were performed using statistical toolbox in MATLAB 2016a. 
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CHAPTER FOUR 

RESULTS 

4.1. Introduction 

In this chapter, the results of this research project are presented and discussed. First, data obtained 

through drive test field measurement campaign are preprocessed and divided into training and 

testing datasets. Exploration of these data are presented in great details using various visualization 

techniques such as boxplots, tables, scatter plots, and frequency distribution histograms. Simple 

linear regression and correlation analyses are performed to understand the relationship between 

the nine attributes considered in this research project namely: longitude, latitude, elevation, 

altitude, frequency, clutter height, distance, RSS, and path loss. More importantly, results of the 

ANN-based model and SVM-based model are presented. Finally, the results of the statistical 

evaluation of the empirical, ANN, and SVM path loss models are discussed.  

4.2. Results of Radio Signal Measurement Campaign and Data Preprocessing 

Data collected through field measurement campaign are considered extensive and sufficient for 

model development, validation, and testing. A large dataset containing hundreds of thousand data 

instances of longitude, latitude, elevation, altitude, frequency, clutter height, distance, and RSS 

was obtained and analyzed. RSS data collected at 900, 1800, and 2100 MHz were depicted using 

MapInfo Professional software and shown in Figures 4.1-4.3 respectively. Information about the 

quantitative results obtained during data collection are presented in Table 4.1. A total of 123,985 

raw data instances were logged with an average of 8,856 data instances per antenna. 105,120 data 

instances were found to be duplicates and they were removed. The remaining 18,865 unique data 

instances were curated for model development and evaluation. The mean number of unique data 

instances available along the survey routes of each of the fourteen sectors is 1,348. 
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Figure 4.1. RSS data collected at 900 MHz 

 

Figure 4.2. RSS data collected at 1800 MHz 
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Table 4.1. Quantitative summary of field measurement data 

S|N BTS ID Raw data 

instances  

Duplicate of 

data instances 

found 

Unique data 

instances 

after filtering 

1 A2GS1 2,284 1,626 658 

2 A2GS2 3,918 3,168 750 

3 A2GS3 4,838 3,388 1,450 

4 A3GS1 5,551 4,632 919 

5 A3GS2 8,139 7,414 725 

6 A3GS3 11,555 9,687 1,868 

7 E2GS1 11,028 9,067 1,961 

8 E2GS3 6,591 4,837 1,754 

9 E3GS1 24,371 22,274 2,097 

10 E3GS3 18,319 15,828 2,491 

11 M2GS1 4,228 3,439 789 

12 M2GS3 6,597 5,052 1,545 

13 M3GS1 4,123 3,734 389 

14 M3GS3 12,443 10,974 1,469 

Total 123,985 105,120 18,865 
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Figure 4.3. RSS data collected at 2100 MHz 

4.3. Exploration of Field Measurement Data 

The set of unique data instances was divided into two sub datasets (training dataset, and testing 

dataset). 75% of the complete dataset (i.e. 14,142 unique data instances) was used for model 

training while the remaining 25% (i.e. 4,714 unique data instances) was used for model evaluation 

and testing. The quantitative distribution of the training data and the testing data are described 

using their first-order descriptive statistics. Table 4.2 and Table 4.3 describe the distribution of 

longitude, latitude, elevation, altitude, frequency, clutter height, distance, RSS, and path loss 

measured in training data and testing data respectively, based on their mean, median, mode, SED, 

variance, kurtosis, skewness, range, minimum, and maximum. In order to understand the data 

distribution in each of the frequency bands considered in this research project, the univariate 

analysis was also performed on training data and testing data collected at 900, 1800, and 2100 

MHz radio frequencies. The results of this analysis are presented in Tables 4.4-4.9. Total unique 

data instances of longitude, latitude, elevation, altitude, frequency, clutter height, distance, RSS, 

and path loss measured in training data obtained at 900, 1800, and 2100 MHz are 1,908, 5,058, 

and 7,176 respectively. On the other hand, 635, 1,687, and 2,392 unique data instances of 

longitude, latitude, elevation, altitude, frequency, clutter height, distance, RSS, and path loss were 

logged at 900, 1800, and 2100 MHz respectively 
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Table 4.2. Descriptive first-order statistics of training data 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Frequency 

(MHz) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path Loss 

(dB) 

Mean 3.16 6.67 51.32 56.56 1830.80 6.62 526.78 -80.32 122.32 

Median 3.16 6.67 51.00 57.00 2100.00 6.00 450.00 -81.00 123 

Mode 3.16 6.68 52.00 57.00 2100.00 6.00 380.00 -88.00 130 

SED 0.00 0.00 4.85 5.43 392.45 3.72 327.79 11.32 11.32 

Variance 0.00 0.00 23.52 29.54 154013.34 13.84 107444.11 128.04 128.04 

Kurtosis 3.42 2.16 5.31 3.00 4.38 5.28 2.85 3.03 3.03 

Skewness 0.06 0.05 -0.57 -0.11 -1.64 1.94 0.67 0.34 -0.34 

Range 0.02 0.02 35.00 37.00 1200.00 12.00 1432.00 76.00 76 

Minimum 3.15 6.67 30.00 41.00 900.00 4.00 1.00 -112.00 78 

Maximum 3.17 6.68 65.00 78.00 2100.00 16.00 1433.00 -36.00 154 

Data Points 14142 14142 14142 14142 14142 14142 14142 14142 14142 
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Table 4.3. Descriptive first-order statistics of testing data 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Frequency 

(MHz) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path 

Loss 

(dB) 

Mean 3.16 6.67 51.32 56.56 1830.99 6.60 526.59 -80.35 122.35 

Median 3.16 6.67 51.00 57.00 2100.00 6.00 450.00 -81.00 123 

Mode 3.16 6.68 52.00 55.00 2100.00 6.00 709.00 -77.00 119 

SED 0.00 0.00 4.85 5.43 392.24 3.70 328.05 11.24 11.24 

Variance 0.00 0.00 23.51 29.53 153851.46 13.72 107619.77 126.41 126.41 

Kurtosis 3.42 2.16 5.32 3.00 4.39 5.35 2.85 3.03 3.03 

Skewness 0.06 0.05 -0.57 -0.10 -1.64 1.96 0.67 0.35 -0.35 

Range 0.02 0.02 35.00 37.00 1200.00 12.00 1432.00 74.00 74 

Minimum 3.15 6.67 30.00 41.00 900.00 4.00 1.00 -112.00 80 

Maximum 3.17 6.68 65.00 78.00 2100.00 16.00 1433.00 -38.00 154 

Data Points 4714 4714 4714 4714 4714 4714 4714 4714 4714 
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Table 4.4. Descriptive first-order statistics of training data collected at 900 MHz 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path Loss 

(dB) 

Mean 3.1598 6.6735 50.08 55.07 7.66 665.87 -73.77 115.77 

Median 3.1620 6.6721 51.00 53.00 6.00 698.00 -74.00 116.00 

Mode 3.1515 6.6720 52.00 62.00 6.00 709.00 -71.00 106.00 

SED 0.0036 0.0036 5.70 7.44 4.21 373.69 10.46 10.46 

Variance 0.0000 0.0000 32.54 55.33 17.75 139641.39 109.32 109.32 

Kurtosis 2.5090 2.3275 5.04 2.49 3.16 2.19 2.56 2.56 

Skewness -0.9201 0.7779 -1.38 0.35 1.39 0.22 0.03 -0.03 

Range 0.0125 0.0124 28.00 37.00 12.00 1432.00 58.00 58.00 

Minimum 3.1515 6.6690 30.00 41.00 4.00 1.00 -104.00 88.00 

Maximum 3.1639 6.6814 58.00 78.00 16.00 1433.00 -46.00 146.00 

Data Points 1908 1908 1908 1908 1908 1908 1908 1908 
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Table 4.5. Descriptive first-order statistics of testing data collected at 900 MHz 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path Loss 

(dB) 

Mean 3.1598 6.6735 50.08 55.08 7.64 665.86 -73.86 115.86 

Median 3.1620 6.6721 51.00 53.00 6.00 699.00 -74.00 116.00 

Mode 3.1515 6.6690 52.00 62.00 6.00 709.00 -76.00 118.00 

SED 0.0036 0.0036 5.70 7.45 4.20 373.81 10.48 10.48 

Variance 0.0000 0.0000 32.43 55.57 17.66 139730.34 109.81 109.81 

Kurtosis 2.5063 2.3301 5.05 2.53 3.19 2.19 2.67 2.67 

Skewness -0.9185 0.7795 -1.38 0.37 1.41 0.22 0.15 -0.15 

Range 0.0124 0.0124 28.00 37.00 12.00 1431.00 56.00 56.00 

Minimum 3.1515 6.6690 30.00 41.00 4.00 2.00 -103.00 89.00 

Maximum 3.1639 6.6814 58.00 78.00 16.00 1433.00 -47.00 145.00 

Data Points 635 635 635 635 635 635 635 635 
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Table 4.6. Descriptive first-order statistics of training data collected at 1800 MHz 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path Loss 

