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a b s t r a c t 

In spite of the prominence of extreme learning machine model, as well as its excellent features such 

as insignificant intervention for learning and model tuning, the simplicity of implementation, and high 

learning speed, which makes it a fascinating alternative method for Artificial Intelligence, including Big 

Data Analytics, it is still limited in certain aspects. These aspects must be treated to achieve an effective 

and cost-sensitive model. This review discussed the major drawbacks of ELM, which include difficulty 

in determination of hidden layer structure, prediction instability and Imbalanced data distributions, the 

poor capability of sample structure preserving (SSP), and difficulty in accommodating lateral inhibition 

by direct random feature mapping. Other drawbacks include multi-graph complexity, global memory size, 

one-by-one or chuck-by-chuck (a block of data), global memory size limitation, and challenges with big 

data. The recent trend proposed by experts for each drawback is discussed in detail towards achieving an 

effective and cost-sensitive model. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Extreme learning machine (ELM) is a kind of neural network

(NN) characterized by biologically inspired single-hidden-layer

feedforward network (SLFN), using biological learning techniques

rather than artificial learning techniques. It is a biological learn-

ing technique that involves the use of kernels, random neurons

(with or without unknown modeling/shape), and optimization

constraint. ELM is more effective in terms of speed, generalization

performance, simplicity and efficiency than the traditional NN in

practical applications. The word “extreme” implies beyond conven-

tional artificial learning methods, towards brain-like learning [1] .

ELM helps to fill the gap between biological learning and machine

learning mechanism [ 1 , 2 ]. Rather than using known activation

function such as sigmoid, ELM uses unknown nonlinear piecewise

continuous functions h(x) being the real activation functions of
∗ Corresponding author. 
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ost living brain neurons [1] . Theoretically, ELM somehow com-

ines brain learning features, matrix theory, control theory, neural

etwork theory, and linear system theory, which were previously

egarded to be isolated with big gaps. 

Due to the capability for a wide range of activation functions

(x), ELM exhibits universal classification capability and universal

pproximation capability [1] . ELM can be used in solving problems

ertaining to regression, classification, representational learning,

eature selection, clustering, and several other learning tasks. Suc-

essful applications of ELM have been reported in several domains,

uch as output power forecasting [3] , system identification [2] ,

unction approximation [ 4 , 5 ], biomedical engineering [2] , biologi-

al information processing, data classification [6] , computer vision,

attern recognition [ 7 , 8 ], robotics and control [2] . ELM generates

he input layer (sensory layer) weights and the hidden nodes bi-

ses randomly and determines the output layer weights rationally

y solving a generalized inverse matrix. The study of Huang et al.

 9 , 10 ], substantiated that SLFNs with randomly generated hidden

ode parameters and with radial or additive basis function hidden

https://doi.org/10.1016/j.neucom.2019.03.086
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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odes could function as universal approximators. This is achievable

y simply computing the output weights, which link the hidden

ayer (associator layer) to the output nodes, thereby substantiat-

ng its wide application in solving regression and classification

roblems [11] . Huang, Zhu and Siew [12] and Liang, Huang,

aratchandran and Sundararajan [13] also established that iterative

ethods are not needed at all for adjustment of SLFNs parameters

n ELM, unlike NN, whose network parameters require iterative

ethods due to the extensive usage of gradient-based learning

lgorithms [14] . In comparison with other learning techniques,

uch as back-propagation algorithm (BP), various variants of BP

nd deep learning algorithms, support vector machine (SVM), the

ey superiority of ELM is that it does not involve iterative tuning

f the parameters [15] . 

Despite the prominence of ELM model, as well as its excellent

eatures such as insignificant intervention for learning and model

uning, the simplicity of implementation, and high learning speed,

hich makes it a fascinating alternative method for Artificial In-

elligence, including Big Data Analytics, it is still limited in cer-

ain aspects. Huang et al. [2] suggested further research on high

imensional data analysis. The network structure of ELM is more

omplex for large data since the hidden biases and input weights

re randomly selected, making the traditional ELM to require more

idden nodes, thereby affecting the network generalization ability.

he order of complexity of the algorithm for output weights es-

imation is O(M 

2 K), where M is the number of hidden units and

 is the number of training points [16] . Furthermore, some ELM

ould be time-consuming and ineffective due to the predetermina-

ion of their network size when trial by error is used before train-

ng [ 13 , 14 ]. ELM uses of batch training approach, indicating that

he network is trained with all the dataset at once, thereby re-

uiring large processing power and memory. Classical ELM is also

lagued with prediction instability. It occurs because of random

nitialization of the hidden layer biases and the input weights, and

mbalanced data distributions. ELM has no mechanism that takes

are of imbalanced data distributions that may be encountered in

any fields [17] since it is assumed that every single class size is

omparatively balanced and the costs of misclassification are equal

n the entire datasets [18] . The imbalanced class distribution could

ake the classification mechanisms learn very complex models,

hereby over-fitting [19] . Moreover, despite the recent prominence

f ELM due to remarkable learning speed, little or no manual inter-

ention, and good generalization performance, the generalization

erformance could be worse than that of SVM algorithm for small

ample cases or small network size. This is ascribed to the use of

onte Carlo (MC) sampling technique for generation of random in-

ut weights. ELM models with small network size exhibit random

nput weight with poor SSP capability, leading to poor generaliza-

ion performance [20] . 

ELM cannot accommodate lateral inhibition by direct use of

andom feature mapping [21] . This is a serious challenge in learn-

ng of large-scale data since ELM was initially developed to run on

 machine with a single processing unit. Handling a block of data,

r incremental training samples (one-by-one or chunk-by-chunk)

s another serious drawback in ELM. Incremental training sam-

les (such as dynamic changes of tidal level) are presented chunk-

y-chunk or one by one and they involve time-varying dynamics.

herefore, modeling time-varying process becomes challenging in

eal-time [22] . 

This review discussed the major drawbacks of ELM, which af-

ect its efficiency and cost, as well as the current techniques used

s the panacea. The drawbacks addressed here include difficulty in

etermination of hidden layer structure, prediction instability and

mbalanced data distributions, the poor capability of sample struc-

ure preserving (SSP), and difficulty in accommodating lateral in-

ibition by direct random feature mapping. Other drawbacks in-
lude multi-graph complexity, global memory size, one-by-one or

huck-by-chuck (a block of data), global memory size limitation,

nd challenges with big data. The recent trend proposed by ex-

erts for each drawback are discussed in detail towards achieving

n effective and cost-sensitive model. 

. Extreme learning machine 

ELM developed by Huang at el [ 12 , 23 ] utilizes Single Layer

eedforward Neural Network (SLFN) Architecture [24] . ELM en-

ages a random selection of input weights to rationally calculate

he output weights of SLFN. The generalization performance of

LM is remarkable with a high learning speed. ELM does not re-

uire much human intervention and the learning speed is thou-

ands time faster when compared with the conventional tech-

iques. The rational determination of the network parameters is

utomatic, thereby needing trivial human intervention and making

t efficient for realtime and online applications. ELM has several

enefits like high generalization performance, fast learning speed,

ase of use, appropriate for several nonlinear kernel and activation

unctions. 

.1. ELM formulation 

The mathematical description of SLFN function with L hidden

odes [ 13 , 25 ] incorporates both RBF and additive hidden nodes in

 unified manner as 

f L ( x ) = 

L ∑ 

i =1 

βi G ( a i , b i , x ) , x ∈ R 

n , a i ∈ R 

n (1) 

here a i and b i are the hidden nodes training parameters and β i 

he weight that connects the output node to the i th hidden node.

 ( a i , b i , x ) represents the i th hidden node output corresponding to

he input x . Considering additive hidden node with the activation

unction g ( x ): R → R (e.g., threshold and sigmoid), G ( a i , b i , x ) is ex-

ressed as 

G ( a i , b i , x ) = g ( a i .x + b i ) , b i ∈ R (2) 

here a i is the weight vector connecting the i th hidden node to

he input layer and b i is the i th hidden node bias. a i .x represents

he inner product of vector a i and x in R n . For RBF hidden node

ith activation function g ( x ): R → R (e.g., Gaussian), G ( a i , b i , x ) ex-

ressed as 

G ( a i , b i , x ) = g ( b i ‖ 

x − a i ‖ ) , b i ∈ R 

+ (3) 

here a i and b i represent the center and impact factor of i th the

BF node. R + represents the set of positive real values. The RBF

etwork is a special case of SLFN with RBF nodes in its hidden

ayer. For N , arbitrary dissimilar samples ( x i , t i ) ∈ R n × R m . Thre pa-

ameters, x i represents an n × 1 input vector and t i represents an

 × 1 target vector. If an SLFN, which has L hidden nodes can ap-

roximate the N samples with zero error. This indicates that there

re β i , a i and b i such that 

f L ( x ) = 

L ∑ 

i =1 

βi G ( a i , b i , x ) , j = 1 , . . . ., N. (4) 

Eq. (4) can be written compactly as 

 β = T (5) 

here 

 

(
˜ a , ̃  b , ̃  x 

)
= 

[ 

G ( a 1 , b 1 , x 1 ) · · · G ( a L , b L , x 1 ) 
· · ·

( a 1 , b 1 , x N ) · · · G ( a L , b L , x N ) 

] 

N×L 

(6) 
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with ˜ a = a 1 , . . . , a L ; ˜ b = b 1 , . . . , b L ; ˜ x = x 1 , . . . , x L 

β = 

⎡ 

⎣ 

βT 
1 
. . . 

βT 
L 

⎤ 

⎦ 

L ×m 

and T = 

⎡ 

⎣ 

t T 1 
. . . 

t T L 

⎤ 

⎦ 

N×m 

(7)

T he hidden layer output matrix of SLFN is denoted by X . The i th 

column of X is the i th output of the hidden node corresponding to

inputs x 1 , . . . , x N . 

ELM formulated using SLFN algorithm with L hidden neurons

can train L different samples without error. Even if the number of

distinct samples ( N ) < number of hidden neurons ( L ) [26] . ELM as-

signs random parameters to the hidden nodes to compute the out-

put weights using Moore–Penrose generalized inverse matrix ex-

pressed as pseudoinverse of H with a small tolerable error ε > 0.

The hidden node parameters of ELM a i and b i (input weights and

biases or centers and impact factors) does not require tuning dur-

ing training but could be allotted with random values. The below

theorems hold: 

Theorem 1. Let an SLFN with L additive or RBF hidden nodes

and an activation function g ( x ) that is substantially differentiable

at any given R interval. Then, for arbitrary L separate input vectors

{ x i | x i ∈ R n , i = 1 , . . . , L } and { ( a i , b i ) } L i =1 
arbitrarily formulated with

any continuous probability distribution. The hidden layer output ma-

trix is invertible, the hidden layer output matrix H of the SLFN is in-

vertible and ‖ Xβ − T ‖ = 0 [ 23 ] . 

Theorem 2. For any small positive value ε > 0 and activation

function g ( x ): R → R that is substantially differentiable in any in-

terval, there exists L ≤ N such that for N arbitrary distinct in-

put vectors { x i | x i ∈ R n , i = 1 , . . . , L } f or any { ( a i , b i ) } L i =1 
arbitrar-

ily obtained according to any continuous probability distribution

‖ X N×L βL ×m 

− T N×m 

‖ < ε with probability one Liang et al. [13] . 

Since the hidden node parameters of ELM does not require tun-

ing during the learning process and the fact that they are basically

assigned random values, Eq. (5) is expressed as a linear system and

the output weights can be expressed as 

β = X 

† T (8)

where X † is the Moore–Penrose generalized inverse [26] of the

hidden layer output matrix H and can be computed using tech-

niques like orthogonal projection, orthogonalization, iterative, sin-

gular value decomposition (SVD) [15] . The orthogonal projection

method can be used only when X 

T T is nonsingular and X † =
( X T T ) −1 X T . Orthogonalization and iterative techniques are limited

due to the use of searching and iterations. Implementations of ELM

employs SVD for computation the pseudoinverse of X , because it

is relevant in all situations. ELM is, therefore, a batch learning

technique. 

