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Abstract

Essential genes are critical for the growth and survival of any organism. The machine learning approach complements the
experimental methods to minimize the resources required for essentiality assays. Previous studies revealed the need to
discover relevant features that significantly classify essential genes, improve on the generalizability of prediction models
across organisms, and construct a robust gold standard as the class label for the train data to enhance prediction. Findings
also show that a significant limitation of the machine learning approach is predicting conditionally essential genes. The
essentiality status of a gene can change due to a specific condition of the organism. This review examines various methods
applied to essential gene prediction task, their strengths, limitations and the factors responsible for effective computational
prediction of essential genes. We discussed categories of features and how they contribute to the classification performance
of essentiality prediction models. Five categories of features, namely, gene sequence, protein sequence, network topology,
homology and gene ontology-based features, were generated for Caenorhabditis elegans to perform a comparative analysis of
their essentiality prediction capacity. Gene ontology-based feature category outperformed other categories of features
majorly due to its high correlation with the genes’ biological functions. However, the topology feature category provided the
highest discriminatory power making it more suitable for essentiality prediction. The major limiting factor of machine
learning to predict essential genes conditionality is the unavailability of labeled data for interest conditions that can train a
classifier. Therefore, cooperative machine learning could further exploit models that can perform well in conditional
essentiality predictions.
Short abstract
Identification of essential genes is imperative because it provides an understanding of the core structure and function,
accelerating drug targets’ discovery, among other functions. Recent studies have applied machine learning to complement
the experimental identification of essential genes. However, several factors are limiting the performance of machine
learning approaches. This review aims to present the standard procedure and resources available for predicting essential
genes in organisms, and also highlight the factors responsible for the current limitation in using machine learning for
conditional gene essentiality prediction. The choice of features and ML technique was identified as an important factor to
predict essential genes effectively.
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Introduction
Experimental approaches have been a reliable method to iden-
tify essential genes due to the extensive experimental studies
on model organisms such as Escherichia coli and Saccharomyces
cerevisiae [1]. However, these methods are complex, costly, labor
and time-intensive. Consequently, computational approaches
were deployed to complement the experimental techniques to
minimize the resources required for essentiality assays. The
challenge with applying the computational methods is that the
quality of prediction can either enhance or burden essential
genes’ identification task.

Single gene deletion, antisense RNA, transposon mutage-
nesis and Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) are widely used experimental methods to iden-
tify gene essentiality. Gene deletion experiments delete a gene
or pair of genes to observe the phenotype changes. This pro-
cedure must be performed thousands of times in a genome-
wide study and requires extensive genome annotation. A major
drawback of antisense RNA is that it is limited to the genes
for which an adequate expression of the inhibitory RNA can be
obtained in the organism under study. Transposon mutagenesis
is the most widely used method; some of the complexities
associated with this method include missing low-abundance
transcripts, low resolution in locating insertion sites and nar-
row ranges in counting probe density [2]. CRISPR is a state-
of-the-art method that provides simplicity and efficiency that
can be applied directly to embryos. However, it often causes
target alleles to carry additional modifications such as dele-
tions, partial or multiple integration of the targeting vector and
even duplication [3–5]. Some model organisms that were exten-
sively studied include Escherichia coli, Saccharomyces cerevisiae,
Drosophila melanogaster, Mus musculus, Pseudomonas and Bacillus
subtilis. Their essential and nonessential gene sets have become
models for poorly or understudied organisms. Due to the com-
plexities and drawbacks of the in vitro approach, the computa-
tional techniques were developed to predict gene essentiality [6–
8]) with the approach gaining huge popularity in recent years [9].

There are three major computational approaches available
for gene essentiality prediction from peer-reviewed publications:
homology mapping, constraint-based and machine learning
approaches. The computational prediction method is useful
when the organism is either unculturable, such as Pneumocystis
carinii, or difficult to perform gene disruption, such as Aspergillus
fumigatus [10]. To limit the number of failed experiments and
reduce assays’ cost, computational methods were used to guide
candidates’ choices for specific research. Examples include the
use of machine learning (ML) to identify druggable and morbid
genes in humans, thereby overcoming the need to perform
linkage and mutation analyses to identify candidate gene(s)
involved in a particular hereditary disorder [11, 12]. Also, ML
was used to reveal putative Alzheimer’s disease genes [13].
Most experimental methods are limited in exploring the target
genome regions as cell lines are less complex compared to the
whole genome [13]. ML enables the analysis of a biological or
medical condition in a systemic approach since a complete
genome’s properties can be represented numerically. The
summary of gene essentiality prediction approaches is shown
in Table 1.