(dB) 

Mean 3.1631 6.6755 52.40 58.57 6.47 509.99 -81.55 123.55 

Median 3.1628 6.6755 52.00 59.00 6.00 418.50 -84.00 126.00 

Mode 3.1629 6.6751 52.00 62.00 6.00 62.00 -88.00 130.00 

SED 0.0041 0.0036 4.51 4.60 3.77 331.00 11.64 11.64 

Variance 0.0000 0.0000 20.37 21.13 14.24 109563.32 135.43 135.43 

Kurtosis 2.7126 2.6711 2.83 2.70 5.27 2.55 3.93 3.93 

Skewness 0.4439 -0.3524 0.63 0.02 1.94 0.61 0.95 -0.95 

Range 0.0175 0.0161 20.00 28.00 12.00 1325.00 69.00 69.00 

Minimum 3.1559 6.6665 45.00 49.00 4.00 1.00 -105.00 78.00 

Maximum 3.1734 6.6826 65.00 77.00 16.00 1326.00 -36.00 147.00 

Data Points 5058 5058 5058 5058 5058 5058 5058 5058 
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Table 4.7. Descriptive first-order statistics of testing data collected at 1800 MHz 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path Loss 

(dB) 

Mean 3.1631 6.6755 52.40 58.56 6.44 510.37 -81.63 123.63 

Median 3.1628 6.6755 52.00 59.00 6.00 419.00 -84.00 126.00 

Mode 3.1630 6.6768 52.00 62.00 6.00 62.00 -90.00 132.00 

SED 0.0041 0.0036 4.52 4.59 3.75 331.75 11.49 11.49 

Variance 0.0000 0.0000 20.42 21.09 14.04 110058.62 132.10 132.10 

Kurtosis 2.7142 2.6728 2.84 2.65 5.37 2.55 3.88 3.88 

Skewness 0.4446 -0.3533 0.63 0.01 1.96 0.61 0.94 -0.94 

Range 0.0175 0.0162 20.00 25.00 12.00 1322.00 67.00 67.00 

Minimum 3.1559 6.6665 45.00 49.00 4.00 1.00 -105.00 80.00 

Maximum 3.1734 6.6826 65.00 74.00 16.00 1323.00 -38.00 147.00 

Data Points 1687 1687 1687 1687 1687 1687 1687 1687 
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Table 4.8. Descriptive first-order statistics of training data collected at 2100 MHz 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path Loss 

(dB) 

Mean 3.1618 6.6746 50.89 55.53 6.44 501.63 -81.20 123.20 

Median 3.1623 6.6745 51.00 56.00 6.00 432.00 -81.00 123.00 

Mode 3.1630 6.6752 52.00 57.00 6.00 379.00 -78.00 120.00 

SED 0.0037 0.0031 4.68 4.91 3.49 302.40 10.70 10.70 

Variance 0.0000 0.0000 21.94 24.12 12.20 91446.53 114.59 114.59 

Kurtosis 3.3834 1.9825 5.57 2.84 6.29 3.43 2.61 2.61 

Skewness -0.1959 0.1563 -0.84 -0.24 2.15 0.81 -0.06 0.06 

Range 0.0202 0.0124 34.00 26.00 12.00 1432.00 61.00 61.00 

Minimum 3.1515 6.6690 30.00 41.00 4.00 1.00 -112.00 93.00 

Maximum 3.1717 6.6814 64.00 67.00 16.00 1433.00 -51.00 154.00 

Data Points 7176 7176 7176 7176 7176 7176 7176 7176 
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Table 4.9. Descriptive first-order statistics of testing data collected at 2100 MHz 

 Longitude Latitude 
Elevation 

(m) 

Altitude 

(m) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path Loss 

(dB) 

Mean 3.1618 6.6746 50.89 55.53 6.44 501.07 -81.17 123.17 

Median 3.1623 6.6745 51.00 56.00 6.00 431.50 -81.00 123.00 

Mode 3.1515 6.6706 52.00 57.00 6.00 355.00 -79.00 121.00 

SED 0.0037 0.0031 4.68 4.91 3.48 302.47 10.67 10.67 

Variance 0.0000 0.0000 21.92 24.14 12.13 91487.07 113.88 113.88 

Kurtosis 3.3856 1.9845 5.60 2.85 6.33 3.43 2.60 2.60 

Skewness -0.2000 0.1562 -0.85 -0.24 2.16 0.81 -0.06 0.06 

Range 0.0202 0.0124 34.00 26.00 12.00 1432.00 61.00 61.00 

Minimum 3.1515 6.6690 30.00 41.00 4.00 1.00 -112.00 93.00 

Maximum 3.1717 6.6814 64.00 67.00 16.00 1433.00 -51.00 154.00 

Data Points 2392 2392 2392 2392 2392 2392 2392 2392 
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Exploratory summaries of the univariate data analysis are displayed using boxplot representations. 

Figures 4.4-4.11 display single batch data about longitude, latitude, elevation, altitude, clutter 

height, distance, RSS, and path loss measured respectively along 14 survey drive test routes. These 

graphical representations provide overview details about the location, spread, Skewness, and 

‘longtailedness’ of each variable at a quick glance. In all the eight classes of data represented, there 

are significant variations in the middle cut lines (median), lengths of the boxes (spread), deviations 

of the median lines from the center of the boxes relative to the lengths of the boxes (skewness), 

and the distances between the ends of the whiskers relative to the length of the box 

(‘longtailedness’). These significant variations provide the diversity of data instances needed for 

the training and testing of efficient machine learning models. 

 

 

Figure 4.4. Boxplot of longitude data along 14 survey drive test routes 
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Figure 4.5. Boxplot of latitude data along 14 survey drive test routes 

 

 

Figure 4.6. Boxplot of elevation data along 14 survey drive test routes 
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Figure 4.7. Boxplot of altitude data along 14 survey drive test routes 

 

 

Figure 4.8. Boxplot of clutter height data along 14 survey drive test routes 
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Figure 4.9. Boxplot of distance data along 14 survey drive test routes 

 

 

Figure 4.10. Boxplot of RSS data along 14 survey drive test routes 
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Figure 4.11. Boxplot of distance data along 14 survey drive test routes 

Frequency distribution histograms of longitude, latitude, elevation, altitude, clutter height, 

distance, RSS, and path loss measured are shown in Figures 4.12-4.20 respectively to validate the 

assumption of data normality. The bell-shapes of the data distributions were determined by visual 

inspection. 

 

Figure 4.12. Frequency distribution histograms of longitude in (a) training data and (b) testing 

data 
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Figure 4.13. Frequency distribution histograms of latitude in (a) training data and (b) testing data 

 

 

Figure 4.14. Frequency distribution histograms of elevation in (a) training data and (b) testing 

data 
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Figure 4.15. Frequency distribution histograms of altitude in (a) training data and (b) testing data 

 

 

Figure 4.16. Frequency distribution histograms of radio frequency in (a) training data and (b) 

testing data 

 



83 
 

 

Figure 4.17. Frequency distribution histograms of clutter height in (a) training data and (b) 

testing data 

 

 

Figure 4.18. Frequency distribution histograms of distance in (a) training data and (b) testing 

data 
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Figure 4.19. Frequency distribution histograms of RSS in (a) training data and (b) testing data 

 

 

Figure 4.20. Frequency distribution histograms of measured path loss in (a) training data and (b) 

testing data 

4.4. Statistical Analysis of Field Measurement Data 

Simple linear regression was used to model the relationship between path loss (dependent variable) 

and each of the associated independent variables (longitude, latitude, elevation, altitude, clutter 
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height, distance, and RSS), one independent variable at a time. The unknown model parameters of 

the linear predictor functions were estimated from the complete data. The regression lines, linear 

model equations, and the correlation coefficients are shown in Figures 4.21-4.28. It was observed 

that latitude, elevation, altitude, radio frequency, and distance have direct relationships with path 

loss; while longitude, clutter height, and RSS are indirectly related to path loss. The correlation 

coefficients of the linear relationships between path loss and longitude, latitude, elevation, altitude, 

clutter height, distance, and RSS are 0.1042, -0.1123, 0.0692, 0.1775, 0.2086, -0.1197, 0.1704, 

and -1 respectively. In addition, cross-correlation coefficient matrix and the p-value matrix of the 

variables are presented in Table 4.10 and Table 4.11 respectively. Weak cross-correlations (i.e. 

correlation coefficients of less than 0.5) were observed among longitude, frequency, clutter height, 

distance, RSS, and path loss. On the other hand, longitude, latitude, elevation, and altitude were 

observed to be strongly correlated (i.e. correlation coefficients were greater than 0.5). Likewise, 

RSS has a strong inverse relationship with path loss. P-values of the relationships between the 

variables were computed to determine whether the correlation coefficients obtained are statistically 

significant (i.e. p ≤ 0.05). Results presented in Table 4.11 show that all relationships are 

statistically significant except in the cases of clutter height versus elevation (p = 0.0814), frequency 

versus altitude (p = 0.1226), and clutter versus altitude (p = 0.7519). 

