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Abstract—Over the past few years, we have worked on pi-
oneering an approach that employs Commonsense Knowledge
(CSK) to automate the identification of Implicit Requirements
(IMRs) from text in large Software Requirements Specifications
(SRS) documents. This paper builds on our IMR-identification
approach by adding CNN-based deep learning to detect IMRs
from complex SRS big data such as images and tables.

Index Terms—Commonsense Knowledge, Domain Ontology,
IMRs, Requirements Engineering, Text Mining

I. PROBLEM DEFINITION

Requirements engineering (RE) is a systematic process with
many activities. Elicitation is an RE activity wherein require-
ments are collected from stakeholders. Requirements can be
classified as explicit and implicit. Explicit requirements are
clearly stated by the business users during elicitation. Implicit
requirements (IMRs), on the other hand, are assumed/hidden
yet crucial requirements that a system is expected to fulfil
(although not explicitly stated by the users). Whilst not directly
captured during elicitation, IMRs have a significant impact in
the success or failure of software development [1].

Organizations usually rely on human analysts to manually
read through the SRS documents to identify any IMRs related
to the explicitly stated requirements recorded in the SRS
documents. However, depending on the size and complexity of
the software system being developed, there are huge amounts
of requirements data in SRS documents. Manual scanning of
these by human analysts to identify IMRs is tedious, infeasible,
and non-scalable, with growing big data. Thus, there is an
imperative need for automating the IMR-identification process.

II. PROPOSED SOLUTION

Our work addresses the need for automating the IMR-
identification process to ensure successful software develop-
ment. In our previous work [2], we proposed a framework
called COTIR: Commonsense knowledge Ontology and Text
mining for Implicit Requirements, addressing plain text in
SRS. In the current paper, we propose an enhanced COTIR
approach with Convolutional Neural Network (CNN) based
autoencoders in lieu of heuristic classification. Figure 1 sum-
marizes our solution.

A. Functioning of Fundamental COTIR Framework

The left side of Figure 1 shows the fundamental (i.e. exist-
ing) COTIR framework while its right side shows the proposed
enhancements to COTIR. In fundamental COTIR, source SRS

are first converted to requirements in text format (without
images, tables etc.); relevant CSK Knowledge Bases (CSKBs)
developed from a source called WebChild [3] are considered
next. SRS documents, CSKBs and domain ontology (selected
by SRS authors) are transferred to the Feature Extraction
module by which possible IMR sources are outlined. Heuristic
Classification then identifies potential IMRs. For more details
on fundamental COTIR, please see [2].

B. Functioning of Enhanced COTIR Framework

In enhanced COTIR, a convolutional autoencoder is used
instead of a heuristic classifier (see Fig.1 right). This enables
COTIR to: (1) process complex data in SRS such as images
and find subtle IMRs, (2) learn more meaningful represen-
tations of textual data compared to heuristic classifiers. This
leverages big data Vs, entailing variety in addition to volume.

The functioning of our proposed enhanced COTIR frame-
work can be described as the following sequence of steps:

Step 1: Requirements documents (SRS) supply the require-
ments data from which IMRs need to be identified. RE data
preprocessing removes the noise in the RE data. This step is
performed by the NLP Processor component (see Fig. 1).

Step 2: The requirements author then selects the relevant
knowledge base from CSKBs and the relevant domain ontol-
ogy from the Ontology Library. The previously preprocessed
RE data along with the selected KB and domain ontology
are transferred to the CNN-based autoencoder component
(Convolutional Encoder-Decoder in Fig. 1).

Step 3: The autoencoder’s input construction transforms
RE data into vectors for deep learning models. For IMR-
identification in SRS, frequency is calculated for those words
that make a requirement statement implicit, and the word
frequency values are transformed into vectors. These vectors
are regarded as a training set for the autoencoder. Model
training with deep learning is then required on the designed
model with the given training set. A deep learning model can
contain thousands of parameters depicting weights of con-
nections among neural units. Thus, training the model entails
tuning parameters based on the training set. In an autoencoder,
parameters are trained by minimizing differences between the
input and output layers in an unsupervised manner.

Step 4: Next, the trained model is applied to solve new IMR-
problems. This trained model is capable of encoding the word
frequency vector of a new IMR feature into the hidden states.
We can trace and calculate changes of values in each vector
dimension along with the encoding process, and then deduce
weights of words in each dimension. These word weights are978-1-7281-0858-2/19/$31.00 © 2019 IEEE
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Fig. 1. COTIR Framework: Fundamental and Enhanced

expected to help in assigning weights to the sentences and
select informative ones.

III. PRELIMINARY EVALUATION

In this section, we provide the results from evaluating
the fundamental COTIR framework. For our evaluation, we
compared the IMR-identification performance of fundamental
COTIR framework with that of 8 software engineering experts
(SE researchers and IT professionals). The following subsec-
tions describe the requirements artifacts used in the study,
study design, and study results.