Homology mapping approach

Homology is the similarity in structure, physiology or develop-
ment of different organisms based upon their descent from a
common evolutionary ancestor [14]. It arises from duplicated
genes within an organism (paralogs) or related genes in two

or more different organisms (orthologs), which is a speciation
product. A homology model is a form of comparative genomics
(the study of differences and relationships between organisms)
[15]. Homology mapping is the earliest computational approach
used to determine essential genes [16]. This homology mapping
requires a comparison between sequences of two organisms (a
model and a target) to determine their sequence similarity based
on a defined percentage identity threshold (e-value). If a gene
sequence from a target organism shows high similarity to a
sequence of an essential gene from a model organism, that gene
is labeled to be essential. It premised on the biological theory
that states that ‘structure determines function and vice versa’.

The comparative genomic analysis includes the use of
homology properties such as gene-duplication data and phyletic
gene age (a measure of the most recent common ancestor)
to predict essential genes. This approach has been used to
predict essential genes in bacterial species such as Mycoplasma
[17], Liberibacter [18], also in P. falciparum [19] and Brucella spp.
[20]. This method relies only on genomic features to predict
essential genes. Still, it is restricted to conserved orthologs
between different species, which often make up only a small
percentage of the genomes [21]. A major challenge is the
significant impact of evolutionary distance on the outcome
of comparative genomic analysis where an essential gene in
a model organism might have its conserved ortholog to be
nonessential in the target organism [22, 23]. Although essential
genes tend to be highly evolutionary conserved, especially in
bacteria, the conserved genes across species are not always
essential [2]; this makes the homology approach less effective in
essentiality prediction.

Basic Local Alignment Search Tool (BLAST) [24, 25] is one
of the earliest and major tools used to perform a compara-
tive analysis of sequences. There are five variants and sev-
eral wrappers (scripts that run BLAST in a specialized way) of
BLAST. The variants are BLASTN, BLASTP, BLASTX, TBLASTN
and TBLASTX [25]. Some of the wrappers include PSI-BLAST,
PHI-BLAST, MegaBLAST, BLASTZ, XBLAST, MPBLAST, HT-BLAST
and GENE-BLAST. BLAST-like alignment tool (BLAT) is similar
to BLAST with several advantages. Some of the advantages are
alignment speed and the ability to submit a long list of simulta-
neous queries among others.

Constraint-based approach

Constraint-based methods use genome-scale metabolic net-
works to elucidate the biology of metabolic pathways within an
organism. The metabolic network that is reconstructed based
on genomic sequencing and annotations uses a constraint-
based modeling technique to study the structure and function
of the network’s component as well as their interaction [26].
The properties of the metabolic network can be analyzed using
constraint-based methods such as flux balance analysis (FBA),
which predicts the fluxes of metabolites at a steady state by
applying mass balance constraints to a stoichiometric model
[27–30]. The concept of predicting essential genes using FBA is
to simulate the knockout of a gene and evaluate the effect or
impact on the network [31]. The use of FBA is better suited for
studying conditionally essential genes because a condition can
be represented as an objective function, and the significance
of a gene can be determined by in silico deletion of the gene.
The lethality is determined if there is an optimal production
of predefined biosynthetic precursors. Conditionally essential
genes are genes that are only essential in a given context. An
example is the organism’s immune response condition; genes
responsible for an immune response might not be essential if
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Table 1. Summary of gene essentiality prediction approaches

Attributes Experimental Homology mapping Constraint-based
approach

Machine learning

Description Deactivates a gene to
observe its phenotypic
effect

Uses a reference model
organism to classify the
genes of a target organism
based on the sequence
similarity

Provides mathematical
representation of
biochemical, genetic and
genomic knowledge to
explain metabolic
physiology

Uses a model organism to
train a classifier and to
classify genes of target
organisms

Advantages High accuracy in the
identification of essential
genes

The genomic sequence of
an organism with >70%
identity is sufficient to
predict the essentiality of
genes

Suitable for prediction of
conditionally essential
genes where some genes
are essential in a given
condition and not
essential in another
condition [2]

Diverse categories of
features are integrated
that enables it to use
model organism to predict
essential genes in
understudied organisms

Disadvantages Complex, costly and
time-consuming [48]
It is difficult to culture
many of the
microorganisms [51]

The approach is limited to
conserved orthologs
between species, which is
often a small proportion
of the target genome [52].
Although essential
proteins tend to be
conserved, there also exist
large conserved
nonessential proteins and
essential proteins without
orthologs in reference
organisms [2]