 

Figure 4.21. Scatter plot of path loss versus longitude 
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Figure 4.22. Scatter plot of path loss versus latitude 

 

Figure 4.23. Scatter plot of path loss versus elevation 
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Figure 4.24. Scatter plot of path loss versus altitude 

 

 

Figure 4.25. Scatter plot of path loss versus radio frequency 
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Figure 4.26. Scatter plot of path loss versus clutter height 

 

 

Figure 4.27. Scatter plot of path loss versus distance 
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Figure 4.28. Scatter plot of path loss versus RSS 
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Table 4.10. Correlation coefficient matrix 

 Longitude Latitude Elevation 

(m) 

Altitude 

(m) 

Frequency 

(MHz) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path 

Loss 

(dB) 

Longitude 1.0000 0.6555 0.8191 0.7402 0.1572 -0.0778 -0.3551 -0.1042 0.1042 

Latitude 0.6555 1.0000 0.5678 0.6194 0.0961 0.1520 -0.3174 0.1123 -0.1123 

Elevation (m) 0.8191 0.5678 1.0000 0.7485 0.0449 -0.0127 -0.1356 -0.0692 0.0692 

Altitude (m) 0.7402 0.6194 0.7485 1.0000 0.0112 -0.0023 -0.2284 -0.1775 0.1775 

Frequency (MHz) 0.1572 0.0961 0.0449 0.0112 1.0000 -0.1049 -0.1612 -0.2086 0.2086 

Clutter Height (m) -0.0778 0.1520 -0.0127 -0.0023 -0.1049 1.0000 0.1108 0.1197 -0.1197 

Distance (m) -0.3551 -0.3174 -0.1356 -0.2284 -0.1612 0.1108 1.0000 -0.1704 0.1704 

RSS (dBm) -0.1042 0.1123 -0.0692 -0.1775 -0.2086 0.1197 -0.1704 1.0000 -1.0000 

PL (dB) 0.1042 -0.1123 0.0692 0.1775 0.2086 -0.1197 0.1704 -1.0000 1.0000 
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Table 4.11. P-value matrix 

 Longitude Latitude Elevation 

(m) 

Altitude 

(m) 

Frequency 

(MHz) 

Clutter 

Height 

(m) 

Distance 

(m) 

RSS 

(dBm) 

Path 

Loss 

(dB) 

Longitude 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Latitude 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Elevation (m) 0.0000 0.0000 1.0000 0.0000 0.0000 0.0814 0.0000 0.0000 0.0000 

Altitude (m) 0.0000 0.0000 0.0000 1.0000 0.1226 0.7519 0.0000 0.0000 0.0000 

Frequency (MHz) 0.0000 0.0000 0.0000 0.1226 1.0000 0.0000 0.0000 0.0000 0.0000 

Clutter Height (m) 0.0000 0.0000 0.0814 0.7519 0.0000 1.0000 0.0000 0.0000 0.0000 

Distance (m) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

RSS (dBm) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

PL (dB) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 
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4.5. ANN-Based Path Loss Models with Varying Input Data Requirements  

Six different ANN-based path loss models were developed to determine the minimum input(s) that 

guarantee sufficiently high prediction accuracy and good generalization ability. The six ANN-

based path loss models depend on a single input variable (i.e. distance), two input variables (i.e. 

distance and frequency), three input variables (i.e. distance, frequency, and clutter height), four 

input variables (i.e. distance, frequency, clutter height, and elevation), five input variables 

(distance, frequency, clutter height, elevation, and altitude), and seven input variables (i.e. 

distance, frequency, clutter height, elevation, altitude, latitude, and longitude) respectively. The 

prediction accuracy and the generalization ability of the six ANN-based path loss models were 

evaluated relative to the measured path loss values in the training and testing datasets respectively 

using MAE, MSE, RMSE, SED, and R. The results showing the prediction accuracy and the 

generalization ability of the developed ANN-based path loss models are presented in Table 4.12 

and Table 4.13 respectively. When the prediction accuracy of the ANN-based path loss models 

was evaluated using training dataset, it was found that the prediction error significantly reduced 

(i.e. MAE, MSE, RMSE, and SED decreased from 8.202 dB to 4.553 dB, 107.813 dB to 35.657 

dB, 10.383 dB to 5.966 dB, and 10.383 dB to 5.966 dB respectively) and the correlation between 

the measured path loss values and the predicted path loss values became stronger as the number of 

input variables increased from one to seven (i.e. R increased from 0.397 to 0.849). Regarding 

generalization ability, the testing dataset was used and it was observed that the generalization 

ability of ANN-based path loss model improved as more input variables are added from one to 

seven (i.e. MAE, MSE, RMSE, and SED decreased from 8.164 dB to 4.549 dB, 106.432 dB to 

35.789 dB, 10.316 dB to 5.076 dB, and 10.317 dB to 5.977 dB respectively) and the correlations 

between the measured path loss values in both datasets and the predicted path loss values became 

stronger as the number of input variables increased from one to seven (i.e. R increased from 0.397 

to 0.847, and 0.397 to 0.847 respectively). Conversely, the time required to train the ANN-based 

path loss models increased from 29.675 seconds to 105.886 seconds as the number of input 

variables increased from one to seven. 
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Table 4.12. Optimal path loss model with minimum input variable(s) 

Case Input Variable(s) Training 

Time 

(seconds) 

MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

1 Distance 29.675 8.202 107.813 10.383 10.383 0.397 

2 Distance, frequency 60.176 7.465 91.845 9.583 9.583 0.531 

3 Distance, frequency, clutter height 67.779 6.416 69.801 8.354 8.355 0.674 

4 Distance, frequency, clutter height, elevation 84.336 5.469 50.978 7.137 7.137 0.776 

5 Distance, frequency, clutter height, elevation, 

altitude 

80.799 5.339 53.311 7.173 7.163 0.777 

6 Distance, frequency, clutter height, elevation, 

altitude, latitude, longitude 

105.886 4.553 35.657 5.966 5.966 0.849 
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Table 4.13. Results of generalization ability testing 

Case Input Variable(s) MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

1 Distance 8.164 106.432 10.316 10.317 0.397 

2 Distance, frequency 7.450 90.953 9.536 9.537 0.529 

3 Distance, frequency, clutter height 6.414 69.168 8.316 8.317 0.673 

4 Distance, frequency, clutter height, elevation 5.466 50.955 7.136 7.136 0.773 

5 Distance, frequency, clutter height, elevation, altitude 5.335 53.233 7.170 7.161 0.774 

6 Distance, frequency, clutter height, elevation, altitude, 

latitude, longitude 

4.549 35.786 5.976 5.977 0.847 
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4.6. Effect of Input Data Normalization on ANN-Based Model Prediction Accuracy and 

Generalization Ability  

The results of the experimentations performed to validate the effect of input data normalization on 

path loss prediction accuracy and generalization ability are presented in Table 4.14 and Table 4.15. 

It was observed that input data normalization significantly improved path loss prediction accuracy 

and it equally produced better generalization. The results in Table 4.14 show that the MAE, MSE, 

RMSE, and the SED between the measured path loss in the training dataset and the path loss values 

predicted by ANN-based models decreased from 4.553 dB to 4.448 dB, 35.6576 dB to 34.088 dB, 

5.966 dB to 5.836 dB, and 5.966 dB to 5.836 dB respectively.  

Similarly, the MAE, MSE, RMSE, and the SED between the measured path loss in the testing 

dataset and the path loss values predicted by ANN-based models reduced from 4.549 dB to 4.437 

dB, 35.786 dB to 34.211 dB, 5.976 dB to 5.846 dB, and 5.976 dB to 5.846 dB respectively. In 

addition, the strong relationships between the measured path loss values in both datasets and the 

path loss values predicted by ANN-based models were improved, as the R value increased from 

0.849 to 0.857, and 0.847 to 0.854 respectively. However, the input data normalization process 

further increased the training time in the development of the ANN-based models by 6.173 seconds. 

The complete results showing the effect of input data normalization on model generalization are 

presented in Table 4.15. 