3. Difficulty in the determination of network architecture 

Due to the random selection of hidden biases and input

weights, the traditional ELM certainly requires more hidden nodes,

making the network structure more complex for large data,

thereby affecting the network generalization ability. The order

of complexity of the algorithm for output weights estimation is

O(M 

2 K), where M is the number of hidden units and K is the

number of training points [16] . Furthermore, some ELM could be

time-consuming and ineffective due to the predetermination of

their network size when trial by error is used before training

[ 13 , 14 ]. ELM uses of batch training approach, indicating that the

network is trained with all the dataset at once, thereby requir-

ing large processing power and memory. Although online training

techniques (rather than batch training) have been recommended
s the panacea, the training time is mostly determined by the net-

ork size to retain an O(M 

2 ) implementation complexity because

f the big number of neurons characteristically employed in the

ingle hidden layer [ 27 , 28 ]. 

.1. Incremental ELM methods 

The difficulty in the determination of network architecture can

e dealt with using three different approaches, which are incre-

ental, pruning, and the combination of incremental and pruning.

ncremental approach initializes a small SLFN, and then iteratively

dd hidden nodes group by group (or one by one) to the SLFN until

 specified condition is fulfilled. The criterion for termination of I-

LM is that the training error is below a specified minimum or the

umber of hidden nodes attains a specified peak. I-ELM is the pio-

eering effort of incremental approaches recommended by Huang

t al. [25] . I-ELM adds hidden to the hidden layer nodes one-by-

ne and freezes the output weights of the prevailing hidden nodes.

uang et al. proposed two I-ELM variants called EI-ELM (Enhanced

-ELM) [29] and CI-ELM (Convex I-ELM) [30] . In EI-ELM, at every

ingle learning step, some hidden nodes are generated randomly,

nd the hidden node causes the major reduction in the residual

rror will be included in the current network [15] . EI-ELM offers a

ore compact network without an increase in computations when

ompared with I-ELM. CI-ELM enhanced the rate of I-ELM conver-

ence with the aid of convex optimization technique to recompute

he output weights of the prevailing nodes upon random addition

f a new hidden node. 

.2. Pruning methods 

Pruning techniques commence from a large SLFN and employ

 number of heuristics to prune insignificant hidden nodes. The

rst pruning technique reported for ELM is Pruned-ELM (P-ELM)

31] . Using information theory criterion, P-ELM utilizes the infor-

ation gain (IG) and Chi-squared (2) to determine the significance

etween the class labels and the hidden nodes and subsequently

radicates the nodes with low relevance. The foremost shortcom-

ng is that P-ELM exhibits high computational complication be-

ause of the discretization for the probability density estimation

f continuous variables [15] . Moreover, the discretization will un-

voidably bring about loss of information. Miche, Sorjamaa, Bas,

imula, Jutten, and Lendasse [11] proposed a two-stage pruning

lgorithm called Optimally Pruned ELM (OP-ELM). Multi-response

parse regression algorithm was used to rank the hidden nodes in

he first stage, while the leave-one-out (LOO) validation technique

as used to select the optimum number of hidden nodes in the

econd stage. Recently, Alencar et al. [32] used the optimal subset

f hidden nodes based on a genetic algorithm to formulate a prun-

ng technique for ELM. This technique suggests a multi-objective

tness function that defines a compromise between the number of

runed neurons and accuracy. 

.3. Combination of pruning and incremental methods 

The hidden nodes need a dynamic adjustment when using

 combination of incremental and pruning techniques. Dynam-

cally adjusted ELM (DA-ELM) [33] and dynamic ELM (DELM)

34] algorithms demonstrated this. The dynamic adjustment of

idden node parameters was achieved by a recursive expectation-

inimization method in DA-ELM, while the hidden nodes are dy-

amically deleted based on their importance to the performance

n the network in d -ELM. The benefit of d -ELM is that it simulta-

eously adjusts the network parameters and network architectures

ynamically. 
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Table 1 

Examining accuracy of ginv function, Courrieu’s method and SVD method with the matrix 2-norm in error matrices that correspond to the four characteristic properties of 

the Moore–Penrose inverse (Error Results for rank-2n matrices, n = 8, 9, 10, 11, 12) [38] . 

Rank ║ TT † T − T ║ 
2 

║ T † TT † −T † ║ 
2 

║ TT † − ( TT † ) ∗ ║ 
2 

║ T † T − ( T † T ) ∗ ║ 
2 

SVD method (Matlab pinv) Courrieu’s method (geninv) Proposed method (ginv) 2 8 1.765 × 10 −12 1.5573 × 10 −12 7.2466 × 10 −13 6.1911 × 10 −13 

5 . 4709 × 10 −8 1 . 8213 × 10 −9 4 . 3151 × 10 −10 1 . 7632 × 10 −8 

1 . 7441 × 10 −11 1 . 2075 × 10 −11 1 . 4535 × 10 −13 7 . 2225 × 10 −10 

SVD method (Matlab pinv) Courrieu’s method (geninv) Proposed method (ginv) 2 9 3.4774 × 10 −12 4.7250 × 10 −12 1.7556 × 10 −12 1.2273 × 10 −12 

1 . 0247 × 10 −6 4 . 1029 × 10 −8 2 . 8935 × 10 −9 9 . 7309 × 10 −8 

9 . 6675 × 10 −11 3 . 0203 × 10 −8 3 . 9218 × 10 −13 6 . 4164 × 10 −9 

SVD method (Matlab pinv) Courrieu’s method (geninv) Proposed method (ginv) 2 10 1.5329 × 10 −11 9.9524 × 10 −12 4.6853 × 10 −12 5.3752 × 10 −12 

5 . 2165 × 10 −6 3 . 1255 × 10 −7 1 . 0565 × 10 −8 9 . 4435 × 10 −7 

3 . 3869 × 10 −10 2 . 3629 × 10 −7 7 . 2036 × 10 −13 2 . 7511 × 10 −8 

SVD method (Matlab pinv) Courrieu’s method (geninv) Proposed method (ginv) 2 11 3.7990 × 10 −10 6.0937 × 10 −9 1.5855 × 10 −10 1.2520 × 10 −12 

6 . 8162 × 10 −2 4 . 4275 × 10 −3 3 . 9699 × 10 −5 1 . 7735 × 10 −3 

1 . 7449 × 10 −8 5 . 3528 × 10 −4 2 . 5498 × 10 −5 1 . 9404 × 10 −11 

SVD method (Matlab pinv) Courrieu’s method (geninv) Proposed method (ginv) 2 12 – – – –

−1 . 5743 × 10 −5 −5 . 8952 × 10 −6 −1 . 8897 × 10 −7 −1 . 9087 × 10 −9 

3 . 9876 × 10 −7 1 . 219 × 10 −8 5 . 4433 × 10 −10 4 . 1422 × 10 −11 

Fig. 1. Time efficiency curves [38] . 
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The common weakness of incremental, pruning and the

ombination of incremental and pruning is high computation com-

lexity. For pruning techniques, the high computation complexity

s because of iterative computations of the heuristics employed

n measuring the significance of hidden nodes. In incremental

echniques, the high computation complexity is caused by the

terative computation of the Moore–Penrose generalized inverse

atrix. Moore–Penrose generalized inverse matrix is estimated

sing expensive (singular value decomposition) SVD method [35] .

ince it is necessary to compute the Moore–Penrose generalized

nverse matrix repeatedly for each iteration, whenever a node or a

roup of nodes is included in the hidden layer [15] . 

.4. Generalized inverse method 

Several attempts have been made towards increasing the com-

utational speed of Moore–Penrose generalized inverse matrix

36–38] . Katsikis and Pappas [38] constructed a more reliable and

ast method called ginv function using Matlab for computation of

oore–Penrose inverse matrix of a rank-n tensor-product matrix.

he ginv function first computes the corresponding Gram matrix

f the linearly independent vectors f 1 , …, f n 
3 and subsequently, it

esolves the appropriately defined n × n linear system. Particularly,

or each j = 1, …, n , the ginv function gives the corresponding λi ( e j )

n the expansion 

 

† e j = λi 

n ∑ 

i =1 

λi 

(
e j 

)
e i (9) 
o obtain the generalized inverse of a certain tensor-product matrix

 in the form of 

 

† = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

λ1 ( e 1 ) λ1 ( e 2 ) . . . λ1 ( e k ) 
λ2 ( e 1 ) λ2 ( e 2 ) . . . λ2 ( e k ) 

. . . 
. . . 

. . . 
. . . 

λn ( e 1 ) λn ( e 2 ) . . . λn ( e k ) 
0 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(10) 

Assuming X is the corresponding matrix illustration of a rank- n

perator, then X is a k × k matrix and its first n columns did not

inearly depend on vectors of R k , n < k and all the other elements

re zeros. 

Katsikis and Pappas [38] reported that the generalized inverse

ased on ginv function needs significantly lesser effort, principally

or large matrices, in comparison with the effort required by Cour-

ieu’s method and SVD method ( Fig. 1 ). This means that ginv func-

ion procedure could achieve a fast-computational solution with a

inimal amount of computational resources. The approximations

btained in each one of the tested cases are very accurate and re-

iable ( Table 1 ). The ginv function also includes a rank test, which

elps to streamline the application of the Matlab function for the

oncerned user, seeing that rank test costs over 50% of the compu-

ational time for ginv function response. This makes ginv function

 rapid technique for computation of generalized inverses. 

.5. Conjugate Gram–Schmidt process 

Other prominent incremental approaches include Gram–

chmidt I-ELM (GSI-ELM) proposed by Zhao, Li, Xi, Liang, Sun

nd Chen [39] and Error Minimized-ELM (EM-ELM) developed by

eng et al. [40] . GSI-ELM employs the finest-hidden node from a

andom subset through a specific processing condition at every

earning step. The major difference between EM-ELM and I-ELM is

hat EM-ELM recursively updates the entire output weights upon

ddition of a new hidden node to the network. Based on testing

ccuracy and convergence rate, EM-ELM beats I-ELM. EM-ELM was

urther improved by optimizing the hidden node by addition of

SO to the SLFN one by one as proposed by Han et al. [14] . 

Toutounian, Soleymani and Ataei [ 36 , 37 ] developed a technique

sing conjugate Gram–Schmidt process and the Moore–Penrose in-

erse (CGS-MPi) of partitioned matrices for computation of Moore–

enrose inverse matrices. Conjugate Gram–Schmidt process is
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Table 2 

Comparison of Gram–Schmidt process and the Moore–Penrose inverse (CGS-MPi) with different iterative methods for dense matrices based on time and error [37] . 

n Grevile SVD GSO Geninv CGS-MPI SMS Newton-Raphson Iterative (of order 8) 

time/error time/error time/error time/error time/error time/error time/error time/error 

32 0.006 / 1.4e −15 0.0 0 0 / 2.0e −14 0.002 / 5.8e −15 0.002 / 3.4e −15 0.002 / 1.4e −15 0.016 / 3.2e −13 0.016 / 3.8e −15 0.031 / 7.8e −15 

64 0.014 / 1.8e −15 0.016 / 5.6e −14 0.005 / 1.1e −15 0.005 / 4.7e −15 0.006 / 3.3e −15 0.016 / 8.5e −13 0.032 / 8.6e −15 0.062 / 1.6e −14 

128 0.086 / 3.4e −15 0.081 / 1.2e −14 0.033 / 3.2e −15 0.025 / 7.8e −15 0.031 / 3.7e −15 0.14 / 2.07e −12 0.290 / 7.2e −14 0.405 / 2.9e −14 

256 1.295 / 4.7e −15 0.581 / 2.2e −14 0.609 / 5.3e −15 0.153 / 1.2e −14 0.210 / 6.3e −15 0.94 / 8.6e −12 2.420 / 3.9e −14 3.132 / 6.0e −14 

512 12.083 / 6.7e −15 13.034 / 5.7e −14 5.458 / 1.1e −15 1.240 / 2.1e −14 1.648 / 8.7e −15 7.33 / 3.25e −11 19.400 / 7.5e −14 28.164 / 1.4e −13 

1024 105.191 / 1.2e −14 98.064 / 2.1e −14 42.711 / 1.3e −14 11.009 / 3.0e −14 11.989 / 1.5e −14 62.97 / 8.17e −11 158.940 / 1.5e −13 222.55 / 2.4e −13 
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represented by the nested loop below: 

z ( 
j ) 

i 
← z ( 

j−1 ) 
i 

−

〈 
z ( 

j−1 ) 
j 

, z ( 
j−1 ) 

i 

〉 
C 〈 

z ( 
j−1 ) 

j 
, z ( 

j−1 ) 
j 

〉 
C 

z ( 
j−1 ) 

j 
, (11)

In CGS-MPi the matrix X , was calculated by the conjugate

Gram–Schmidt method as a unit upper triangular and Z T = L −1 ,

where L represents the unit lower triangular factor in the root free

Cholesky factorization C = LDL T and the matrix D is exactly the

same here as in ( X 

T X) −1 = ZD 

−1 Z T . Moore inverse of X , represented

by X 

T , is the unique matrix A ∈ ₵n × m , which satisfies the below

Penrose equations 

(i) XAX = X 

(ii) AXA = A 

(iii) (XA) ∗ = XA 

(iv) (AX) ∗ = AX. 