Flux balance analysis, a
constraint-based
approach, cannot predict
non-metabolic genes [2]. It
requires clear definitions
of nutrition availability
and biomass production
under precisely stated
environmental conditions
[53]

Available biological
network data from both
experimental and
computational studies are
incomplete and contain
many false positives and
false negatives, which
impact the correctness of
discovering essential
proteins [54] .
Unable to predict
conditional essential
genes [2, 55]

Applied organism Bacteria and archaea [56]
Saccharomyces cerevisiae
[57]; Schizosaccharomyces
pombe [58]; Arabidopsis
thaliana [59]; Mus musculus
[60] and Homo sapiens [61,
62]

Bacteria [63], Mycoplasma
[17], Liberibacter [18],
Plasmodium falciparum [19],
and Brucella spp. [20]

Renal cell carcinoma
metabolism in Homo
sapiens [64, 65]

Salmonella typhimurium
[66]; S.cerevisiae, E.coli, and
fungi [67] Homo sapiens
[68]; Drosophila
melanogaster [69]

Scope of use Suitable for all organisms
except unculturable
organisms such as
Pneumocystis carinii, or
organisms limited in
genetic tractability, such
as Aspergillus fumigatus
[15].

Suitable for model
organisms and organisms
that are evolutionarily
close to model organisms
due to observed variations
in gene regulations,
posttranslational protein
modification, divergence
in cellular pathways, and
redundancies in processes
of distantly related
species [58].

Limited to model
organisms due to
requirements biomass
objective function, which
can only be obtained from
experimental studies,
thus difficult to
determine for non-model
organisms [70].

The lack of available
experimental data in
most genomes limits it to
model organisms and
organisms that are
evolutionarily close to
model organisms [22].

there is no disease condition in the organism. However, they
become essential when the organism is in a diseased state [32].

FBA has obvious limitations; firstly, it could only predict
a metabolic gene’s essentiality [2]. Secondly, unlike its ability
to be integrated with modal analyses at a steady-state, FBA
requires enzyme kinetic data to evaluate activities of genome-
scale metabolic reactions under transient dynamic states
[33]. Thirdly, upon genetic perturbation of the metabolic
network, FBA fails to directly predict immediate suboptimal
flux states and metabolite concentration because the organism
readjusts fluxes, expressions of enzymes and various regulatory
mechanisms to cushion the impact of the perturbation [9]. Lastly,
FBA often requires enzyme reactions to fill gaps in the metabolic
model because FBA sometimes disagrees with experimental

data. It depends on the empirical models, and in some cases,
parameter prediction is challenging [30, 34]. Some of these
FBA limitations have been resolved through the development
of FBA variants such as dynamic FBA [33], Regulatory on/off
minimization (ROOM) [35], Minimization of Metabolic Adjust-
ment (MOMA) [36] and FastMM [37].

Machine learning approach

The ability of a computer system to use statistical techniques
to ‘learn’ and ‘improve’ with data to predict outcomes without
being explicitly programmed accurately is known as machine
learning [38]. This approach involves constructing and training
one or more classifiers with training data from model organisms
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composed of features of known essential genes and nonessen-
tial genes. The trained classifier is then applied to predict the
essentiality of genes in the target organism. For instance, [39]
generated fractal features from the genomic sequence of 27
different bacteria species and applied them to five classifiers
to predict essential genes. It can be inferred that making accu-
rate predictions requires ‘good’ data and an efficient machine
learning technique. Supervised, semi-supervised, unsupervised
and reinforcement learning are common machine learning tech-
niques in use [40–42]. However, gene essentiality prediction is
usually modeled as a classification problem, which is supervised
learning.

Deep learning is a subset of machine learning in artificial
intelligence that has networks capable of learning unsupervised
from data that is unstructured or unlabeled. The deep learning
concept is being implemented by Deep Neural Networks. There
are a thousand types of deep neural network (DNN) architecture
among which the following five are the state of the art: Convolu-
tional neural networks (CNN), Recurrent neural networks (RNN),
Deep Belief Networks (DBN), Variational Autoencoder and Gen-
erative Adversarial Networks (GANs). The choice of the type of
deep neural network to be applied to a problem depends on two
major factors: (i) the nature of the problem to be solved (voice
recognition, image classification, sequence prediction, etc.), and
(ii) the nature of the dataset (the type of data and how they
are represented, either tabular, time series, etc.). Deep learning
methods have two major drawbacks: high computational cost in
the training phase and overfitting problem [43]. Deep learning
techniques have been applied to many areas in bioinformatics
[44]. Recently, deep learning has been used to predict essential
genes [45, 46] and promising results were reported. The two
major drawbacks of deep learning application to gene essen-
tiality prediction are (i) deep neural networks require big data
for training to outperform conventional ML algorithms, and
(ii) complexity of the hyper-parameter tuning in deep learning
models. A simple illustration of the process flow of collect-
ing raw heterogeneous data from different sources to generate
relevant features used to train a classifier and subsequently
make predictions is shown in Figure 1. Data mining tools and
machine learning algorithms have been used for classification.
Open-source tools such as RapidMiner [47], WEKA [48], R [49]
and Orange [50] provide rich functionality for data analysis and
visualization.