 

Table 4.14. Effect of input data normalization on path loss prediction accuracy 

 Training 

Time 

(seconds) 

MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

Raw Data 105.886 4.553 35.657 5.966 5.966 0.849 

Normalized Data 112.059 4.448 34.088 5.836 5.836 0.857 

 

 

 



96 
 

 

Table 4.15. Effect of input data normalization on generalization ability 

 MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

Raw Data 4.549 35.786 5.976 5.977 0.847 

Normalized Data 4.437 34.211 5.846 5.847 0.854 

 

4.7. ANN-Based Path Loss Models with Varying Transfer Functions  

Nine ANN-based path loss models were developed to determine the most suitable combination of 

transfer/activation functions for path loss predictions in a heterogeneous smart campus 

environment. On training dataset, the use of logsig and tansig activation functions at the hidden 

and output layers of the neural network produced the best path loss prediction accuracy with MAE, 

MSE, RMSE, SED, and R values of 4.437 dB, 33.928 dB, 5.822 dB, 5.822 dB, and 0.857 

respectively as presented in Table 4.16. However, the ANN model requires relatively much 

training time (i.e. 127.401 seconds). The worst path loss prediction accuracy (MAE, MSE, RMSE, 

SED, and R values of 8.043 dB, 99.406 dB, 9.970 dB, 9.966 dB, and 0.474 respectively) was 

obtained when purelin and logsig activation functions were employed at the hidden and output 

layers respectively. On the other hand, ANN-based path loss models which utilized purelin-logsig 

and purelin-tansig combinations took lesser time (i.e. 3.326 and 1.555 seconds respectively) to 

train but the prediction accuracy of the two ANN-based path loss models were very low.  

On testing dataset, the use of logsig and tansig activation functions at the hidden and output layers 

of the neural network produced the best model generalization with MAE, MSE, RMSE, SED, and 

R values of 4.421 dB, 33.992 dB, 5.828 dB, 5.828 dB, and 0.855 respectively as presented in Table 

4.17. The worst model generalization (MAE, MSE, RMSE, SED, and R values of 8.006 dB, 98.022 

dB, 9.901 dB, 9.897, and 0.475 respectively) was obtained when purelin and logsig activation 

functions were employed at the hidden and output layers respectively.  

 

Table 4.16. Training Results of ANN-Based Path Loss Models with Varying Transfer Functions 
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Activation 

Function at 

the Hidden 

Layer 

Activation 

Function at 

the Output 

Layer 

Training 

Time 

(seconds) 

MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

Purelin Purelin 0.713 7.932 98.407 9.920 9.920 0.481 

Logsig Purelin 117.709 4.615 36.772 6.042 6.042 0.844 

Tansig Purelin 107.118 4.631 37.245 6.095 6.095 0.842 

Purelin Logsig 3.326 8.043 99.406 9.970 9.966 0.474 

Logsig Logsig 105.118 5.574 60.150 7.539 7.232 0.723 

Tansig Logsig 115.303 5.831 66.808 7.868 7.684 0.725 

Purelin Tansig 1.555 7.898 97.924 9.896 9.896 0.485 

Logsig Tansig 127.401 4.437 33.928 5.822 5.822 0.857 

Tansig Tansig 110.060 4.581 36.537 6.029 6.029 0.845 

 

Table 4.17: Testing Results of ANN-Based Path Loss Models with Varying Transfer Functions 

Activation 

Function at the 

Hidden Layer 

Activation 

Function at the 

Output Layer 

MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

Purelin Purelin 7.904 97.129 9.855 9.856 0.481 

Logsig Purelin 4.599 36.852 6.049 6.049 0.841 

Tansig Purelin 4.625 37.320 6.101 6.102 0.839 

Purelin Logsig 8.006 98.022 9.901 9.897 0.475 

Logsig Logsig 5.532 59.500 7.496 7.193 0.723 

Tansig Logsig 5.793 66.216 7.828 7.648 0.723 

Purelin Tansig 7.869 96.685 9.833 9.834 0.485 

Logsig Tansig 4.421 33.992 5.828 5.828 0.855 

Tansig Tansig 4.576 36.748 6.047 6.048 0.842 
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4.8. ANN-Based Path Loss Models with Varying Training Algorithms  

Nine ANN-based path loss models were developed to determine the best learning algorithm for 

path loss predictions in a heterogeneous smart campus environment. As shown in Table 4.18, 

training the ANN-based path loss model using Levenberg-Marquardt learning algorithm produced 

the best path loss prediction accuracy with MAE, MSE, RMSE, SED, and R values of 4.485 dB, 

34.720 dB, 5.888 dB, 5.888 dB, and 0.854 respectively. However, Levenberg-Marquardt learning 

algorithm took relatively much time of 123.763 seconds to train the ANN-based path loss. The 

worst path loss prediction accuracy (MAE, MSE, RMSE, SED, and R values of 13.652 dB, 

372.883 dB, 15.412 dB, 9.937 dB, and 0.566 respectively) was obtained when the ANN-based 

path loss model was trained based on Variable Learning Rate Backpropagation learning rule. 

Conversely, Variable Learning Rate Backpropagation learning algorithm required the least time 

of training. 

On testing dataset, the ANN-based path loss model which employed Levenberg-Marquardt 

learning algorithm produced the best model generalization with MAE, MSE, RMSE, SED, and R 

values of 4.473 dB, 34.849 dB, 5.899 dB, 5.900 dB, and 0.851 respectively as presented in Table 

4.19. The worst model generalization (MAE, MSE, RMSE, SED, and R values of 13.638 dB, 

372.194 dB, 15.389 dB, 9.906 dB, and 0.564 respectively) was obtained when the ANN-based 

path loss model was trained based on Variable Learning Rate Backpropagation learning algorithm. 
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Table 4.18: Training Results of ANN-Based Path Loss Models with Varying Learning Rules 

Training 

Algorithm 

Training 

Time 

(seconds) 

MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

LM 123.763 4.485 34.720 5.888 5.888 0.854 

BFG 45.165 6.165 96.598 7.825 7.492 0.793 

RP 11.301 4.904 40.414 6.355 6.355 0.827 

SCG 18.951 4.710 37.888 6.154 6.154 0.839 

CGB 32.893 9.254 217.297 10.999 9.384 0.655 

CGF 41.167 4.753 38.391 6.195 6.196 0.837 

CGP 40.326 4.828 39.541 6.287 6.288 0.831 

OSS 45.275 7.841 153.670 9.450 7.408 0.730 

GDX 8.332 13.652 372.883 15.412 9.937 0.566 

 

Table 4.19: Testing Results of ANN-Based Path Loss Models with Varying Learning Rules 

Training 

Algorithm 

MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

LM 4.473 34.849 5.899 5.900 0.851 

BFG 6.155 96.509 7.833 7.503 0.791 

RP 4.881 40.299 6.346 6.346 0.825 

SCG 4.682 37.748 6.143 6.143 0.837 

CGB 9.226 216.792 10.993 9.376 0.653 

CGF 4.729 38.339 6.191 6.192 0.835 

CGP 4.808 39.500 6.284 6.285 0.829 

OSS 7.813 153.166 9.421 7.384 0.729 

GDX 13.638 372.194 15.389 9.906 0.564 
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4.9. ANN-Based Path Loss Models with Varying Number of Hidden Neuron  

The number of neuron in the hidden layer was varied between one and fifty in order to determine 

the optimal number of hidden neuron for path loss predictions in a heterogeneous smart campus 

environment. It was observed that both prediction accuracy and generalization ability improved 

with increase in the number of hidden neuron as shown in Figures 4.29-4.31. Optimal path loss 

prediction accuracy and model generalization were achieved when the number of hidden neuron 

was set to 43. Further increase in the number of hidden neuron beyond 43 did not significantly 

increased the prediction accuracy and generalization ability of the ANN-based path loss model. 

The ANN-based path loss model with 43 hidden neurons produced the least prediction error with 

MAE, MSE, RMSE, SED, and R values of 3.002 dB, 16.871 dB, 4.107 dB, 4.108 dB, and 0.932 

when evaluated using training dataset. On generalization ability, the identified ANN-based path 

loss model demonstrated the best generalization ability with MAE, MSE, RMSE, SED, and R 

values of 3.084 dB, 18.255 dB, 4.273 dB, 4.273 dB, and 0.925 when evaluated using testing 

dataset. 

 

Figure 4.29. Training time versus number of hidden neuron 
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Figure 4.30. Performance evaluation of ANN-based path loss model 

 

Figure 4.31. Correlation coefficient versus number of hidden neuron 
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Based on the results of the extensive experimentations that were performed earlier, the optimal 

ANN-based path loss model was identified. The network configuration of the optimal ANN-based 

path loss model is shown in Figure 4.29. The model has seven input nodes (each for distance, 

frequency, clutter height, elevation, altitude, latitude, and longitude respectively), single hidden 

layer with 43 neurons and logsig activation function, and a single output neuron (for path loss 

variable) with tansig activation function. The ANN-based path loss model was trained based on 

Levenberg-Marquardt learning algorithm and the model yielded prediction outputs with R values 

of 0.93104, 0.92667, and 0.92323 for training, validation, and testing. When the training dataset 

was used to evaluate the developed model, an overall R value of 0.92919 was obtained as shown 

Figure 4.30. MAE, MSE, RMSE, and SED of 3.108 dB, 19.023 dB, 4.340 dB, and 4.339 dB were 

obtained respectively when the developed model was tested with training dataset. Meanwhile, the 

developed model yielded good generalization (MAE, MSE, RMSE, and SED of 3.184 dB, 20.214 

dB, 4.480 dB, and 4.479 dB respectively) when tested with testing dataset. The input weight, 

output weight, and bias matrices of the developed ANN-based path loss model are presented in 

Table 4.20. 