₵n × m represents the set of all m × n matrices in the field of

complex numbers, and ∗ signifies conjugate and transpose. 

Moreover, Benzi and Tuma, [41] revealed that the conjugate

Gram–Schmidt process simultaneiously produces the L factor and

Z factor. The entries of L can be determined using 

l i j = 

〈 
z ( 

j−1 ) 
j 

, z ( 
j−1 ) 

i 

〉 
C 〈 

z ( 
j−1 ) 

j 
, z ( 

j−1 ) 
j 

〉 
C 

, i ≥ j. (12)

The following is the CGS-MPi algorithm [37] : 

Algorithm. CGS-MPi. 

1. Set z i 
(0) = e i , i = 1: n, L = I, s = 0 , r = 0 

2. Choose a tolerance ε

3. For j = 1: n Do: 

4. d j = z j 
( j −1) , z j 

( j −1) C 

5. If | d j | < ε then 

6. s = s + 1, π 2 (s) = j 

7. Else 

8. r = r + 1, π 1 ( r ) = j 

9. For i = j + 1: n Do: 

10. l ij = ( z j ( j − 1), z i ( j − 1) i C)/ d j , z i ( j ) = z i ( j − 1) − l ij z j ( j − 1) 

11. EndDo 

12. EndIf 

13. EndDo 

14. Perform the permutation set π = [ π 1 π 2 ] and the permutation matrix P π

15. Permute the columns (rows) of matrices Z, D, and L appropriately by using 

permutation matrix P π ( P π
T ), i.e., Z = P π

T Z P π , L = P π
T L P π , D = P π

T D P π
16. Set D11 = D (1: r, 1: r) and compute U − 1 = Z (1: r, 1: r) D − 111/2 

17. Compute L 1 = LD 1/2 , and set V = L 1 
T (1: r, r + 1: n ) 

18. Compute B = U − 1 V 

19. Compute K = ( I n −r + B T B ) −1 

20. Compute W 

† = 

[
l r − BK B T 

K B T 

]
U −1 

21. Compute A † = P π ( W 

† )( W 

† ) T P π
T A T . 

Toutounian and Ataei [37] reported that their experimental data

reveal that for sparse large matrices, the Moore–Penrose inverses

computed by this technique is realistically perfect with a fast com-

putation speed, which is more than that of pseudoinverses com-

puted by the other techniques ( Tables 2 and 3 ). 
Toutounian and Soleymani [36] also developed a faster itera-

ive method for computation of the roots of an algebraic equa-

ion f ( x ) = 0 towards computation of the Moore–Penrose inverse.

his technique proved to be a novel fourth-order computational

lgorithm for computation of an approximate inverse of a square

atrix. The approximate inverse is a promising preconditioner for

olving linear systems by using the preconditioned Krylov subspace

echnique (GMRES algorithm) to improve the computational speed

42] . Krylov subspace techniques are usually called parameter-free

terative techniques since they are free from selecting parame-

ers like those needed for successive over-relaxation (SOR) type

echniques [43] . 

The preconditioner is a transformation matrix, which trans-

orms the coefficient matrix into one with a more promising spec-

rum. The preconditioner is reliable and can effectively lessen the

omputational time and number of iterations the necessary for

onvergence ( Table 4 ). The preconditioners are developed accord-

ng to the equations proposed by Li and Li [44] : 

 i +1 = V i (3 I − 3 A V i + ( A V i ) 
2 
, i = 0 , 1 , 2 , . . . . (13)

Where I is the identity matrix. They ascertained that the itera-

ive technique (1) exhibit third-order convergence and satisfies the

rror inequality ║ e i + 1 ║ ≤║ A ║ 2 ║ e i ║ 3 , where e i = A 

−1 - V i . Addition-

lly, Li and Li [44] presented a collection of formula as follows: 

 i +1 = V i 

[
kI − k ( k − 1 ) 

2 

A V i + . . . + ( A V i ) 
k −1 

]
, k = 2 , 3 , . . . . (14)

They revealed that under the condition ║ I - AV 0 ║ < 1, the iter-

tive formula is convergent to A 

−1 with k order of convergence. 

To find a solution to f(x) = 0, Toutounian and Soleymani [36] as-

umed that f(x) has a simple root at α, and x 0 is an initial guess

atisfactorily close to a. To solve the equation f(x) = 0, the following

hree-step technique was suggested: 
 

 

 

y i = x i − f ′ ( x i ) −1 f ( x i ) , 

z i = x i − 2 

−1 f ( x i ) ( f 
′ ( x i ) −1 + f ′ ( y i ) −1 ) , 

x i = z i − ( f ′ [ z i , x i ] −1 f ( z i ) , i = 0 , 1 , 2 , . . . . 

(15)

Where f ,[ z i ; x i ] = ( z i – x i ) −1( f ( z i ) – f ( x i )) is the two-point di-

ided difference. The three-step iterative technique is used secant

ethod and the proposed two-step cubically iterative technique by

omeier [45] . To increase the order of convergence of Homeier’s

echnique from three to four, the secant method was used at the

hird step of 

V i +1 = 

1 

2 

V i [ 9 I − A V i ( 16 I − A V i ( 14 I − A V i ( 6 I − A V i ) ) ) ] , 

i = 0 , 1 , 2 , . . . . (16)

here I is the identity matrix with the same dimension as the ma-

rix A and V 0 is an initial approximation for A 

−1 . It was revealed

hat the sequence of iterates { V i } i = ∞ 

i =0 
converges to A 

−1 with fourth-

rder only if ║ I − AV 0 ║ < 1, where ║ . ║ is any subordinate matrix

orm. 

Furthermore, to minimize the effect of computational complex-

ty, [46] proposed the construction of a deep ELM network as
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Table 3 

Comparison of Gram–Schmidt process and the Moore–Penrose inverse (CGS-MPi) with different direct methods for sparse and large matrices [37] . 

Matrix Greville SVD method GSO Geninv CGS-MPi SMS Newton-Raphson Iterative (of order 8) 

Time/Error Time/Error Time/Error Time/Error Time/Error Time/Error Time/Error Time/Error 

WELL1033_ Z 8.2 / 2.4e −11 1.8 / 3.4e −13 3.6 / 1.3e −11 0.45 / 1.0e −10 0.43 / 3.3e −11 7.344 / 1.1e −08 24.952 / 1.6e −09 38.201 / 4.2e −13 

WELL1850_ Z 58.7 / 2.8e −13 17.8 / 1.3e −13 24.8 / 1.3e −12 3.8 / 2.2e −11 2.6 / 1.2e −12 48.717 / 1.8e −08 153.17 / 1.4e −09 229.850 / 2.9e −13 

ILCC1850_ Z 58.4 / 1.6e −08 18.3 / 2.4e −11 24.8 / 1.1e −08 3.9 / 2.0e −08 2.6 / 2.1e −08 18.859 / 4.2e −01 194.57 / 7.1e −10 280.600 / 6.0e −12 

GR–30–30_ Z 42.5 / 3.3e −13 21.6 / 5.3e −14 18.5 / 1.4e −12 7.6 / 2.2e −10 3.5 / 1.7e −12 60.936 / 7.4e −09 57.108 / 3.4e −13 51.528 / 2.8e −13 

WATT1_ Z 374.0 / 1.6e −04 307.6 / 6.0e −01 154.3 / 6.8e + 08 63.8 / 2.0e + 15 4.6 / 1.0e −06 212.060 / 4.4e −05 164.48 / 2.2e −05 2454.0 0 0 / 9.9e −06 

Table 4 

Computation time and the number of iterations of preconditioned GMRES algorithm (IT) required to satisfy ║ rk ║ 2 = ║ r 0 ║ 2 ≤ 10 −8 . ‘‘V 1 -(1)-Order-3, V 2 -(1)-order-3 ′ ’, ‘‘V1-(2)- 

Order-4 V 2 -(2)-order-4 ′ ’, and ‘‘V 1 -(4)-Order-4, V 2 -(4)-order-4 ′ ’, denote the preconditioned GMRES algorithm with the preconditioners V 1 ; V 2 using Eqs. (13) , ( 14 ), and ( 16 ) 

[36] . 

Algorithms/system orders 100 400 900 1600 

IT Time IT Time IT Time IT Time 

V 1 -(3)-Order-3 18 0.0138 35 0.0373 51 0.1031 67 0.3997 

V 2 -(3)-Order-3 10 0.0053 20 0.0289 29 0.0918 38 0.2304 

V 1 -(4)-Order-4 12 0.0051 22 0.0182 32 0.0536 42 0.1811 

V 2 -(4)-Order-4 6 0.0124 11 0.0666 16 0.1990 21 1.0840 

V 1 -(18)-Order-4 11 0.0045 21 0.0181 30 0.0521 40 0.1783 

V 2 -(18)-Order-4 5 0.0142 10 0.1801 14 0.5930 19 1.4057 
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 stack of supervised autoencoder ELM modules, and training it

odule by module. This engenders a considerable improvement of

he memory usage and network training time, while concurrently

nhancing classification error-rate performance better than what is

chievable via single ELM with a similar size of hidden units. 

.6. Cholesky factorisation method 

The pseudoinverse of Moore–Penrose could be computed us-

ng Tikhonov regularization, QR factorization or LU factorization

 42 , 47 , 48 ]. Tikhonov regularization, also called Ridge regression is

 limit characterization approach for computation pseudoinverse

 49 , 50 ]. Considering an arbitrary matrix X 

 

† = lim 

δ→ 0 

(
X 

T X + δI 
)−1 

X 

T = lim 

δ→ 0 
X 

T 
(
X X 

T + δI 
)−1 

. (17) 

I represents a size-compatible identity matrix. The limit of the

ull expression was taken and not only the matrix with the variable

(( XX 

T + δI ) 
−1 or ( X 

T X + δI )) [50] . The finite δ is used in an approx-

mation of X 

† on a vector represented by g . For the approximation

o be accurate, δ should be a small multiple of the δr 
2 , which is

he square of the smallest non-zero singular value of X . For δ > 0,

he a priori error estimate is given by [ 50 , 51 ]. (
X 

T X + δI 
)−1 

X 

T − X 

† 

∥∥∥
2 

≤ δ
∥∥X 

† 
∥∥3 

2 
. (18) 

This regularization can be implemented using Cholesky factor-

zation algorithm to solve the sparse matrix [48] . XX 

T and X 

T X are

parse if X is banded or sparse. For instance, XX 

T and X 

T X are pen-

adiagonal, if X is tridiagonal. the matrix becomes inverted positive

efinite when a positive diagonal is added. Cholesky factorization

s prominent due to its remarkable computational speed. The main

urpose of using Cholesky factorization is to obtain an approxi-

ation of the upscaled Hessian matrix (not its exact upscaling)

n mesh adaptivity- and nonlinearity-based homogenization.

ikhonov regularization technique can be utilized to enhance the

ccuracy of the approximation of the pseudoinverse [48] . Upon

omputation with Cholesky factorization algorithm, enhancement

ith Tikhonov regularization becomes cost-effective. Presenting

he pseudoinverse using by the sum of a series, we have [ 49 , 52 ]. 