A. Study Artifacts

The following 3 artifacts were used in the study: i) SRS-1:
Software requirements specifications for a Course Manage-
ment System, ii) SRS-2: Software requirements specifications
for an Embedded Monitoring Project, and iii) SRS-3: Software
requirements specifications for a Tactical Control System.

B. Study Design

Study participants were asked to assess implicitness in 3
SRS documents and to use the COTIR tool. When identifying
IMRs manually, the 8 participants were supplied with a report
form shown in Fig. 2. They were given the following instruc-
tions: 1) for each specified requirement, mark the requirement
based on its implicit nature (noting that a requirement may
contain more than one form of implicitness as in Fig. 2); and
2) For each requirement, specify the degree of criticality of
each implicitness on a scale of 1 to 5 (1 being least critical
to 5 being the most). In this paper, we limit our discussion to
implicitness-identification aspects of the study.

C. Study Results

The 8 study participants first carefully read each of the 3
SRS documents supplied to them and identified requirements
with implicit patterns. As a result of this manual effort, all
participants collectively were able to identify 8 potential IMRs

Fig. 2. COTIR Evaluation: Sample Form

Fig. 3. IMRs Identfied by COTIR vs Human Analysts

in the 3 SRS documents. Next, the COTIR tool was used
to identify the following types of implicit patterns in the 3
SRS documents: i) Ambiguity, ii) Incomplete Knowledge, iii)
Vagueness, and iv) Miscellaneous. The experts’ evaluation
served as the ground truth.

A major result of this study was that the COTIR approach
was able to identify 6 out of 8 known instances of implicit
patterns in the supplied requirements (see Fig. 3). This is
a significant result as it provides evidence that COTIR can
relieve human analysts from the tedious manual task of reading
huge SRS documents to find IMRs.

We also computed the recall, precision and F-scores for
the COTIR tool relative to the 8 experts’ evaluations (that

6170



Fig. 4. COTIR Evaluation: Recall Metrics

constitute ground truth). For an IMR identification tool, recall
is more significant than precision. This is because it is very
important to try and find all requirements that are implicit
(ideally 100% recall). If any of them are left out, it is more
problematic than the opposite situation of stating that some-
thing is an IMR when it is not. In other words, false negatives
in this task are more crucial than false positives, emphasizing
greater significance of recall. Hence, we focus on recall here.
The recall values computed for the COTIR tool relative to 8
experts’ evaluations are shown in Fig. 4. In the ideal case,
recall should be 100%, as it would completely relieve human
analysts from manually analyzing SRS documents to identify
IMRs. During our study, the average recall was found to be:
82.74% for SRS-1, 69.1% for SRS-2, and 69.26% for SRS-3.
The combined average recall for the 3 SRS documents was
computed to be 73.7%.

Hence, COTIR yielded a recall value of 73.7% on the whole
(see Fig. 4). Accordingly, it was found that the performance of
our IMR-identification approach COTIR was consistent with
best practices in software engineering and that the tool was
considered usable as determined by software engineers. They
indicated this through their verbal comments as well.

IV. RELATED WORK

Different researchers have addressed issues related to IMRs.
The work in [7] presents a model to compute similarities
between SRS to promote their analogical reuse. Hence, re-
quirement reuse is based on the detection of analogies in
specifications. Though identification of analogies in require-
ments is essential, this study does not discuss management
of IMRs. In [6], there is prototype tool developed called SR-
Elicitor which is an Eclipse plugin and can be used by software
engineers to transform natural language software requirements
to SRS based on a Semantic of Business Vocabulary and
Rules (SBVR), a recent standard. In [5], authors analyze
approaches that aim to address ambiguities in natural language
SRS, focusing on state-of-the-art tools for ambiguity resolution
such as NAI and ARUgen (in addition to SR-Elicitor). While
these are signficiant advances in IMR research, comparative
studies [4] indicate that COTIR outperforms these tools for
IMR identification in some respects.

The deployment of CSK is useful in AI systems [8]. Notable
CSK sources include Cyc, WordNet and WebChild [3], [9],
[10]. Potential use of CSK to enhance object detection appears
in [11] and its application to autonomous vehicles is explained
in [12], while [13] and [14] outline the role of CSK in mining
ordinances and their public reactions using human judgment.
In our COTIR work, CSK usage stands out given the fact that
we consider it in conjunction with ontology and text mining.
As far as we know, ours is among the first works to harness
CSK in an IMR context. This is a striking aspect of COTIR
research, embodied in fundamental and enhanced COTIR.

V. CONCLUSIONS

IMRs in SRS are crucial to the success of software develop-
ment. Researchers have addressed IMRs considering various
facets. Our work stands out as it introduces commonsense
knowledge for IMRs. Our COTIR approach addresses big
data on SRS via CSK to identify IMRs. Comparative studies
with state-of-the-art show superior performance of COTIR [4].
Motivated by successful evaluation of fundamental COTIR, we
present enhanced COTIR herewith, adding deep learning with
CNNs to identify IMRs from tables and images in large SRS
documents. To the best of our knowledge, this paper is the
first to propose CNNs in IMR-identification. Detailed studies
on enhancements constitute part of our ongoing work.
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