  

 

Figure 4.32. Final Training Result 
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Figure 4.33. Performance evaluation of ANN training 
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Table 4.20. Input Weight, Output Weight, and Bias Matrices 

Hidden 

Neurons 

Input Weights Output 

Weight 

Bias 

Longitude Latitude Elevation Altitude Frequency Clutter 

Height 

Distance Path 

Loss 

1 -1.1647 1.0144 1.2098 -5.6955 1.2353 -2.9329 6.8904 5.0271 4.6611 

2 -6.5746 3.3664 -0.5617 4.4289 -0.7001 -3.8496 16.8524 -2.4043 13.3304 

3 3.6368 4.3414 12.6045 -1.5757 -2.1277 -2.6229 -3.0796 -6.8717 14.9232 

4 5.8190 3.9993 -1.2422 10.1673 5.9335 8.0071 11.9913 2.9233 11.0021 

5 -21.3067 -11.6870 1.3688 9.7959 1.9902 -17.2661 2.9116 0.8231 19.8516 

6 -2.5291 -1.7287 -6.0018 -7.4067 5.6940 6.2848 1.3888 5.7389 2.4994 

7 -6.1390 -6.3188 4.2439 -5.4567 5.9467 6.8346 -2.4119 1.8685 6.7059 

8 4.1317 -3.2941 -3.9665 -3.0668 -2.9972 7.3317 1.8664 3.4749 -1.1231 

9 -5.5773 -3.9727 1.6345 -6.3527 2.6811 6.0845 -12.7139 -1.4983 -0.6685 

10 8.1197 5.9916 0.2892 24.8493 -18.7230 -14.8042 -23.0398 -0.6706 14.7883 

11 -4.0214 -0.3229 -0.0920 3.8044 -4.7344 0.4629 6.2667 -8.5678 -0.0709 

12 -2.6721 0.5802 3.0978 -1.3779 21.0825 -15.0793 -9.8069 0.5265 -2.4126 

13 -12.3700 -5.7421 -4.1809 7.8168 -2.1296 -14.4388 15.1632 1.1564 1.2257 

14 -7.4359 -2.4303 5.7433 -0.1158 -0.6593 2.6127 -3.6018 4.3200 0.7931 

15 2.9897 -7.8852 -19.1060 -2.3256 3.0125 -12.3885 10.4222 -1.9206 -11.1400 

16 23.0873 0.6791 3.2318 4.4410 -13.5028 7.5166 2.8091 1.3288 -0.5127 

17 0.7450 1.4475 3.0738 -10.2353 -1.7295 -5.9026 16.3209 1.9940 2.6844 
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18 11.8032 11.4836 -7.4273 -21.9591 -2.5165 -4.1633 -7.4386 -1.2352 -14.4191 

19 5.7129 -4.3738 6.5946 4.7379 2.2395 -0.3414 -2.9928 6.3395 1.9817 

20 -0.9791 3.6767 1.8288 -7.2161 -0.0804 0.0913 1.5361 -3.6730 -1.6694 

21 1.0161 1.5787 3.5591 -4.1724 1.8664 9.0980 4.4899 4.8202 -0.2561 

22 3.0899 -13.2627 2.9909 -1.2963 4.5792 1.4902 -3.4174 -5.2126 5.3247 

23 2.3686 -1.4569 -0.8880 0.1387 2.6346 2.0665 -9.2243 -7.1451 2.9632 

24 11.1791 0.4913 -1.7265 12.1077 -12.7133 -3.4139 -1.6619 -1.1898 12.4900 

25 -2.3960 -0.0711 1.2742 2.9049 -1.6354 -4.9487 -2.3859 7.1991 2.2771 

26 -41.8074 11.6425 -6.5461 -16.6022 0.2866 -3.9688 0.6798 0.6877 -0.1740 

27 3.8466 11.7364 4.7355 5.2495 5.7146 -6.6175 -7.5288 2.7356 -1.2506 

28 4.4717 4.9343 26.0678 5.5076 19.2066 -28.3311 24.1815 -0.6520 3.3912 

29 4.1011 0.3194 0.1809 -5.5614 6.3900 0.3270 -10.4355 -8.1563 -0.3978 

30 13.7775 -8.0055 0.2438 5.8668 5.4100 16.2921 -16.5347 -0.8656 2.0533 

31 6.7051 3.4076 -0.4362 -4.5378 -1.6563 4.0729 -7.7680 4.0183 6.5374 

32 -8.1386 2.2305 -12.6375 -8.5748 -25.6857 -6.7388 -16.1981 0.6241 -22.1927 

33 3.0623 -0.7296 0.9199 -8.0281 1.6417 -5.4914 12.3783 -3.2761 2.3962 

34 -7.8304 0.6727 -18.4581 3.3249 10.1082 -17.1042 -19.8296 1.6670 16.2587 

35 -0.4189 -3.1391 4.4448 3.0473 -0.9398 2.1643 2.5948 -6.6269 6.8230 

36 3.4371 -7.1415 3.8139 -1.9433 10.0976 -6.5080 13.6256 -1.7346 5.5802 

37 3.8683 -7.2219 4.9167 -4.5420 6.4579 -5.1511 12.7581 2.8410 7.1137 

38 14.2854 2.8307 4.2686 -19.2774 11.0680 5.3180 -15.0089 1.9353 2.9050 

39 -4.8952 5.9181 2.5305 -1.9711 -0.3778 -0.8254 2.3223 -8.3000 -7.9063 
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40 -9.6751 -1.4825 0.4304 1.1692 1.1656 8.2648 9.4580 -2.8908 -6.4856 

41 2.9944 -10.6110 -9.4666 -1.4103 3.8450 -0.1727 -5.8757 3.2299 -4.7854 

42 -4.6585 -0.6060 1.4738 -5.1518 8.5773 -0.5781 12.0575 -4.2554 -9.4979 

43 20.0528 1.8272 0.9092 7.0742 6.2465 15.2742 18.2011 -9.9760 21.5526 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 
 

4.10. SVM-Based Model for Path Loss Predictions 

The results of the attribute selection performed using 10-fold cross validation show that all the 

independent variables (i.e. longitude, longitude, latitude, elevation, altitude, frequency, clutter 

height, and distance) have equal influence on the dependent variable (i.e. path loss). Detailed 

information about these results is presented in Table 4.21. A SVM-based path loss model was 

developed using SMOreg regression algorithm. The model was trained using 10-fold cross 

validation technique instead of dataset splitting approach. The parameters of the developed 

SVM-based path loss model are provided in Table 4.22. The time taken to build the SVM-

based path loss model and the number of kernel evaluations are 694.74 seconds and -

2090011411 respectively. The developed SVM-based path loss model accepts normalized 

input data and the corresponding normalized path loss values may be obtained by Equation 4.1. 

The obtained path loss values may be denormalized using Equation 4.2. Therefore, the real 

path loss values in dB can be computed using Equation 4.3. The final complete mathematical 

representation of the SVM-based path loss model is given by Equation 4.4.  

Table 4.21. Attribute selection using 10-fold cross validation 

S|N Attributes Number of folds (%) 

1 Longitude 10 (100 %) 

2 Latitude 10 (100 %) 

3 Elevation  10 (100 %) 

4 Altitude 10 (100 %) 

5 Frequency 10 (100 %) 

6 Clutter height 10 (100 %) 

7 Distance 10 (100 %) 

 

Attribute Subset Evaluator: CFS Subset Evaluator 

Search Method: Greedy Stepwise (forwards) 

Selected Attributes: Longitude, longitude, latitude, 

elevation, altitude, frequency, 

clutter height, and distance 
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Table 4.22. SVM model parameters 

S|N Attributes Weights 

1 Constant +0.4487 

2 Longitude (normalized) +0.1939 

3 Latitude (normalized) -0.2789 

4 Elevation (normalized) -0.2531 

5 Altitude (normalized) +0.4655 

6 Frequency (normalized) +0.1207 

7 Clutter height (normalized) -0.0149 

8 Distance (normalized) +0.1413 

 

Number of kernel evaluations: -2090011411 

Time taken to build model: 694.74 seconds 

 

𝑃𝐿𝑆𝑉𝑀,𝑛𝑜𝑟𝑚 = 0.4361 + (0.1939 × 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛𝑜𝑟𝑚) − (0.2789 × 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑛𝑜𝑟𝑚)