 

† = 

∞ ∑ 

i =1 

X 

T 
(
X X 

T + I 
)−i 

(19) 
Note, if K 

T is removed from the series as one of the factors, the

um will diverge. Assuming the property ( αX 

† ) = α−1 X 

† for α � = 0,

nd δ = α−2 the following is derived from the above equation: 

 

† = 

∞ ∑ 

i =1 

X 

T δi −1 
(
X X 

T + δI 
)−i ∀ δ > 0 . (20)

The expression is valid for all δ > 0 since α � = 0 is arbitrary. It

escales the matrix X effectively, making the computation of the in-

erse of XX 

T + dI not severely-conditioned when X is rank-deficient

and δ is properly chosen). The inverse can be calculated accurately

f δ is large, but more factors in the series are required for accu-

ate approximation of X 

† . On the other hand, fewer terms are re-

uired to attain a satisfactory accuracy if δ is smaller, but the in-

erse could not be calculated correctly in finite a precision [48] . 

QR decomposition/factorization is the orthogonal-triangular de- 

omposition of a matrix X [53] , which is expressed as 

 

X ] M×N = [ Q ] M×M 

[ R ] M×N (21) 

Where R is an M × N upper triangular matrix, and Q is a unitary

atrix (orthonormal) of size M × M . The columns of Q , which could

e determined using Gram–Schmidt orthogonalization [54] pro-

ess, become an orthonormal basis for the column space of matrix

. Q and R can be partitioned as 

 = [ Q 1 Q 2 ] (22) 

nd 

 = 

[
R 11 R 12 

0 0 

]
. (23) 

Where Q 1 = n × ( n − p ), Q 2 is n × p, R 11 = ( n − p ) × ( n − p ), and

 12 = ( n − p ) × p . 

Assuming auxiliary matrices K and S 

 = 

(
S T S + 1 

)−1 
S T R 

−1 
11 Q 

T 
1 (24) 

nd 

 = R 

−1 
11 R 12 . (25) 

K is p × n , and S is ( n − p ) × p . Since R 11 is a triangular matrix,

ack-substitutions can be used to compute R −1 
11 

. Moreover, for the

omputation of S and X , the ‘inversion’ of a p × p system ( S T S + I ) is
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required [48] . Lastly, with the use of the matrices S and X and the

QR factorization, the pseudoinverse can be expressed as [55] . 

X 

† = 

[
R 

−1 
11 

(Q 

T 
1 − R 12 K) 
K 

]
. (26)

The expression can be utilized in computing X 

† f for a known

vector f . To calculate X and X 

† f , Q 

T 
1 

f must be generated. Generally,

the original matrix X is sparser than the factors Q and R . Thus,

a typical QR decomposition algorithm cannot harness the sparsity

of X . Consequently, [56] implemented a sparse QR decomposition

algorithm. 

To perform sparse QR factorization, the columns of matrix X

must be noted prior to the QR factorization to minimize substi-

tution. Therefore, the Q and R factors of K P must be generated,

where P is a permutation matrix, generally selected automatically

[56] . If XP = QR , where P is a permutation matrix, which is or-

thonormal (being orthogonal and a unit vector), then the pseu-

doinverse can be expressed as X 

† = P ( QR ) † . 

The absolute values of the first row elements of matrix R are

bigger than those of the other rows [57] , if the columns of X cor-

relate with each other and the first row elements of matrix R com-

prises the maximum energy of the signal. This makes R matrix so

fascinating that several researchers [58] prefer using QR decompo-

sition. Moreover, the computation of QR decomposition complexity

when compared with SVD [54] . 

The LU factorization for an arbitrary matrix X is expressed as

X = LU , where L is the lower triangular matrix and U is the upper

triangular matrix. Cholesky decomposition occurs if L = U 

∗, while

Doolittle factorization occurs if L has 1 ′ s on its main diagonal, and

Crout factorization occurs If U has 1 ′ s on its main diagonal [59] .

For all these cases, the following has been established: 

X 

† = U 

† L † = U 

∗( U U 

∗) −1 
( L ∗L ) 

−1 L ∗. (27)

Stanimirovi ́c & Tasi ́c [59] proposed an algorithm using Cholesky

factorization and general representations of symmetric positive

matrices. They implemented the algorithm using programming

languages DELPHI and MATHEMATICA. 

In summary, the difficulty in determining the network archi-

tecture can be handled using three incremental technique, prun-

ing technique, and the combination of incremental and pruning

technique. The recently used incremental techniques are I-ELM,

Enhanced I-ELM, Convex I-ELM, Gram–Schmidt I-ELM, and Error

Minimized-ELM. Based on testing accuracy and convergence rate,

EM-ELM beats I-ELM. This is because EM-ELM recursively updates

the entire output weights upon addition of a new hidden node

to the network. Pruned-ELM and optimally pruned ELM are the

successfully pruned techniques. Optimally pruned ELM suggests a

multi-objective fitness function that determines the relationship

between accuracy and number of pruned neurons. Moreover, a

combination of incremental and pruning technique was demon-

strated by dynamic adjustment of hidden node parameters using

the recursive expectation-minimization method in DA-ELM, while

the hidden nodes are dynamically deleted according to their sig-

nificance to network performance in d -ELM. 

4. Prediction instability and imbalanced data distributions 

Prediction accuracy is certainly a crucial measurement of mod-

els in risk analysis [19] . Prediction instability is one of the major

limitations of ELM [ 19 , 60 ]. It occurs because of random initializa-

tion of the hidden layer biases and the input weights, and imbal-

anced data distributions. ELM has no mechanism that takes care

of imbalanced data distributions that may be encountered in many

fields [17] as it is assumed that every single class size is compar-

atively balanced and the costs of misclassification are equal in the

entire datasets [18] . The imbalanced class distribution could make
he classification mechanisms learn very complex models, thereby

ver-fitting [19] . The techniques for solving the imbalanced data

roblem are classified into algorithmic techniques and re-sampling

echniques [ 61 , 62 ]. Re-sampling techniques are preferred for most

mbalanced conditions, since only the original training dataset are

odify, rather than adjusting the inherent mechanism of algorith-

ic techniques [19] . Therefore, the re-sampling technique is trans-

ortable and external [63] , and handles an imbalanced learning

ondition effectively by using standard classifier [62] . 

Several studies on imbalance learning only study the influence

f the number of the class samples, whereas the dispersion de-

ree of the data is ignored, leading to suboptimal learning re-

ults [ 17 , 64 , 65 ]. Imbalance in data such as image annotation, gene

xpression, fraud detection, bioinformatics, and oil spill detection

ata [ 66 , 67 ] has a negative impact on classifier performance, re-

ulting in a biased training, where the minority classes are under-

rained and the majority classes are comparatively under-trained.

his culminates in an inaccurate prediction of minority classes.

his shows that minority classes are of vital importance in pre-

iction accuracy. 

Therefore, several researchers have worked towards discover-

ng an accurate, effective and viable prediction mechanism re-

ults [17,68] . Liu et al. [ 68 , 69 ] embedded dissimilarity and cost-

ensitive factors into classifiers to boost classification stability and

inimizes classification costs for classifying high-scale, imbalanced

atasets, and redundant. They further improved the work by the

ntroduction of misclassification costs into a classifier ( Figs. 2 and

 ). This algorithm was named Cost-Sensitive Dissimilar ELM (CS-

 -ELM). The CS- d -ELM algorithm was also enhanced by embed-

ing rejection cost to further enhance classification stability. The

lgorithm was used for classification of Gene Expression Data.

heir report shows that embedding rejection into CS- d -ELM al-

orithm effectually cuts down the average and overall classifica-

ion cost, while the classification accuracy was not significantly

ffected. 

One of the viable method used for class imbalance learning is

nsemble method, which can efficiently improve classification per-

ormance by a combination of a number of weak learners based

n a specific rule [18] . Several varieties of ensemble learning tech-

iques such as stacking, boosting and bagging have been developed

70] , which combine a number of base learners based on different

chemes. Prominent of all the strategies employed for the combi-

ation of base learners in ensemble scheme is weighted voting and

imple voting. The weighted voting method requires assignment

f weights to each base learner and votes by weighting to select

he category of a new sample, while simple voting method selects

he final category of a new sample based on the predicted classes

ith the most votes. Apparently, the weights vary amid the differ-

nt output classes in each base learner. Consequently, the determi-

ation of the weights of base learners is essential towards achiev-

ng a superior classification performance. Weights selection could

e optimized using a genetic algorithm (GA), particle swarm op-

imization (PSO) [71] , as well as differential evolution (DE), which

as been effectively employed in several fields like multi-objective

ptimization, constrained optimization and parallel computing. 

Zhai et al., [15] proposed ensemble dropout extreme learning

ia fuzzy integral (FI-ELM) for data classification. Based on accu-

acy testing, the developed FI-ELM algorithm beats the traditional

LM ( Table 5 ) with a probability of at least 0.95. The outstanding

ccuracy could be due to the testing accuracy of every single basic

lassifier is typically lower than the testing accuracy of ensemble

lassifiers, or fuzzy integral can satisfactorily represent the interac-

ion between basic classifiers. 

Zhang et al. [18] developed an ensemble method based on

eighted extreme learning machine (WELM) for class imbal-

nce data problem. This approach optimized the weights of base
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Fig. 2. Average misclassification costs of d -ELM and CS- d -ELM on diabetes, heart, and leukemia datasets [67] . 

Fig. 3. Average misclassification costs of CS-ELM, CS-SVM, and CS- d -ELM on heart, 

and leukemia datasets [67] . 

Table 5 

accuracy of FI-EML compared with the classical ELM [15] . 

Data sets FI-ELM ELM 

CT 0.9290 0.8683 

Fertility 0.8685 0.8267 

Forest 0.8764 0.8364 

Heart 0.9425 0.8896 

Ionosphere 0.9266 0.8806 

Iris 0.9658 0.9462 

Mammographic 0.8340 0.7808 

Optical 0.9619 0.9208 

Parkinsons 0.9317 0.8646 

Pima 0.8224 0.7676 

Cloud 0.8164 0.7962 

Shuttle 0.9687 0.9486 

Skin 0.9794 0.9546 

Linkage 0.9963 0.9801 
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earners by differential evolution (DE) algorithm, and when ap-

lied to several datasets, WELM demonstrated an improved classi-

cation performance based on the geometric mean G- mean metric

 Table 6 ). 

Furthermore, the ensemble method can be optimized by incor-

oration of reactivated regularization (ER 

2 -ELM), a discriminatory

pproach proposed by [60] . The technique generates base classi-

ers by engaging hybrid seasonings, which consisting of L, γ , p. L

epresents the number on hidden layer nodes, γ stands for regu-

arization factor, and p is the p th candidate from a set of transfer

unctions. The hybrid seasonings are used as the control factors

owards creating a pool through grid sampling. This was done

y conducting probability density estimation to demonstrate how

ifficult it is to identify an instance, and subsequently adopting

 random factor to determine if the ELM base learner is sequen-

ially reactivated. Application of ER 

2 -ELM considerably decreases
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Table 6 

G- mean comparison results with several algorithms [18] . 

