Mechanical and Water Absorption Properties of Normal Strength Concrete (NSC) Containing Secondary Aluminum Dross (SAD)

Article Preview

Abstract:

Utilization of secondary aluminium dross (SAD) as a constituent material in production of concrete is one of the recycling and value-added alternatives of reusing the waste due to the environmental friendliness, economy and improved performances associated with the material. This present study investigates the feasibility of incorporating SAD as a replacement binder in normal strength concrete (NSC). X-ray fluorescence (XRF) analysis revealed that the investigated SAD is rich in alumina content while exhibiting expansive property when tested via Le Chatelier apparatus. The studied fresh concrete samples blended with SAD recorded low workability and densities as the replacement levels increase. Compressive, split tensile and flexural strength tests conducted on the hardened concrete indicated a reduce strength as the percentage contents of the SAD increases when compared with the reference mixture. Moreover, the water absorption results also revealed higher water absorption capacity of the hardened concrete samples with increasing percentage contents of the SAD in the concrete samples. It is, therefore, suggested that blend of Portland cement (PC) with SAD content within 10% will be beneficial in the production of normal strength concrete for the structural purpose by the construction industry, while also limiting the impact of the aluminium waste on the environment.

Info:

Edited by:

Prof. A.O. Akii Ibhadode

Pages:

1-13

Citation:

Online since:

March 2020

Export:

Price:

* - Corresponding Author

[1] A. K Tripathy, S. Mahalik, C.K Sarangi, B.C Tripathy, K. Sanjay, & I.N Bhattacharya, A pyro-hydrometallurgical process for the recovery of alumina from waste aluminum dross. Minerals Engineering, 137 (2019) 181-186.

DOI: 10.1016/j.mineng.2019.04.009

[2] M. Mahinroosta, & A. Allahverdi, A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of cleaner production, 179 (2018) 93-102.

DOI: 10.1016/j.jclepro.2018.01.079

[3] Q Yang, Q Li, G. Zhang, Q Shi, & H Feng, Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid. Hydrometallurgy, 187 (2019) 158-167.

DOI: 10.1016/j.hydromet.2019.05.017

[4] A. Meshram, & K.K Singh, Recovery of valuable products from hazardous aluminum dross: A review. Resources, Conservation and Recycling, 130 (2018), 95-108.

DOI: 10.1016/j.resconrec.2017.11.026

[5] P.E Tsakiridis, P. Oustadakis, & S. Agatzini-Leonardou, Aluminium recovery during black dross hydrothermal treatment. Journal of Environmental Chemical Engineering, 1(2013) 23-32.

DOI: 10.1016/j.jece.2013.03.004

[6] T. Oresanya, C. Ben-Enukora, O. Omojola, O. Oyero, & L.O Amodu, Health communication and awareness of aluminium-waste disposal effects among Ogun state housing corporation residents. Proceedings of SOCIOINT, 4th International Conference on Education, Social Sciences and Humanities, Dubai: UAE, July 10–12, (2017).

DOI: 10.18844/prosoc.v4i10.3076

[7] R. Galindo, I. Padilla, R. Sánchez-Hernández, J.I Robla, G. Monrós, & A. López-Delgado, Production of added-value materials from a hazardous waste in the aluminium tertiary industry: Synergistic effect between hydrotalcites and glasses. Journal of Environmental Chemical Engineering, 3 (2015) 2552-2559.

DOI: 10.1016/j.jece.2015.09.012

[8] Y. Liu, B. S Leong, Z.T Hu, & E.H Yang, Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials, 148 (2017) 140–147.

DOI: 10.1016/j.conbuildmat.2017.05.047

[9] A. Meshram, A. Jain, D. Gautam, & K.K Singh, Synthesis and characterization of tamarugite from aluminium dross: part I. Journal of Environmental Management, 232 (2019) 978-984.

DOI: 10.1016/j.jenvman.2018.12.019

[10] C. Dai, & D. Apelian, Fabrication and characterization of aluminum dross-containing mortar composites: upcycling of a waste product. Journal of Sustainable Metallurgy, 3 (2017) 230-238.

DOI: 10.1007/s40831-016-0071-7

[11] A. M. Neville, Neville's Insight and Issues. Thomas Telford books, London, (2012).

[12] E.M.M Ewais, N.M Khalil, M.S Amin, Y.M.Z Ahmed, & M.A Barakat, Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement. Ceramics International, 35 (2009), 3381-3388.

DOI: 10.1016/j.ceramint.2009.06.008

[13] D. Bajare, A. Korjakins, J. Kazjonovs, & I. Rozenstrauha, Pore structure of lightweight clay aggregate incorporate with non-metallic products coming from aluminium scrap recycling industry. Journal of the European Ceramic Society, 32 (2012) 141-148.

DOI: 10.1016/j.jeurceramsoc.2011.07.039

[14] I. Perná, & T. Hanzlíček, The solidification of aluminum production waste in geopolymer matrix. Journal of cleaner production, 84 (2014) 657-662.

DOI: 10.1016/j.jclepro.2014.04.043

[15] Z. Li, Advanced concrete technology. John Wiley & Sons (2011).