− (0.2531 × 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚)  + (0.4655 × 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑛𝑜𝑟𝑚)  

+ (0.1207 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑛𝑜𝑟𝑚) − (0.0149 × 𝑐𝑙𝑢𝑡𝑡𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡𝑛𝑜𝑟𝑚)  

+ (0.1413 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚) 

(4.1) 

𝑃𝐿𝑆𝑉𝑀 (𝑑𝐵) = 𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑚𝑖𝑛 +  [(
𝑃𝐿𝑆𝑉𝑀,𝑛𝑜𝑟𝑚 − 𝑃𝐿𝑆𝑉𝑀,𝑚𝑖𝑛 

𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑚𝑎𝑥 − 𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑚𝑖𝑛
) × (𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑚𝑎𝑥  −

 𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑚𝑖𝑛)]  

(4.2) 

Where,  

𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑚𝑖𝑛 = 78 𝑑𝐵  

𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑚𝑖𝑛 = 154 𝑑𝐵  

 𝑃𝐿𝑆𝑉𝑀,𝑚𝑖𝑛 = 0 

 𝑃𝐿𝑆𝑉𝑀,𝑚𝑎𝑥 = 1 

𝑃𝐿𝑆𝑉𝑀 (𝑑𝐵) = 78 + (76 ×  𝑃𝐿𝑆𝑉𝑀,𝑛𝑜𝑟𝑚) 
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(4.3) 

𝑃𝐿𝑆𝑉𝑀,(𝑑𝐵) = 111.14 + (14.7364 ×  𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑛𝑜𝑟𝑚) − (21.1964 ×  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑛𝑜𝑟𝑚)

− (19.2356 × 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚)  + (35.378 ×  𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑛𝑜𝑟𝑚)  

+ (9.1732 ×  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑛𝑜𝑟𝑚) − (1.1324 × 𝑐𝑙𝑢𝑡𝑡𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡𝑛𝑜𝑟𝑚)  

+ (10.7388 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚) 

(4.4) 

4.11. Results of Statistical Evaluation of Empirical, ANN, and SVM Path Loss Models 

The prediction outputs of the developed ANN-based model, SVM-based model, and popular 

empirical models (i.e. Okumura-Hata, COST 231, ECC-33, and Egli) were compared to the 

measured path loss values in both training and testing datasets to evaluate the prediction 

accuracy and generalization ability of the path loss models. The outputs of the models for path 

loss predictions at 900, 1800, 2100 MHz relative to the measured path loss values in both 

training and testing datasets are graphically represented in Figures 4.34-4.39 respectively.  

The results of the prediction accuracy evaluation of the models are presented in Table 4.23. 

ANN-based path loss model produced the least prediction error with MAE, MSE, RMSE, SED 

and R values of 3.108 dB, 19.023 dB, 4.340 dB, 4.339 dB, and 0.923 respectively when 

compared to the measured path loss values in training dataset. The prediction error produced 

by SVM-based path loss model (MAE, MSE, RMSE, SED and R values of 7.953 dB, 99.966 

dB, 9.998 dB, 9.940 dB, and 0.478 respectively) is much relatively lower than those of all the 

empirical models. Egli model produced the highest prediction error with MAE, MSE, RMSE, 

SED and R values of 27.000 dB, 969.657 dB, 31.139 dB, 16.384 dB, and 0.266 respectively 

when compared to the measured path loss values in training dataset. 
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Figure 4.34. Training (900 MHz) 

 

Figure 4.35. Testing (900 MHz) 
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Figure 4.36. Training (1800 MHz) 

 

Figure 4.37. Testing (1800 MHz) 
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Figure 4.38. Training (2100 MHz) 

 

Figure 4.39. Testing (2100 MHz) 

On generalization ability, the ANN-based path loss model yielded the best generalization with 

MAE, MSE, RMSE, SED and R values of 3.184 dB, 20.214 dB, 4.480 dB, 4.479 dB, and 0.917 
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respectively when compared to the measured path loss values in testing dataset. The 

generalization ability demonstrated by SVM-based path loss model (MAE, MSE, RMSE, SED 

and R values of 7.933 dB, 98.773 dB, 9.938 dB, 9.878 dB, and 0.478 respectively) is much 

relatively better than those of all the empirical models. Egli model demonstrated the least 

generalization ability with MAE, MSE, RMSE, SED and R values of 27.044 dB, 974.318 dB, 

31.214 dB, 16.429 dB, and 0.266 respectively when compared to the measured path loss values 

in testing dataset. The regression plots showing the relationships between the predicted outputs 

and the measured path loss values in testing dataset are depicted in Figures 4.40-4.45. 

Table 4.23. Final Training Results 

 MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

Okumura-Hata 11.510 236.930 15.393 15.391 0.279 

COST 231 11.778 241.055 15.526 15.374 0.290 

ECC-33 21.884 609.750 24.693 11.948 0.320 

Egli 27.000 969.657 31.139 16.384 0.266 

ANN 3.108 19.023 4.340 4.339 0.923 

SVM 7.953 99.966 9.998 9.940 0.478 

 

Table 4.24. Final Testing Results 

 MAE 

(dB) 

MSE 

(dB) 

RMSE 

(dB) 

SED (dB) R 

Okumura-Hata 11.507 237.888 15.424 15.424 0.279 

COST 231 11.765 241.847 15.551 15.409 0.290 

ECC-33 21.831 607.061 24.639 11.896 0.320 

Egli 27.044 974.318 31.214 16.429 0.266 

ANN 3.184 20.214 4.480 4.479 0.917 

SVM 7.933 98.773 9.938 9.878 0.478 
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Figure 4.40. Testing results for Hata model 

 

Figure 4.41. Testing results for COST 231 model 
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Figure 4.42. Testing results for ECC-33 model 

 

Figure 4.43. Testing results for Egli model 
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Figure 4.44. Testing results for ANN model 

 

Figure 4.45. Testing Results for SVM model 
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Prediction outputs of the models were further subjected to statistical tests to establish whether 

the differences in the prediction outputs and the measured path loss values are statistically 

significant or not. Table 2.25 shows that there are significant differences (p ≤ 0.05) in the 

prediction outputs and the measured path loss values in training dataset. Similarly, Table 2.26 

shows that there are significant differences (p ≤ 0.05) in the prediction outputs and the 

measured path loss values in testing dataset. The results of multiple comparison post-hoc tests 

performed on both training and testing datasets are presented in Table 4.25 and Table 4.26 

respectively. On training dataset, the prediction outputs of COST 231, ECC-33, Egli, and 

SVM-based path loss models significantly differ from the measured path loss values. 

Meanwhile, the prediction outputs of Okumura-Hata and ANN-based path loss models (p-

values of 0.9745 and 1.0000 respectively) do not significantly differ from the measured path 

loss values in training dataset. On testing dataset, the prediction outputs of COST 231, ECC-

33, Egli, and SVM-based path loss models significantly differ from the measured path loss 

values. However, the prediction outputs of Okumura-Hata and ANN-based path loss models 

(p-values of 0.4472 and 1.0000 respectively) do not significantly differ from the measured path 

loss values in testing dataset. 

Table 4.25. ANOVA results of path loss predictions using training data 

Source of 

Variation 

Sum of 

Squares 

Degree 

of 

Freedom 

Mean 

Squares 

F Statistic Prob>F 

Columns 1.6581 x 107 6 2.763 x 106 1.975 x 104 0.0000  

Error 1.3848 x 107 98987 139.895   

Total 3.0429 x 107 98993    

 

Table 4.26. ANOVA results of path loss predictions using testing data 

Source of 

Variation 

Sum of 

Squares 

Degree 

of 

Freedom 

Mean 

Squares 

F Statistic Prob>F 

Columns 5.5330 x 106 6 9.2216 x 105 6.543 x 103 0.0000  

Error 4.6499 x 106 32991 140.9   

Total 1.0183 x 107 32997    
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Table 4.27. Multiple comparison post-hoc test results of training data 

Groups Compared Lower 

limits for 

95% 

confidence 

intervals 

 

Mean 

Difference 

Upper 

limits for 

95% 

confidence 

intervals 

 

p-value 

 