Dataset Non-ensemble Vote-based ensemble DE-based ensemble 

(C, L) G-mean (%) (C, L) G- mean (%) (C, L) G-mean (%) 

glass1 (2 16 , 780) 73.46 (2 30 , 590) 74.32 (2 18 , 390) 77.72 

haberman (2 −6 , 350) 60.37 (2 12 , 140) 63.1 (2 28 , 540) 62.68 

ecoli1 (2 −2 , 270) 89.21 (2 40 , 890) 89.72 (2 0 , 390) 91.39 

new-thyroid2 (2 16 , 290) 99.47 (2 10 , 340) 99.47 (2 32 , 560) 99.24 

yeast3 (2 8 , 810) 92.11 (2 4 , 270) 94.25 (2 2 , 490) 94.57 

ecoli3 (2 20 , 40) 88.59 (2 10 , 10) 88.68 (2 18 , 40) 89.5 

glass2 (2 12 , 380) 79.02 (2 8 ,170) 86.45 (2 16 , 350) 87.51 

yeast1_7 (2 10 , 180) 76.01 (2 20 , 370) 78.95 (2 38 , 20) 78.94 

ecoli4 (2 24 , 190) 96.01 (2 8 , 750) 96.33 (2 14 , 310) 96.77 

abalone9_18 (2 24 , 260) 87.89 (2 4 , 120) 89.24 (2 16 , 330) 90.13 

glass5 (2 26 , 390) 94.38 (2 18 , 570) 94.55 (2 12 , 260) 94.55 

yeast5 (2 16 , 480) 93.27 (2 12 , 330) 94.51 (2 28 , 430) 94.59 

Average – 85.82 – 87.46 – 88.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of the MSE for the original OP-ELM (grey dashed line) and the 

proposed TROP-ELM (solid black line) for one data set (Auto Price) for a varying 

amount of neurons (in the order ranked by the LARS) [73] . 
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the complexity in prediction computation when compared with

other ensemble methods. This is mainly because other ensemble

methods did not discriminatory approach. 

Several authors have also used ELM incorporated L 2 regulari-

sation penalty to suppress prediction instability [72–74] . L 2 regu-

larisation penalty, which is in the form of Tikhonov regularization

utilizes square of the regression coefficients to solve minimization

problem, 

min 

λ, ̂ w 

[ 

n ∑ 

i =1 

(
y i − x i ˆ w 

)2 + λ
p ∑ 

j=1 

ˆ w 

2 
j 

] 

(28)

culminating in a bias-variance adjustment [73] . Where, x i , y i , w i 

and n are the inputs, outputs, regression weights, and sample size.

λ is the Tikhonov penalty coefficient, which can be determined

using the Bayesian information criterion or Nelder–Mead simplex

method (fminsearch in MATLAB) [ 72 , 75 ]. For regularized ELM with

L 2 penalty, addressing outlier interferences by weighting the sum

of squares we have 

min λ,d, ̂ w 

[ 
λ

∑ n 

i =1 

(
d i 

(
y i − x i ˆ w 

))2 + 

∑ p 

j=1 
ˆ w 

2 
j 

] 
, (29)

where the di are the weights used in addressing the outliers. 

Incorporation of L 2 regularization penalty promotes predictic-

tion accuracy, and minimized and stabilize MSE with an increas-

ing number of neurons [73] . This performance is better than the

traditional ELM and variances that employs a Gauss-Markov solu-

tion, which uses Ordinary Least Squares (OLS). However, Like OLS,

L 2 penalty provides no parsimonious solution because it retains all

the variables to enable further interpretability [76] . 

The OP-ELM proposed for simplification of network structure

for large data using an LOO criterion for the choice of the optimum

number of neurons in Section 2 could be regularized for enhanced

prediction stability. Allen [77] proposed the use of Prediction Sum

of Squares [78] to give LOO error a closed matrix form, thereby en-

suring MSE fast computation speed. The formula for Allen’s PRESS

is given by 

MS E PRESS = 

1 

n 

n ∑ 

n =1 

( 

X i . 
(
X 

T X 

)−1 
X 

T y i − y i 

X i . 
(
X 

T X 

)−1 
X 

T 
i 

− 1 

) 2 

, (30)

meaning that each observation is identified using the other n − 1

observations and the residuals are finally squared and summed up

[72] . Considering Tikhonov regularization Eq. (14) becomes 

MS E PRESS ( λ) = 

1 

n 

n ∑ 

n =1 

( 

X i . 
(
X 

T X + λI 
)−1 

X 

T y i − y i 

X i . 
(
X 

T X + λI 
)−1 

X 

T 
i 

− 1 

) 2 

, 

being the regular ized v er sion. (31)
For regression problem, OP-ELM network can be regularized us-

ng L 2 penalty, that is Tikhonov regularized OP-ELM (TROP-ELM)

endasse et al. [73] investigated ten datasets and reported that

veragely, TROP-ELM performs on ∼27% better than the OP-ELM,

iving a standard deviation of 52% lower than that of the OP-

LM. TROP-ELM employs both L 1 and L 2 penalties in cascade to re-

uces over-fitting, the negative influences of random initialization

nd avoid large computational times problems usually experienced

hen the two penalties are intertwined [ 73 , 79 ]. Fig. 4 compares

he performance of OP-ELM and TROP-ELM on Auto price dataset

ased on MSE. 

L 1 penalty was implemented on the output weights in OP-ELM

sing Least Angle Regression (LARS) between the hidden and out-

ut layer to rank the best neuron. However, the implementation of

P-ELM can be marred (cause numerical instability) if the dataset

s not fully ranked. Implementation of TROP-ELM with an ensemble

f regularization methods could provide a more robust and scal-

ble model. Mozaffari et al. [72] proposed an ensemble of regular-

zed OP-ELM with negative correlation (OP-ELM-ER-NCL). They re-

orted that the redundant complexity of hidden neurons reduces,

nd the numerical stability of identifier increases. The inclusion

f negative correlation learning approach enables the ensemble to

hoose the most effective regularization methods and remove the

edundant (ineffective) ones, thereby decreasing the complexity of

he resulting ensemble. 

Xiao et al., [17] used class-specific cost regulation ELM (CCR-

LM) to classify imbalanced data by introduction of class-specific

egulation cost for misclassification of each class in the perfor-

ance index. This is capable of reducing the impacts of a num-

er of class samples, as well as that of the dispersion degree

f the data. Their report shows that CCR-ELM is capable of sig-

ificant improvement of classification, as well as generalization

erformance in comparison with the classical ELM. CCR-ELM is
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Table 7 

Classification accuracy of four algorithms on air pollutant data set [65] . 

HS-OSELM OSELM ELM MC-OSELM SM-OSELM 

Training time (s) 0.2652 0.2184 0.0611 0.0649 0.3853 

Test time (s) 0.0597 0.0591 0.0659 0.0615 0.0619 

Minority training accuracy (%) 0.9175 0.1967 0.2377 0.8779 0.853 

Majority training accuracy (%) 0.9013 0.9918 0.9903 0.9081 0.8998 

Minority test accuracy (%) 0.7353 0.4412 0.3529 0.7157 0.7059 

Majority test accuracy (%) 0.8642 0.992 0.9888 0.8562 0.8498 

Whole training accuracy (%) 0.9089 0.9253 0.9274 0.8979 0.8804 

Whole test accuracy (%) 0.8462 0.9148 0.8997 0.8365 0.8297 

G-mean 0.7971 0.6597 0.5905 0.7818 0.7736 

Fig. 5. Prediction stability of FI-ELM compared with the traditional ELM on (a) data set Ionosphere, (b) data set Iris, (c) data set Forest, (d) data set Optical [15] . 
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irectly efficient for both binary classification and multiclass clas-

ification. Akbulut et al. [64] proposed a novel neutrosophic set

heory weighted based ELM system, referred to as neutrosophic

eighted extreme learning machine (NWELM). This scheme uses

n neutrosophic c-means (NCM) clustering algorithm to approxi-

ate ELM output weights. The report reveals that the developed

WELM scheme is efficient in handling the problem of class im-

alance. In comparison with two ensemble-based weighted ELM,

eighted ELM and unweighted ELM methods, NEWLM proved to

e more effective for both real binary and artificial imbalance data

ets. 

Mao et al., [80] proposed OS-ELM with two-stage hybrid strat-

gy, using Sherman-Morrison matrix inversion in a novel online

ast leave-one-out cross-validation (LOO 

–CV) to solve online im-

alance data problem and an add-delete mechanism to update

etwork weights. To model the distribution of the minority class

ata at the offline stage, principal curve, and database technique

as used. This technique was tested using real-world Macau air

ollutant forecasting dataset and four UCI datasets. They reported

hat the proposed OS-ELM with two-stage hybrid approach per-

orms better than the traditional ELM, meta-cognitive OS-ELM, and

S-ELM in terms of numerical stability and generalization perfor-

ance. In a more recent study, Mao et al. [65] presented a novel

ybrid sampling online ELM for sequential class-imbalanced data

earning and deduction process. This is aimed to balance the ma-
ority and minority classes with the same sequential distribution

haracteristic of the source data. The technique comprises offline

nd online stages. The principal curve was introduced to build con-

dence regions of the majority and minority classes at the of-

ine stage. From the forgoing, under-sampling of majority class

nd over-sampling of minority class are performed to form new

ynthetic samples to establish the initial ELM model. The most

aluable synthetic samples of majority class were selected based

n sample significance at the online stage. Subsequently, a new

OO 

–CV algorithm using Cholesky decomposition was suggested to

ecide whether to update the weight of the ELM network during

he online stage or not. It was established that the proposed on-

ine ELM exhibits upper bound of information loss. They tested the

nline ELM scheme using one real-world air pollutant forecasting

ataset and seven UCI datasets. The online ELM is capable of si-

ultaneous improvement of both majority and minority classes’

lassification performance based on ROC curve, G-mean value, and

ccuracy in comparison with ELM, OS-ELM, OSELM with SMOTE

cheme and meta-cognitive OS-ELM ( Table 7 ). 

Zhai et al. [15] proposed ensemble dropout extreme learning

ia fuzzy integral (FI-ELM) for data classification. The developed FI-

LM algorithm beats the traditional ELM based on prediction sta-

ility ( Fig. 5 ). Therefore, the developed FI-ELM algorithm is capable

f improving prediction stability. The outstanding performance of

I-ELM in classification problem is ascribed to the following points:
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Fig. 6. The mean distortion errors of MC, QMC and RO on 3 regressions (a, b & c) and classification (d, e & f) data sets over 50 runs [20] . 
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(1) Fuzzy integral is capable of modeling the relations between

the basic classifiers with complementary information since

it is a tool for classifier fusion. 

(2) Since the basic classifiers developed using dropout method

exhibit different architectures, the basic classifiers exhibit a

remarkable diversity. 

(3) For each basic classifier employed for fusion, it was trained

on the entire training set rather than on a subset of the

set. Therefore, all basic classifiers trained on the training set

could see every instance of the training set. 

There is a need to study the influence of dropout probability

on testing accuracy, and the relationship between testing accuracy

and dropout probability. The upper bound of the number of

dropout nodes is required. Moreover, the effect of random ini-

tialization with different probability distributions like exponential

distribution, the Gaussian distribution, uniform distribution, etc.)

on testing accuracy needs to be studied. 

In summary, the use of embedded dissimilarity and cost-

sensitive factors is capable of boosting classification stability and

minimizing the cost of classification for high-scale, imbalanced,

and redundant datasets. Moreover, the problem of data imbalance

can be addressed by using an algorithm-based technique, and a

leave-one-out cross-validation algorithm using Sherman-Morrison

matrix inversion lemma, and using Cholesky decomposition, while

network weights update could be done via the add-delete mech-

anism. Furthermore, ensemble method can be optimized by in-

corporation of reactivated regularization such as L 1 and L 2 regu-

larisation penalty, as in Tikhonov regularized OP-ELM (TROP-ELM)

to promote prediction accuracy and minimized and stabilize MSE

with an increasing number of neurons. 
. Poor capability of sample structure preserving (SSP) 

Despite the recent prominence of ELM due to remarkable

earning speed, little or no manual intervention, and good gen-

ralization performance, the generalization performance could be

orse than that of SVM algorithm for small sample cases or small

etwork size. This is ascribed to the use of Monte Carlo (MC)

ampling technique for the generation of random input weights.