[16] M.C Shinzato, & R. Hypolito, Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste management, 25 (2005) 37-46.

DOI: 10.1016/j.wasman.2004.08.005

[17] A.U. Elinwa, & E. Mbadike, The use of aluminum waste for concrete production. Journal of Asian Architecture and Building Engineering, 10 (2011) 217-220.

DOI: 10.3130/jaabe.10.217

[18] B. Inseemeesak, & A. Rodchanarowan, The Influence of Aluminium Dross on Cement Paste's Porosity. In Advanced Materials Research 747 (2013) 445-448.

DOI: 10.4028/www.scientific.net/amr.747.445

[19] N. Ozerkan, O. Maki, M. Anayeh, S.M Tangen, & A. Abdullah, The effect of aluminium dross on mechanical and corrosion properties of concrete, 3 (2014) 9912-9922.

[20] S.O Adeosun, O.I Sekunowo, O.O Taiwo, W.A Ayoola, & A. Machado, Physical and mechanical properties of aluminum dross. Adv. Mater., 3 (2014), 6-10.

[21] P.E Tsakiridis, P. Oustadakis, & S. Agatzini-Leonardou, Black dross leached residue: An alternative raw material for portland cement clinker. Waste and Biomass Valorization, 5 (2014) 973-983.

DOI: 10.1007/s12649-014-9313-8

[22] M.S Reddy & D. Neeraja, Mechanical and durability aspects of concrete incorporating secondary aluminium slag. Resource-Efficient Technologies, 2 (2016) 225–232.

DOI: 10.1016/j.reffit.2016.10.012

[23] G. Mailar, S. Raghavendra, B.M Sreedhara, D.S Manu, P. Hiremath, & K. Jayakesh, Investigation of concrete produced using recycled aluminium dross for hot weather concreting conditions. Resource-Efficient Technologies, 2 (2016), 68-80.

DOI: 10.1016/j.reffit.2016.06.006

[24] S. Javali, A.R Chandrashekar, S.R Naganna, D.S Manu, P. Hiremath, H.G Preethi, & N.V Kumar, Eco-concrete for sustainability: Utilizing aluminum dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19 (2017) 2291–2304.

DOI: 10.1007/s10098-017-1419-9

[25] A.A Busari, I.I Akinwumi, P.O Awoyera, O.M Olofinnade, T.I Tenebe, & J.C Nwanchukwu, Stabilization Effect of Aluminum Dross on Tropical Lateritic Soil. In International Journal of Engineering Research in Africa 39 (2018) 86-96.

DOI: 10.4028/www.scientific.net/jera.39.86

[26] M. López-Alonso, M.J Martinez-Echevarria, L. Garach, A. Galán, J. Ordoñez & F. Agrela, Feasible use of recycled alumina combined with recycled aggregates in road construction. Construction and Building Materials, 195 (2019) 249-257.

DOI: 10.1016/j.conbuildmat.2018.11.084

[27] R.T Loto & A. Busari, Influence of White Aluminum Dross on the Corrosion Resistance of Reinforcement Carbon Steel in Simulated Concrete Pore Solution. Journal of Bio-and Tribo-Corrosion, 5(2019), 19.

DOI: 10.1007/s40735-018-0211-7

[28] D.O Nduka, O. Joshua, A.M Ajao, B.F. Ogunbayo & K.E Ogundipe, Influence of secondary aluminum dross (SAD) on compressive strength and water absorption capacity properties of sandcrete block. Cogent Engineering, (2019): 1608687.

DOI: 10.1080/23311916.2019.1608687

[29] UNI EN ISO 10545‐3. Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density (2000).

DOI: 10.3403/01217243u

[30] Nigeria Industrial Standard NIS 441:1 Composition, specifications and conformity criteria for common cements. Lagos: (2007), Standard Organization of Nigeria.

[31] Code, B. (2006). Federal Republic of Nigeria: National Building Code.

[32] EN, 197-1. Cement, Composition, Specifications and Conformity Criteria for Common Cements. London, England: (2011). British Standard Institution (BSI).

[33] Nigeria Industrial Standard NIS 441:1. Composition, specifications and conformity criteria for common cements. Lagos. (2004). Standard Organization of Nigeria.

[34] M.S Shetty, Concrete technology - theory and practice, (2004) S. Chand and Company Limited, New Delhi, India.

[35] BS EN 1008, Mixing Water for Concrete. (2002). British Standards Institution: London, UK.

[36] BS EN 12350-2, Testing fresh concrete-Part 2: Slump test. (2009). European Committee for Standardization.

[37] BS EN 12390-3, Testing hardened concrete. Compressive strength of test specimens. (2009). European Committee for Standardization.

[38] BS EN 12390-5, Testing Hardened Concrete. Flexural Strength of Test Specimens. (2009). British Standard Institution, London.

[39] P.K Mehta & J.M Monteiro, Concrete microstructure properties and materials (4th ed.), McGraw-Hill Education, (2014), United States.

[40] IS: 4031 (3), Methods of physical tests for hydraulic cement, part 3: determination of soundness, Bureau of Indian Standards, (1988).