Measured Hata -0.9380 -0.2170 0.5039 0.9745 

Measured COST 231 -2.8329 -2.1119 -1.3909 3.71 x 10-8 

Measured ECC-33 -22.2982 -21.5772 -20.8562 3.71 x 10-8 

Measured Egli 25.8206 26.5416 27.2625 3.71 x 10-8 

Measured ANN -0.6980 0.0230 0.7440 1.0000 

Measured SVM 0.3791 1.1001 1.8210 0.0001 

Hata COST 231 -2.6159 -1.8949 -1.1739 3.71 x 10-8 

Hata ECC-33 -22.0812 -21.3602 -20.6392 3.71 x 10-8 

Hata Egli 26.0376 26.7586 27.4796 3.71 x 10-8 

Hata ANN -0.4809 0.2400 0.9610 0.9581 

Hata SVM 0.5961 1.3171 2.0381 1.53 x 10-6 

COST 231 ECC-33 -20.1863 -19.4653 -18.7443 3.71 x 10-8 

COST 231 Egli 27.9325 28.6535 29.3744 3.71 x 10-8 

COST 231 ANN 1.4139 2.1349 2.8559 3.71 x 10-8 

COST 231 SVM 2.4910 3.2120 3.9329 3.71 x 10-8 

ECC-33 Egli 47.3978 48.1188 48.8398 3.71 x 10-8 

ECC-33 ANN 20.8793 21.6002 22.3212 3.71 x 10-8 

ECC-33 SVM 21.9563 22.6773 23.3983 3.71 x 10-8 

Egli ANN -27.2395 -26.5186 -25.7976 3.71 x 10-8 

Egli SVM -26.1625 -25.4415 -24.7205 3.71 x 10-8 

ANN SVM 0.3561 1.0771 1.7980 0.0002 
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Table 4.28. Multiple comparison post-hoc test results of testing data 

Groups Compared Lower 

limits for 

95% 

confidence 

intervals 

Mean 

Difference 

Upper 

limits for 

95% 

confidence 

intervals 

p-value 

 

Measured Hata -0.6889 -0.2742 0.1405 0.4472 

Measured COST 231 -2.5833 -2.1686 -1.7539 3.71 x 10-8 

Measured ECC-33 -22.0250 -21.6103 -21.1956 3.71 x 10-8 

Measured Egli 26.0662 26.4809 26.8956 3.71 x 10-8 

Measured ANN -0.4358 -0.0211 0.3936 1.0000 

Measured SVM 0.6643 1.0790 1.4937 3.71 x 10-8 

Hata COST 231 -2.3091 -1.8944 -1.4797 3.71 x 10-8 

Hata ECC-33 -21.7507 -21.3360 -20.9213 3.71 x 10-8 

Hata Egli 26.3404 26.7551 27.1698 3.71 x 10-8 

Hata ANN -0.1616 0.2531 0.6678 0.5483 

Hata SVM 0.9385 1.3532 1.7679 1.53 x 10-6 

COST 231 ECC-33 -19.8563 -19.4416 -19.0269 3.71 x 10-8 

COST 231 Egli 28.2348 28.6495 29.0642 3.71 x 10-8 

COST 231 ANN 1.7328 2.1475 2.5622 3.71 x 10-8 

COST 231 SVM 2.8329 3.2476 3.6623 3.71 x 10-8 

ECC-33 Egli 47.6764 48.0911 48.5058 3.71 x 10-8 

ECC-33 ANN 21.1745 21.5892 22.0039 3.71 x 10-8 

ECC-33 SVM 22.2745 22.6892 23.1039 3.71 x 10-8 

Egli ANN -26.9167 -26.5020 -26.0873 3.71 x 10-8 

Egli SVM -25.8166 -25.4019 -24.9872 3.71 x 10-8 

ANN SVM 0.6854 1.1001 1.5148 3.71 x 10-8 
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CHAPTER FIVE 

DISCUSSIONS 

5.1. Introduction 

In this research project, an optimal path loss prediction model was developed for heterogeneous 

radio network planning, deployment, and optimization in a smart campus propagation 

environment based on ANN and SVM learning algorithms. Radio signal measurements were 

conducted to obtain the strengths of radio signals received at varying separation distances 

between fourteen base station transmitters and two mobile receivers. Geographic and network 

information (i.e. longitude, latitude, elevation, altitude, frequency, clutter height, and RSS) 

recorded were stored in a local database. These data were further processed to remove 

duplicates and extraneous data points. Machine learning-based path loss models were 

developed using ANN and SVM techniques. Finally, prediction accuracy and generalization 

ability of popular empirical models (Hata, COST 231, ECC-33, and Egli), ANN-based models, 

and SVM models were evaluated using MAE, MSE, RMSE, SED, R, ANOVA, and multiple 

comparison post-hoc test. 

5.2. Optimum Input Parameters for ANN-Based Path Loss Model Development 

The choice of the right kind of input parameters for the design and development of machine 

learning-based path loss model often determines the prediction accuracy and generalization 

ability of the developed model. The solution to this optimization problem is critical to the 

realization of an efficient and reliable machine learning-based path loss model (Sotirios P 

Sotiroudis, Sotirios K Goudos, Konstantinos A Gotsis, Katherine Siakavara, & John N Sahalos, 

2013). 

In this work, six different ANN-based path loss models were developed to determine the 

optimum kinds and number of input parameters that will guarantee sufficiently high prediction 

accuracy and good generalization ability. The prediction accuracy and generalization ability of 

ANN-based path loss model increased as the number of input variables (i.e. longitude, latitude, 

elevation, altitude, frequency, clutter height, and distance) increased from one to seven. 

Conversely, the time required to train the ANN-based path loss models increased as the number 

of input variables increased from one to seven.  
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Ostlin et al. (2010) explained that the magnitude of path loss in a typical rural macrocell 

propagation environment can be correctly determined by the following parameters: (a) the 

separation distance between BTS antenna and Mobile Station (MS) antenna; (b) the height of 

the BTS antenna (Ostlin, Suzuki, & Zepernick, 2005); (c) the terrain profile of the space 

between BTS antenna and MS antenna i.e. terrain clearance angle, terrain usage, and the type 

of vegetation (Ostlin, Zepernick, & Suzuki, 2003); and (d) the vegetation density in the 

surroundings of the MS antenna (Östlin, Suzuki, & Zepernick, 2008). In a similar work, Eichie, 

Oyedum, Ajewole, and Aibinu (2017a) identified relative humidity, temperature, and dew point 

as appropriate inputs for the prediction of RSS using ANN. S. Sotiroudis et al. (2013) 

developed an optimal ANN model for path loss predictions in urban environments by supplying 

“map-specific information”, “measurement-specific information”, Cartesian coordinates of the 

BTS and the MS, and the separation distance between BTS and MS as input variables.  

Ileana Popescu et al. (2005) developed some ANN models with different combinations of the 

information about the propagation environment as input parameters. These input information 

include separation distance between BTS and MS, street width, building height, separation 

distance between surrounding buildings, the location of BTS antenna relative to the rooftop, 

and street orientation (I. Popescu, Nafornita, Constantinou, Kanatas, & Moraitis, 2001). The 

ANN model with six input parameters produced the best prediction accuracy and generalization 

(Ileana Popescu et al., 2002). The feature vector of the SVM-based path loss model developed 

by Timoteo, Cunha, and Cavalcanti (2014) consists of separation distance between BTS and 

MS, terrain elevation, horizontal and vertical angles, latitude, longitude, as well as the 

horizontal and vertical attenuation of the BTS antenna. 

5.3. Effect of Input Data Normalization on Model Performance 

In this work, extensive experimentations were performed to validate the effect of input data 

normalization on path loss prediction accuracy and generalization ability. It was observed that 

input data normalization significantly improved path loss prediction accuracy and it equally 

produced better generalization. However, the input data normalization process further 

increased the training time in the development of the ANN-based models. 

5.4. Optimal Transfer Function for ANN-Based Path Loss Model 

Nine ANN-based path loss models were developed to determine the most suitable combination 

of transfer/activation functions for heterogeneous network planning and optimization in a smart 

campus propagation environment. The use of logsig and tansig activation functions at the 
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hidden and output layers of the neural network produced the best prediction accuracy and 

generalization ability. However, the ANN model requires relatively much training time. 

5.5. Optimal Learning Algorithm for ANN-Based Path Loss Model 

Nine ANN-based path loss models were developed to determine the best learning algorithm 

for path loss predictions in a heterogeneous smart campus environment. Training the ANN-

based path loss model using Levenberg-Marquardt learning algorithm produced the best 

prediction accuracy and generalization ability. Conversely, Variable Learning Rate 

Backpropagation learning algorithm required the least time of training. 

5.6. Optimal Number of Hidden Neurons for ANN-Based Path Loss Model 

Kecman (2001) proposed that the number of hidden neurons may be set either as 75-100 % of 

the input neurons or as square root of the product of input neurons and output neurons. Zineb 

and Ayadi (2016) reported that the model performance does not change significantly when the 

number of hidden neurons was varied in accordance to the recommendations by Kecman 

(2001). In this work, the number of neuron in the hidden layer was varied between one and 

fifty in order to determine the optimal number of hidden neuron for path loss predictions in a 

heterogeneous smart campus environment. It was observed that both prediction accuracy and 

generalization ability improved with increase in the number of hidden neuron. Optimal path 

loss prediction accuracy and model generalization were achieved when the number of hidden 

neuron was set to 43. Further increase in the number of hidden neuron beyond 43 did not 

significantly increased the prediction accuracy and generalization ability of the ANN-based 

path loss model. 