LM models with small network size exhibit random input weight

ith poor SSP capability, leading to poor generalization perfor-

ance [20] . Several authors have attempted to seek panacea to

his by enhancing ELM using manifold learning techniques such

s Riemannian metric [81] , graph Laplacian [82] and manifold

egularization [ 83 , 84 ]. This has only helped in preserving the local

eighbor structure information as the output weights learning

roceeds without considering the local structure loss resulting

rom random input weights, which is more crucial to the per-

ormance of the overall learning [20] . Wang and Lu [20] made a

oncerted effort towards proffering a remarkable solution to poor

SP capability by using Quasi-Monte Carlo (QMC) technique, and

nified random orthogonal (RO) projection technique for both

egression and classification datasets. They reported that the QMC

echnique exhibited a deteriorated SSP performance worse than

r similar to that of the MC technique for classification (Sonar,

eukemia and Conlon Cancer cases) datasets ( Fig. 6 ). On the

ther hand, both the QMC and RO projection technique exhibited

 remarkable improvement in the SSP capability for regression

atasets (AutoMPG, Concrete Slump, and Machine CPU) ( Fig. 6 ).

herefore, the RO projection technique exhibited a remarkable so-

ution to poor SSP capability for both regression and classification

atasets. Yang [85] developed a novel approach based on ELM and

uman visual system (HVS) as an algorithm for multi-focus image



P.A. Alaba, S.I. Popoola and L. Olatomiwa et al. / Neurocomputing 350 (2019) 70–90 81 

Algorithm 1 Construction of the random orthogonal projection matrix. 

1. Input: 

2. Input matrix X n × N consists of N n-dimensional input vectors; 

3. Objective dimension L( de f ine n̄ = min { L, n } ) ;
4. Output: 

5. The random orthogonal projection matrix W L × n . 

6. Step 1: Generate a random matrix A L ×n̄ by MC method. 

7. Step 2: Orthogonalize A by column based on Gram–Schmidt orthogonalization 

method, and obtain A orth 

8. Step 3: 

9. (1) If L < n 

10. Compute W 

pca , whose rows consist of the first L loading vectors 

corresponding to the first L principal components on input matrix X, and let 

W L×n = A orth W 

pca 

11. (2) Else 

12. W L×n = A orth . 

13. Return: random orthogonal projection matrix W L × n . 

f  

a  

(  

u

M

 

t

t

 

(  

b  

E  

f  

f

6

r

 

o  

t  

u  

r  

a

 

l  

a  

l  

a  

b  

t  

t  

p  

w  

p  

p  

t  

m

 

d  

b  

o  

r  

l

7

 

a  

v  

[  

c  

m  

t  

g  

c  

[  

t  

a  

p  

t  

c  

g  

t  

a

1  

m  

t  

r

 

s  

b  

a  

[  

H  

M  

u  

[  

i  

t  

t  

P  

o  

o  

D  

t  

a  

t  

d  

t  

u  

e  

a  

8  

b  

i  

e  

m  

a  

c  

o

 

t  

m  

m  

i  
usion. They reported a high structural similarity, making the

lgorithm superior to a number of widely used fusion techniques

 Algorithm 1 ). The degree of structural similarity was measured

sing modified structural similarity metric (MSSIM) given as 

SSIM 

⎧ ⎪ ⎨ 

⎪ ⎩ 

t ( ω ) SSIM(A , F | ω ) + ( 1 − t ( ω ) ) SSIM(B, F | ω) , 
f or SSIM(A , B | ω ) ≥ 0 . 75 

max { S S IM(A , F | ω ) , SSIM(B, F | ω) } , 
f or SSIM(A , B | ω ) ≤ 0 . 75 

(32) 

Where SSIM represents the structural similarity of the image,

 ( ω) is the local weights and it is defined as: 

 ( ω ) = 

s (A | ω) 

s (A | ω) + s (B | ω) 
(33) 

s ( A | ω) is the variance of the image A in ω. 

In summary, the poor capability of sample structure preserving

SSP) can be remarkably handled by RO projection technique for

oth regression and classification datasets. An approach based on

LM and human visual system (HVS) as an algorithm is also ef-

ective and exhibit high structural similarity for multi-focus image

usion. 

. Difficulty in accommodating lateral inhibition by direct 

andom feature mapping 

The random feature mapping involves the introduction of

ptimization constraint ( Fig. 7 ), which is the fundamental fea-

ures of ELM. Feature mapping in ELM enhances its capacity for

niversal approximation and efficiency in training. Furthermore,

andom feature mapping enhances generalization performances

nd reduces over-fitting [2] . 

Physiological research revealed that similar layer neurons are

aterally inhibited to each other such that the outputs of each layer

re sparse [86] . Meanwhile, it is difficult for ELM to accommodate

ateral inhibition by direct use of random feature mapping [21] . Yu

nd Sun [21] developed a sparse coding ELM (ScELM) algorithm

y using sparse coding method for mapping of the inputs layer

o the hidden layer instead of the random mapping employed by

he traditional ELM. The encoding stage was done using gradient

rojection (GP) based technique with l1 norm optimization [87] ,

hile Lagrange multiplier algorithm was used in learning the out-

ut weights between hidden and output layers. The sparsity in the

roposed ScELM is to make the hidden-layer feature representa-

ions more relevant and unique to enhance classification perfor-

ance. 

In summary, the use of sparse coding method rather than ran-

om mapping for mapping of the inputs layer to the hidden layer

y using gradient projection (GP) based technique with l1 norm

n  
ptimization for the encoding stage, and Lagrange multiplier algo-

ithm in learning the output weights between hidden and output

ayers. 

. Challenges with big data 

The global interest in Big data, as well as its economic value

nd adoption, have continued to grow exponentially [88] . The ad-

ent of emerging technologies (such as Internet of Things (IoT)

 89 , 90 ], Machine-to-Machine (M2M) communications [91] , and

loud/fog computing [92–94] ), and the high proliferation of smart

obile devices [95] has contributed immensely to the evolution of

he Big data era. ELM has been widely and successfully applied to

ain useful insights from data obtained in different domains in-

luding health [96–98] , finance [99] , commerce [100] , aerospace

 101 , 102 ], agriculture [ 103 , 104 ], and energy [ 105 , 106 ]. The adop-

ion of conventional ELM for large-scale data learning has become

 serious challenge for both academic researchers and industry ex-

erts. This is partly because classical ELM was primarily designed

o run on a machine that has only one processing unit. In this

ase, all the instances in the training dataset are loaded on a sin-

le processor and the same output weight vector is used. In con-

rast, Big data are usually large in volume; they are often produced

t high velocity, and they come from heterogeneous sources [107–

09] . Consequently, information is usually stored in a distributed

anner to ensure data confidentiality in most Big data applica-

ions. So, the ability of classical ELM to process large-scale data is

estricted by limited available memory space. 

Much work has been done to improve the efficiency of clas-

ical ELM such that data streams from different sources can

e processed in parallel and distributed manner. The combined

dvantages of parallel processing and MapReduce framework

110–116] may be exploited to achieve big data learning in ELM.

e et al. [117] introduced and applied Parallel Extreme Learning

achine (PELM) to solve the regression problem in Big datasets

sing MapReduce framework. In a similar work, Zhao et al.

118] successfully solved a large-scale recommendation problem

n location-based social network applications using the combined

echnologies of parallel processing and MapReduce model. Even

hough the speed of large-scale data learning was much faster in

ELM than in classical ELM, the storage of intermediate results

n disks and multiple copies of each task increased the training

verhead and reduced the training speed and accuracy of PELM.

uan et al. [119] achieved a higher learning speed and reduce the

raining cost in big data classification by implementing three sub-

lgorithms in parallel using Spark framework. The computations of

he hidden layer output matrix and matrix decompositions were

one locally. Meanwhile, intermediate results were retained in dis-

ributed memory and cache. In addition, the diagonal matrix was

sed as broadcast variables instead of making several copies for

ach task. The details of the comparative analysis of the developed

lgorithm with other ELM variants are provided in Table 8 and Fig.

 . Freund [120] applied AdaBoost [121] technique to MapReduce-

ased parallel ELM in training massive dataset. Adaboost method

mproved the learning accuracy and reduced the training cost. Luo

t al. [122] suggested the use of a distributed model for the imple-

entation of ELM algorithm in parallel machines. They designated

n output weight vector to a particular processor and computed a

ommon output weight vector using Alternating Direction Method

f Multipliers (ADMM) technique [123] . 

Moreover, a bulk of the training time is used up on the compu-

ation of Moore–Penrose generalized inverse of the hidden layer

atrix In classical ELM [124] . When dealing with non-singular

atrices, Singular Value Decomposition (SVD) technique of solv-

ng this matrix tends to perform better than iterative, orthogo-

alization, and orthogonal techniques [ 38 , 50 , 125 ]. However, the
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Fig. 7. ELM random feature mapping [1] . 

Table 8 

Performance evaluation of ELM, PELM, ELM 

∗ , ELM 

∗-Improved, and SELM on different large-scale datasets [119] . 

Dataset ELM PELM ELM 

∗ ELM 

∗-Improved SELM 

Training 

accuracy 

Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 

Patient 0.7842 0.7708 0.7916 0.7689 0.7759 0.7659 0.7903 0.7619 0.7981 0.7689 

Outpatient 0.7794 0.7602 0.7654 0.7684 0.7812 0.7626 0.7871 0.7542 0.7801 0.7589 

Medicine 0.7642 0.7512 0.7589 0.7601 0.7512 0.7488 0.7546 0.7498 0.7588 0.7568 

Breast Cancer 0.7215 0.7204 0.7406 0.7389 0.7386 0.7402 0.7462 0.7418 0.7506 0.7584 

Heart Disease 0.6974 0.7012 0.7422 0.7428 0.7399 0.7482 0.7368 0.7435 0.7501 0.7424 

Chronic Kidney Disease 0.7934 0.8012 0.8022 0.8101 0.7873 0.7917 0.7901 0.8044 0.7894 0.8103 

Hepatitis 0.8019 0.8125 0.7982 0.8013 0.7948 0.8093 0.7899 0.8201 0.7934 0.8094 

Gastritis 0.7943 0.8002 0.8014 0.7945 0.8011 0.7917 0.7984 0.7911 0.8045 0.7967 

Hypertension 0.7612 0.7741 0.7904 0.8017 0.7933 0.8049 0.8023 0.8113 0.7991 0.8117 

Fig. 8. Runtime under different conditions: (a) dimensionality (b) hidden nodes (c) size of samples (d) workers [119] . 
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rocessing time in SVD method increases as the volume of the

raining data becomes huge [126] . The capability of SVD to han-

le large-scale data was extended in [127] and the CANDECOMP

nd TUCKER decomposition methods were realized. Massive data

an, therefore, be trained in a cost-effective manner using scal-

ble tensor decomposition based ELM [128] . Tucker decomposi-

ion and PARAFAC decomposition outperformed the classical ELM

hen dealing with scalability issues. Application of other forms of

UCKER and CANDECOMP/PARAFAC decomposition methods may

urther enhance the scalability and reduce the dimension of at-

ributes required to the desired minimum [128] . 

In big data classification applications, there are usually occa-

ions when new data instances are to be added. At other times,

he removal of outdated data instances, and correction of errors

n existing training data may become necessary. In each of these

ases, traditional ELM requires retraining with the updated training

ataset; and this consumes more time since the training dataset

s considered huge. Therefore, it becomes very difficult to manage

he rapid updating of large-scale training data. However, the re-

raining process can be restricted to the overlapped information

etween the old training dataset and the updated training dataset

o reduce the training time. Xin et al. [129] proposed another vari-

nt of ELM to handle the challenging task of rapid updating in

ig data learning. The matrix multiplication was found to be most

ime-consuming and its computation can be achieved through in-

remental, decremental, and correctional learning methods. Hence,

raditional ELM can be improved to accommodate these learning

ethods. 

Learning algorithms developed based on kernels are known for

heir good generalization performance [130] . In Kernel Extreme

earning Machine (KELM), a kernel-based learning method is intro-

uced into classical ELM to improve its generalization performance.

his variant of ELM has been widely employed for both regres-

ion and classification applications in different fields [131–139] .

nlike other kernel-based learning methods, KELM does not con-

ider bias factor as part of its optimization constraints. The elimi-

ation of the bias term is responsible for the improved generaliza-

ion performance and the reduced computational requirements in

ELM. However, the generalization ability of KELM is much limited

o small-scale datasets since its performance on big datasets was

eported to be relatively low [ 5 , 140 ]. In addition, large-scale data

earning in KELM consumes more time because all the instances in

he large-scale training dataset are used as support vectors [141] .

his will consequently increase the size of the kernel matrix and

t will make the process less computationally efficient. Deng et al.,

140] proposed that the choice of the support vectors should be

 portion of the Big dataset. By so doing, the kernel matrix will

e reduced and the output weight matrix can be computed using

arush–Kuhn–Tucker (KKT) theorem [142] . In most practical Big

ata applications, the number of support vectors is usually far less

han the number of training samples. In order to realize good es-

imation of any continuous target function in kernel-based ELM, it

as proven in [140] that only the Strict Positive Definite (SPD) ker-

els [143] can be used because they possess the required universal

earning properties as explained in [25] . The resulting kernel-based

upervised algorithm is called Reduced Kernel Extreme Learning

achine (RKELM). The generalization performance and the compu-

ational efficiency of RKELM were tested on six different large-scale

atasets. When compared to KELM, the new variant of ELM per-

ormed better with faster training speed and the large-scale learn-

ng process requires less memory space. The higher efficiency ex-

ibited by RKELM was attributed to the sparsity of the datasets.

n addition, a considerable amount of training time was saved be-

ause the support vectors were produced by only a few non-zero

lements. On the other hand, traditional ELM wasted much time

n the learning process because support vectors were produced
or all elements of the sparse datasets. A considerably large num-

er of support vectors will introduce the challenge of over-fitting

n RKELM. This problem can be handled by properly fine-tuning

he control parameter during the minimization process of the out-

ut weight function. However, further work must be done to ad-

ress the sparseness of RKELM. In another work [144] , the iterative

earning operation was eliminated to achieve an efficient and fast

ulti-label classification algorithm. 

In summary, the adoption of parallel computing based on

apReduce model has demonstrated better efficiency in terms of

raining speed, accuracy, and generalization performance than the

onventional serial processing methods. To properly handle the

roblems of additional overhead and relatively slow training speed

aused by intermediate operations in parallel ELM, the large-scale

raining data can be partitioned to enable local computations of

arallel algorithms on Spark framework. By so doing, SELM pro-

uced the best speedup relative to the performance of PELM, ELM 

∗,

nd ELM 

∗-Improved algorithms. 

. More on big data: acceleration of ELM for practical big data 

asks 

To extend the capability of ELM for handling large scale or

ig data tasks (such as image classification, voice recognition,

nd object detection & tracking), authors in [ 145 , 146 ] proposed

ultilayer or hierarchical ELM (H-ELM) frameworks that are

ased on the universal approximation capability of the original

LM. Thus, H-ELM has extended the original ELM from shallow

rchitecture to deep architecture, which has potentially provided

 boost to the capability of ELM. Generally, deep architectures

nvolve two major operations, namely, unsupervised multilayer

eatures extraction and supervised features classification [145] .

hese operations require large amounts of computing resources

ecause of the intensive matrix operations that are involved and

ost plenty of computational time on normal Central Processing

nit (CPU). Thus, researchers have explored several methods to

nhance the utilization of ELM for processing tasks in the big data

omain. Examples of such methods include Hadoop’s MapReduce

ramework, Graphical Processing Unit (GPU) as well as a hybrid of

n-memory and GPU computing. 

Hadoop’s MapReduce framework is an open source model cre-

ted by Google for processing large data sets through automatic

arallelization and execution on a large cluster of distributed com-

uters. The runtime machine in the framework handles machine

ailures and also schedules inter-machine communication for ef-

cient use of network resources and the Hadoop Distributed File

ystem (HDFS) based disk operations [110] . There are two phases

f computation in any MapReduce job, which are the map function

nd reduce function and they are fully parallelized in the MapRe-

uce framework. He et al. [117] developed an efficient Parallel ELM

PELM) based on MapReduce framework for regression tasks with

ery large-scale datasets. The authors designed two MapReduce

obs to implement the parallel ELM algorithm. The first involves

he calculation of hidden node output matrix H and the second

s the calculation of H 

T x H and H 

T x T matrices [117] . The pre-

ented experimental results by the authors showed that the algo-

ithm did not only process large-scale datasets but also achieved

ood speedup, scaleup, and size up performances. 

Xin et al. [147] developed the ELM 

∗, which is a distributed ELM

ased on MapReduce to further improve on the computational effi-

iency of PELM [117] . The authors implemented the Moore Penrose

nverse matrix using the parallel attributes of MapReduce frame-

ork while the output weight vector in ELM was computed with

entralized computing thereby utilizing just one MapReduce job

nlike the two that was used in PELM. 
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Table 9 

Comparison of averaged computation time (in second) using CPU and GPU for the different oELM Classifiers [154] . 

CPU GPU 

Dataset oELM oELM under oELM over oELM cost oELM oELM under oELM over oELM cost 

HYP 13.04 12.02 26.56 13.04 1.32 1.19 1.19 1.32 

LED 13.38 12.93 19.56 13.38 1.40 1.21 1.21 1.40 

Poker 13.13 12.15 20.89 13.13 1.35 1.21 1.21 1.35 

RBF B 13.32 12.36 19.41 13.32 1.39 1.20 1.20 1.39 

SEA 12.21 11.16 17.58 12.21 1.20 1.10 1.10 1.20 

Average 13.02 12.12 20.80 13.02 1.33 1.18 1.18 1.33 
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Furthermore, Wang et al. [148] developed the Parallel On-

line Sequential Extreme Learning Machine (POS-ELM) by adapt-

ing the Online Sequential Extreme Learning Machine (OS-ELM) to

the MapReduce framework in order to train incremental data sam-

ples in parallel. Several other scholars [149–152] have recently fo-

cused on the study of parallel ELM algorithm based on MapReduce

framework. Despite these effort s, MapReduce is a disk-based oper-

ation and every stage must interact with other stages via the HDFS.

Therefore, the overheads and the huge amount of disk I/O opera-

tions that are involved in MapReduce jobs are limiting factors in

the MapReduce framework approach to ELM enhancement. 

In recent years, Graphics Processing Units (GPUs) have arisen

in the High-Performance Computing (HPC) domain as parallel pro-

cessors due to their competitive prices and high computational

power. With the introduction of the NVIDIA Compute Unified

Device Architecture (CUDA) library, deep learning library called

cuDNN as well as the generic OpenCL and OpenACC libraries, it has

become easier to leverage on GPU for general-purpose (GPGPU)

computation without having to rewrite algorithms as video card

operations. Speedups of up to 300 times are achievable through

execution of codes on a single GPU instead of a CPU, and with

multiple GPUs, higher speedups can be obtained [153] . Thus, schol-

ars have leveraged on GPUs to enhance the computational effi-

ciency of ELM for solving class imbalance problems and for big

data applications. Krawczyk [154] proposed the implementation of

online ELM (oELM) for class imbalance problem and utilized GPU

for rapid updating of the classifier. According to the author, the

approach produced a highly efficient mining of high-speed, drifting

and imbalanced data streams with GPU providing significant accel-

eration. The methods investigated in the oELM to mitigate the class

imbalance problem are undersampling (oELM under ), oversampling

(oELM over ) and cost-sensitive adaptation (oELM cost ) and the bench-

mark datasets used for the experiments are HYP, LED, Poker and

RBF B . Table 9 clearly illustrates the acceleration achieved in the

study when GPU was employed as against when the computation

was done on CPU. As presented in the Table, the average improve-

ment across the methods are oELM (89.78%), oELM under (90.26%),

oELM over (94.33%) and oELM cost (91.30%). 

Alia-Martinez et al. [155] developed a library in R language for

GPU acceleration of ELM for big datasets. The authors performed

a sensitivity analysis, which identified matrix multiplication as the

most computationally demanding operations that consume 99% of

execution time in ELM. Thus, this operation was executed on the

GPU, which consequently achieved a speedup rate of about 15

times in most computation scenarios. In a codicil, a speedup rate

of 6 times was achieved in the study when GPU was employed for

the selection and training of thousands of models using a genetic

algorithm to fine-tune ELM. 

Moreover, GPU-acceleration of ELM has been employed by dif-

ferent authors in specific big data application areas such as re-

mote sensing [156] , hyperspectral image classification [157] and

multimodal sentiment analysis [158] . In addition to a hybrid

of in-memory computing with GPU as implemented in [159] ,

CPU and GPU were also engaged cooperatively in [160] to fur-
 f  
her produce powerful high computational platforms for ELM

mplementation. 

. Difficulties in handling a block of data 

Handling a block of data, or incremental training samples (one-

y-one or chunk-by-chunk) is another serious drawback in ELM.

ncremental training samples (such as dynamic changes of tidal

evel) are presented chunk-by-chunk or one by one and they in-

olve time-varying dynamics. However, it is difficult to develop a

odel that is suitable for time-varying process, making identifi-

ation and prediction challenging in real-time [22] . To obtain ac-

urate predictions for time-varying systems in real time, develop-

ent of an adaptive model, which exhibits adaptive structure and

arameters, is practically required. 

Several authors have employed sampling and learning tech-

ique called sequential learning. Sequential learning is an adaptive

earning approach that processes data in a sequential manner and

unes network accordingly [161] . Sequential learning scheme was

nvented as a resource allocation network (RAN) that learns sam-

les one by one [162] . The use of RAN makes the network more

omplex by sequential addition of new samples to the network. To

roffer solution to this drawback, several variances of RAN have

een developed [163] . 

Liang et al. and Sun et al. [ 13 , 164 ] investigated another kind

f sequential learning technique called online sequential extreme

earning machine (OS-ELM), which has the capacity to handle in-

remental training samples. This is because OS-ELM uses incre-

ental data for adjustment of training data set towards imple-

enting online learning, meaning that the system does not require

ll the training data to be available before computation [165] OS-

LM was obtained using the theory of ELM [1, 2] , due to its excep-

ionally fast learning speed and generalization performance, and

ts performance has been assessed using several standard prob-

ems [166] . Migration from ELM to OS-ELM (as one of ELM vari-

nce) is a migration from batch learning to sequential learning,

hich is capable of handling a block of data with various chunk

ize chunk by chunk. Although OS-ELM is proficient in handling

 block of data chunk-by-chunk with a faster training speed and

ood generalization performance, training with conventional OS-

LM engenders a continuous increase in dimension, resulting in

dimensionality curse”. Consequently, conventional OS-ELM is not

ppropriate for data that arrives ceaselessly or large-scale datasets,

s well as online identification and prediction of time-varying sys-

ems whose dynamics are affected by environmental disturbances

nd inner condition. 

For easy programming, the Moore–Penrose generalized inverse

f the independent variable matrix was calculated SVD technique.

s the number of samples becomes large, the solution to the

ultiple regression problems may not be feasible in “memory-

esident” mode because the memory of a single processing unit

ill no longer accommodate the high-dimensional matrix. There-

ore, a “disk-resident” parallel ELM algorithm was recommended

or multiple regression systems. Wang et al. [148] developed a
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Table 10 

Comparison of accuracy of ELM algorithms with different block sizes [151] . 