5.7. Optimal Multi-Frequency Machine Learning-Based Path Loss Model 

The optimal ANN-based path loss model was identified based on the results of the extensive 

experimentations that were performed earlier. The ANN-based path loss model has seven input 

nodes (each for distance, frequency, clutter height, elevation, altitude, latitude, and longitude 

respectively), single hidden layer with 43 neurons and logsig activation function, and a single 

output neuron (for path loss variable) with tansig activation function. The ANN-based path loss 

model was trained based on Levenberg-Marquardt learning algorithm and the model yielded 

the overall best prediction accuracy and generalization ability. 

The prediction outputs of the developed ANN-based model, SVM-based model, and popular 

empirical models (i.e. Okumura-Hata, COST 231, ECC-33, and Egli) were compared to the 
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measured path loss values in both training and testing datasets to evaluate the prediction 

accuracy and generalization ability of the path loss models. ANN-based path loss model 

produced the least prediction error with MAE, MSE, RMSE, SED and R values of 3.108 dB, 

19.023 dB, 4.340 dB, 4.339 dB, and 0.923 respectively when compared to the measured path 

loss values in training dataset. The prediction error produced by SVM-based path loss model 

(MAE, MSE, RMSE, SED and R values of 7.953 dB, 99.966 dB, 9.998 dB, 9.940 dB, and 

0.478 respectively) is much relatively lower than those of all the empirical models. Egli model 

produced the highest prediction error with MAE, MSE, RMSE, SED and R values of 27.000 

dB, 969.657 dB, 31.139 dB, 16.384 dB, and 0.266 respectively when compared to the measured 

path loss values in training dataset. 

Finally, the prediction outputs of the models were further subjected to statistical tests to 

establish whether the differences in the prediction outputs and the measured path loss values 

are statistically significant or not. The results obtained show that there are significant 

differences (p ≤ 0.05) in the prediction outputs and the measured path loss values in both 

training and testing datasets. On training dataset, the prediction outputs of COST 231, ECC-

33, Egli, and SVM-based path loss models significantly differ from the measured path loss 

values. Meanwhile, the prediction outputs of Okumura-Hata and ANN-based path loss models 

(p-values of 0.9745 and 1.0000 respectively) do not significantly differ from the measured path 

loss values in training dataset. On testing dataset, the prediction outputs of COST 231, ECC-

33, Egli, and SVM-based path loss models significantly differ from the measured path loss 

values. However, the prediction outputs of Okumura-Hata and ANN-based path loss models 

(p-values of 0.4472 and 1.0000 respectively) do not significantly differ from the measured path 

loss values in testing dataset. In essence, ANN-based path loss model was found to be the 

optimal model for heterogeneous radio network planning, deployment, and optimization in a 

smart campus propagation environment. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

A simple but accurate multi-frequency path loss model is a necessary tool for heterogeneous 

radio network planning and optimization towards achieving a smart campus. Although 

deterministic models produce better performance in path loss predictions than empirical 

models, their use often require detailed knowledge about the propagation environment and 

more computational resources are needed to process these information. On the other hand, 

empirical models are easy to implement with less computational requirements in terms of time 

and cost. Empirical models are not as accurate as deterministic models because they do not 

effectively account for the unique geographical configurations of the propagation environment. 

Meanwhile, the reliability of the radio access network depends on the accuracy of the 

propagation model employed. Hence, the need for significant improvement in the prediction 

accuracy of empirical models while maintaining model simplicity and ease of use. The learning 

ability in artificial intelligence may be exploited to reduce computational complexity and to 

improve prediction accuracy.  

In this research project, an optimal heterogeneous model was developed for path loss 

predictions in a typical university campus propagation environment using machine learning 

approach. First, extensive field measurement campaigns were conducted to obtain RSS values 

and path loss values at varying longitude, latitude, altitude, elevation, clutter height, distance, 

and available radio frequencies (900, 1800, and 2100 MHz) within the campus of Covenant 

University, Ota, Nigeria. Secondly, ANN-based path loss models were developed for 

heterogeneous network planning and optimization by: changing the transfer functions at the 

hidden and output layers, and the learning algorithm employed; varying the number of input 

variable requirement, and the number of hidden neuron; and determining the effect of input 

data normalization on prediction accuracy and generalization ability. Thirdly, SVM-based path 

loss model was developed for heterogeneous radio network planning and optimization using 

SMOreg algorithm. Finally, the prediction accuracy and generalization ability of Hata, COST 

231, ECC-33, Egli, ANN-based, and SVM-based path loss models was evaluated such that the 

most suitable path loss prediction model for heterogeneous radio network planning, 

deployment, and optimization in a smart campus propagation environment was identified based 
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on seven statistical metrics and tests namely: MAE, MSE, RMSE, SED, R, ANOVA, and 

multiple comparison post-hoc test. 

The summary of the main findings of this study is as follows: 

(a) The prediction accuracy and generalization ability of ANN-based path loss model 

improved significantly as more input variables were added. 

(b) Input data normalization significantly improved the performance of ANN-based path 

loss model but this process also increased the training time. 

(c) The choice of logsig and tansig transfer functions at the hidden and output layers of the 

neural network produced the best model prediction accuracy and generalization ability 

but the use of these functions relatively took more training time when compared to other 

combinations of transfer functions. 

(d) Training the ANN-based path loss model using LM learning algorithm produced the 

best prediction accuracy and generalization but it consumed more time in training. 

Conversely, the use of GDX learning algorithm offered a faster training process but the 

model performance was poor. 

(e) It was observed that the prediction accuracy and generalization ability of ANN-based 

path loss model improved significantly as the number of hidden neuron increased. 

Further increase of the number of hidden neurons beyond 43 did not yield any 

significant improvement in the model performance.  

The findings of this study showed that the prediction accuracy and generalization ability of the 

ANN-based model, which has seven input nodes (distance, frequency, clutter height, elevation, 

altitude, latitude, and longitude), single hidden layer with 43 neurons and logsig activation 

function, and a single output neuron (for path loss variable) with tansig activation function, 

was found to be the best when compared to the prediction outputs of SVM-based model, and 

popular empirical models (i.e. Okumura-Hata, COST 231, ECC-33, and Egli). The ANN-based 

path loss model was trained based on LM learning algorithm. The prediction outputs of the 

ANN-based path loss model has the lowest Root Mean Square Error (RMSE) of 4.480 dB, 

Standard Error Deviation (SED) of 4.479 dB, and the highest value of correlation coefficient 

(R) of 0.917, relative to the measured path loss values. This finding was further validated by 

the results of Analysis of Variance (ANOVA) and multiple comparison post-hoc tests.  
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In conclusion, ANN-based path loss model was found to be the optimal model for 

heterogeneous radio network planning, deployment, and optimization in a smart campus 

propagation environment. 

6.2. Recommendations for Future Work 

The following recommendations are made for future work: 

(a) In order to improve the reliability of the radio signal measurement process, a 

Continuous Wave (CW) measurement procedure can be employed instead of the drive 

test approach. Control of radio network parameters is limited in drive test approach 

because it involves the use of commercial (already deployed) BTS. CW approach gives 

researchers adequate control over the choice and selection of radio network parameters 

since independent transmitter(s) and receiver(s) are used. Likewise, the scope of this 

work can be extended to include current and emerging wireless technologies such as 

LTE, LTE-Advanced, and 5G radio networks. 

(b) The training speed, accuracy, and generalization ability of path loss predictions may be 

further improved using other machine learning techniques such as Extreme Learning 

Machine (ELM) and Adaptive Neuro-Fuzzy Inference System (ANFIS). 

(c) Different optimization algorithms such as Genetic Algorithm (GA) and adaptive DE 

algorithms may also be explored to further improve the computational cost efficiency 

in path loss predictions.  

(d) The developed optimal machine learning-based path loss model can be implemented in 

the form of user-friendly mobile and/or web applications for the use of radio engineers 

in Nigerian telecommunication industry. 

6.3.  Contribution to Knowledge 

The findings of this research study contributed to the body of scientific knowledge in the 

following ways: 

a) A robust radio signal measurement and local terrain profile datasets that represents a 

typical smart campus propagation environment in Nigeria was acquired. These datasets 

are vital for research reproducibility in the fields of wireless communications and 

machine learning towards the planning and deployment of optimal heterogeneous radio 

networks in university campuses (Popoola, Atayero, Arausi, & Matthews, 2018; 
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Popoola, Atayero, & Faruk, 2018; Popoola, Atayero, Faruk, & Badejo, 2018; Popoola, 

Atayero, & Popoola, 2018). 

b) An optimal neural network configuration was proposed for path loss predictions in a 

heterogeneous radio propagation environment of a typical Nigerian smart campus 

(Popoola, Adetiba, Atayero, Faruk, & Calafate, 2018; Popoola, Misra, & Atayero, 

2018). 
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