Dataset 

Chunk 

size (KB) PEOS-ELM-B PEOS-ELM-S PEOS-ELM-C PEOS-ELM-BSC 

Training 

accuracy 

Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 

Training 

accuracy 

Testing 

accuracy 

MNIST 1885 0.883 0.893 0.882 0.890 0.882 0.890 0.882 0.890 

3770 0.881 0.888 0.881 0.890 0.883 0.892 0.884 0.891 

7540 0.882 0.892 0.881 0.888 0.882 0.892 0.881 0.888 

15,080 0.881 0.890 0.880 0.890 0.883 0.891 0.882 0.892 

DNA 9 0.955 0.927 0.956 0.922 0.956 0.922 0.959 0.922 

18 0.954 0.926 0.956 0.926 0.956 0.924 0.951 0.916 

36 0.951 0.925 0.958 0.924 0.951 0.917 0.953 0.922 

72 0.954 0.920 0.955 0.918 0.950 0.926 0.950 0.916 

KDDCup99 8354 0.993 0.857 0.994 0.858 0.994 0.857 0.994 0.858 

16,708 0.994 0.858 0.994 0.857 0.994 0.858 0.994 0.858 

33,416 0.993 0.857 0.994 0.858 0.994 0.858 0.994 0.858 

66,832 0.994 0.858 0.994 0.858 0.993 0.858 0.994 0.858 
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ew variant of ELM algorithm that calculates the hidden layer out-

ut matrix of big data fragments in parallel based on traditional

LM and OS-ELM algorithms to achieve efficient big data learn-

ng using MapReduce programming model. Unlike OS-ELM where

eception of training data takes place at different times, training

ata are received at the same time in POS-ELM. The output weight

atrix is computed in the same way in both OS-ELM and POS-

LM but the times spent in computing the hidden layer output

atrix differ. The developed algorithm, Parallel Online Sequential

xtreme Learning Machine (POS-ELM), can handle learning in big

ata while maintaining good accuracy as the volume of training

ata and the number of attribute increase. Specifically, POS-ELM

chieves higher speedup with a larger volume of learning data.

n addition to the suitability of POS-ELM for large-scale online se-

uential learning, the proposed algorithm can equally be adopted

or learning on the data received at once. In recent time, some

esearchers [ 117 , 147 , 148 , 167 , 168 ] have implemented OS-ELM algo-

ithm in parallel machines to reduce the time spent in training

arge-scale datasets; but the problems introduced by noisy dataset

ere not investigated. Huang et al. [151] developed a Parallel En-

emble of Online Sequential ELM (PEOS-ELM) algorithm to paral-

elize the computations of the hidden layer output matrix in Map

hase and the output weights matrix in Reduced phase for differ-

nt ensemble models. The results of the performance evaluation of

EOS-ELM relative to OS-ELM variants and its variants are shown

n Table 10 and Fig. 9 . 

Recently, the use of WOS-ELMK [169] for Class Imbalance Learn-

ng (CIL) of big data streams has also been exploited but led to

n increase in computational complexity. Ding et al. [169] pro-

osed that a fixed-size window method can be used to cut the

omputational cost in WOS-ELMK. At each time step, a fixed

mount of the oldest training samples is removed from the win-

ow. The training process in this method involves initiation, decre-

ental learning, and sequential learning. The performance of

his new ELM variant is comparable to that of VWOS-ELM pro-

osed by Mirza and Lin [170] . Therefore, window-based ELMK

an be used to save computational load in big data learning

 Table 11 ). 

Furthermore, OS-ELM could be improved by the addition of a

runing technique to the hidden units in addition to the origi-

al unit, which entails sequential addition of samples, making the

etwork adaptive to real-time alteration of time-varying dynam-

cs [22] . Yin [22] developed an online identification and prediction

cheme called variable structure OS-ELM (VS-OSELM) for a time-

arying system by adding a pruning strategy in OS-ELM to delete

bsolete hidden units. In VS-OSELM, the representation ability of

he hidden unit to the system dynamic is obtained by an index
alled normalized error reduction ratio ( nerr ). The hidden units

ith a small value of nerr are considered as outdated and removed

rom the network. Yin [22] implemented VS-OSELM for online

rediction of tidal level Old Port Tampa in Florida, United States,

s a complex time-varying process to assess its representation abil-

ty in time-varying schemes. During the identification process, the

ddition and pruning of hidden units are carried out concurrently.

pon completion of the network structure adjustment, the connec-

ion parameters are computed. The simulation results show that

S-OSELM is efficient for identifying and predicting complex time-

arying systems with fast learning speed and high prediction ac-

uracy ( Table 10 ). 

Luo et al. [165] seek to improve OS-ELM via incorporation

f timeliness management structure into ELM for learning data.

he developed algorithm is referred to as timeliness online-

egularized extreme learning machine (TORELM). TORELM accepts

raining data that arrives the system one-by-one with varied

r fixed chunk size under the same framework ( Algorithm 2 ).

lgorithm 2 presents the step-by-step list of instructions on how

o train the neural network using TORELM learning method. First,

eight w j , bias b j , and a small value σ are assigned in a random

anner for the value of j = 1 , . . . , L , where L represents the num-

er of hidden neurons. Then, the output matrix of the hidden layer,

 o , is computed. The initial output weight, βo , is updated and the

rst group of data, N s , is added in order to obtain the correspond-

ng values of H 1 and β1 when k = 1 . The initial model is formu-

ated at j = 0 based on Eq. (34) : 

k +1 = βk + w. K 

T 
k +1 H 

T 
k +1 ( T k +1 − H k +1 βk ) (34)

However, the training process is brought to a halt whenever

 βk ( j+1 ) − βk ( j) | turns to be less than the value of σ . In this case,

he output weight is obtained at the instance of k ( j + 1 ) and the

alue of k increases by one. Otherwise, the model is computed

ased on Eq. (35) and the value of j is incremented by one. 

k ( j+1 ) = βk ( j ) + w. K 

T 
k +1 H 

T 
k +1 

(
T k +1 − H k +1 βk ( j ) 

)
(35)

In a case where new incremental data are introduced, the ini-

ial model calculation is performed again. The absolute difference

etween the two consecutive output weights is tested to know

hether the result obtained is less than the value of σ or not. The

raining process stops when none of the conditions mentioned ear-

ier is satisfied. 

TORELM algorithm strengthens the recent data and weakens

he previous one in order to minimize both empirical risk and

tructural risk. Regularization technique combined with the timeli-

ess structure of TORELM by using a weight factor to maintain bal-

nce towards achieving superior generalization performance. This
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Fig. 9. Scalability of ELM algorithms with respect to (a) number of cores, (b) number of large-scale training data, (c) number of attributes (d) data chunk size [151] . 

Table 11 

Comparison of tidal level prediction simulation results [116] . 

Prediction methods VS-OSELM OS-ELM MRAN 

Simulation results RM SE P CC Time RM SE P CC Time RM SE P CC Time 

1-hour-ahead 0.0365 0.995 17.8981 0.0503 0.9791 1826.8976 0.0694 0.9698 66.1048 

2-hours-ahead 0.0438 0.9844 18.6718 0.0706 0.9587 1718.9116 0.0856 0.9591 67.2609 

3-hours-ahead 0.0694 0.9614 18.8557 0.0958 0.9233 1701.0416 0.0906 0.9484 67.9703 

6-hours-ahead 0.1159 0.8811 19.1606 0.1082 0.9008 1742.0923 0.1403 0.8753 69.9908 

12-hours-ahead 0.1271 0.871 19.7699 0.127 0.8595 1716.1559 0.1661 0.8649 74.3415 

24-hours-ahead 0.129 0.8674 19.6549 0.127 0.8598 1735.41 0.1953 0.8421 75.9229 

Algorithm 2 Framework of TORELM. 

1. Start 

2. Input N o initial training samples N s , the number of hidden neurons L , and 

activation function g ( · ) 

3. Randomly assign weight w j , bias b j , and a small value σ ( j = 1 , . . . , L ) 

4. Calculate hidden layer output matrix H o and α = −γ ( H o βo − T o ) T , ε i = αi / γ
5. Update the initial output weight βo = ( I γ + H 

T 
o D 

2 H o ) † H 

T 
o D 

2 T o 

6. Add a group of data N s , calculate corresponding H 1 and β1 , and let k = 1 

7. Let j = 0 and calculate model: βk+1 = βk + w . K T 
k +1 

H 

T 
k +1 

( T k +1 − H k +1 βk ) 

8. if | βk( j+1 ) − βk( j) | < σ then 

9. Stops and obtains βk( j+1 ) 

10. k = k + 1 

11. else 

12. βk( j+1 ) = βk( j) + w . K T 
k +1 

H 

T 
k +1 

( T k +1 − H k +1 βk( j) ) 

13. j = j + 1 

14. if new incremental data then 

15. goto #7 

16. else 

17. Stop 
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help to address the imbalance between structural risk and em-

pirical risk in a number of traditional learning techniques. The

simulation results reveal that TORELM can achieve better stabil-

ity and higher learning accuracy than other variance of ELM such
s TMELM-based, WOSELM-based, and OSELM-based techniques

 Fig. 10 ). 

In summary, the difficulty in handling a block of data could

e tackled by variable structure OS-ELM (VS-OSELM) for the time-

arying system by adding a pruning strategy in OS-ELM to delete

bsolete hidden units using normalized error reduction ratio (nerr)

or measuring representation ability. Another recent method is

imeliness online-regularized ELM (TORELM), which strengthens

he recent data and weakens the previous one to minimize both

tructural risk and empirical risk to prevent “dimensionality curse”.

onclusion 

This work gives a state-of-the-art review of the recent trend to-

ards achieving an efficient and cost-effective ELM model. Vari-

us drawbacks of ELM as a machine learning technique such as

ifficulty in determination of hidden layer structure, prediction in-

tability and Imbalanced data distributions, the poor capability of

ample structure preserving (SSP), and difficulty in accommodat-

ng lateral inhibition by direct random feature mapping, were ad-

ressed. Other drawbacks addressed include multi-graph complex-

ty, global memory size, one-by-one or chuck-by-chuck (a block of

ata), global memory size limitation, and challenges with big data.
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Fig. 10. Performance comparison of TORELM and other ELM-based learning algorithms based on (a & b) high-dimensional data set (Libras Movement with 15 classes of 24 

instances each, and 91 attributes); (c & d) large scale data set (EEG Eye State with 14,980 instances and 15 attributes) [165] . 
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The difficulty in determination of hidden layer structure has

een addressed based on recent models proposed by various schol-

rs working in the field, by reducing the computational complex-

ty of the Moore–Penrose generalized inverse matrix. This could

e achieved using ginv function, Conjugate Gram–Schmidt pro-

ess, preconditioned Krylov subspace technique, Tikhonov regu-

arization, QR factorization or LU factorization, which are faster

terative methods for computation when compared with the tra-

itional SVD method. By using these alternative techniques, the

roblems of data imbalance and prediction instability will be al-

eviated. Moreover, the problem of data imbalance can be ad-

ressed by using an algorithm-based technique, and a leave-

ne-out cross-validation algorithm using Sherman-Morrison matrix 

nversion lemma, and using Cholesky decomposition, while net-

ork weights update could be done via the add-delete mechanism.

The poor capability of sample structure preserving (SSP) has

een remarkably handled by RO projection technique for both re-

ression and classification datasets. An approach based on ELM and

uman visual system (HVS) as an algorithm is also effective and

xhibit high structural similarity for multi-focus image fusion. 

To enable ELM to accommodate lateral inhibition, the use of

parse coding method rather than random mapping for mapping

f the inputs layer to the hidden layer by using gradient projection

GP) based technique with L1 norm optimization for the encod-

ng stage, and Lagrange multiplier algorithm in learning the output

eights between hidden and output layers. 

On the use of ELM for Big data learning, the adoption of parallel

omputing based on Hadoop’s MapReduce framework and GPU ac-

eleration have demonstrated better efficiency in terms of training

peed, accuracy, and generalization performance than the conven-

ional serial processing methods. To properly handle the problems

f additional overhead and relatively slow training speed caused

y intermediate operations in parallel ELM, the large-scale train-

ng data can be partitioned to enable local computations of par-

llel algorithms on Spark framework. By so doing, SELM produced

he best speedup relative to the performance of PELM, ELM 

∗, and

LM 

∗-Improved algorithms. 
The difficulty in handling a block of data could be tackled by

ariable structure OS-ELM (VS-OSELM) for the time-varying system

y adding a pruning strategy in OS-ELM to delete obsolete hidden

nits using normalized error reduction ratio ( nerr ) for measuring

epresentation ability. Another recent method is timeliness online-

egularized ELM (TORELM), which strengthens the recent data and

eakens the previous one in order to minimize both structural risk

nd empirical risk to prevent “dimensionality curse”. 
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