Factors affecting the predictive performance of
machine learning models for gene essentiality
prediction
This review identifies some of the factors that affect machine
learning models’ predictive performance for essentiality predic-
tion. These factors include (i) quality and predictive power of
selected features, (ii) relatedness of training and target data and
(iii) choice of the machine learning algorithm. These factors are
further discussed in the following subsections.

Choice and quality of selected features

Data collection sources

Data collection and integration are the first steps in data
mining or data analysis. There exist several sources of primary
and secondary data for gene essentiality prediction problem,
including GenBank [71] and Biomart [72] for primary sequence
data, Gene Expression Omnibus (GEO) Database [73] for gene
expression data, STRING Database [74, 75], BioGRID [76] for
Protein interaction data, Kyoto Encyclopedia of Genomes and

Genes (KEGG) [77] and BioCyc [78] for metabolic pathway
data. Some of the secondary databases include Database of
Essential Genes (DEG) [79], Comprehensive Microbial Resource
(CMR) database at http://cmr.jcvi.org, Online Gene Essentiality
database (OGEE) [80], see [2] for a comprehensive review on data
sources of essential genes. With the abundance of database
resources for constructing essentiality prediction models, most
of them contain a significant incompleteness and error [81]. For
instance, pathway databases have gaps that limit the simulation
of flux distribution [82], protein interaction databases contain
false positive interactions [83], among other limitations. A
proven way to overcome this drawback is to use the intersection
of the output from multiple sources, which reduces the degree
of error in the analysis.

Feature generation

Feature generation is the process of transforming raw, unstruc-
tured data into a set of features that describes and represents
the diverse attributes of the input data, often for statistical anal-
ysis or classification purposes. This process is performed after
data collection and integration. In gene essentiality prediction,
the input data are a set of genes or protein sequences trans-
formed into numerical representations (features) and passed to
a classifier that is expected to classify as either essential or
nonessential. This set of features can be broadly categorized as
intrinsic and extrinsic features, depicted in Figure 2. We define
intrinsic features as features that can be directly derived from
gene and protein sequences without association or comparison
with another sequence; examples include gene sequence, pro-
tein sequence and Codon usage features. Features are extrinsic if
they are computed from the sequence’s interaction with another
sequence or its environment. Examples are localization, which
estimates the probability of a gene to reside in a particular com-
partment within the cell; topology, which computes the degree
of interaction among genes or proteins; and ontology features,
which encode the underrepresentation or overrepresentation of
a specific gene ontology (GO) term in a given gene set (Figure 2).

Characteristics intrinsic to a gene sequence such as DNA
composition, protein composition and codon usage have been
used as predictors for essentiality [69, 84]. The importance of
selected features in the genomic and transcriptomic categories
is provided in Table 2. Extrinsic features describe a gene’s essen-
tiality from the perspective of gene expression level, functional
importance and regulation complexity. Some of the features in
this category include gene expression level, overrepresentation
in a cellular component, molecular function, biological path-
ways, domain enrichment, etc. The importance of these features
is described in Table 3a.

Furthermore, a topology-based feature set, a subclass of the
extrinsic features, provides information on genes and gene prod-
uct interaction; an example is a protein–protein interaction. The
biological functions are achieved through interactions of genes
and gene products, which form biological networks. Several
features can be derived from the network obtained from these
interactions by representing the network as a graph G(V, E),
where V is a set of nodes that represent genes, proteins or
other components and E is a set of (directed/indirect) edges
that represent their interactions. Some of the topology-based
features are described in Table 3b.

Plaimas et al. [66] derived several features based on Lemke’s
(2004) definition of damage. Some of the derived features include
the number of damaged reactions (NDR), number of damaged
compounds (NDC), number of damaged choke point compounds
(NDCC) and number of damaged chokepoint reactions (NDCR).
Previous studies have shown that topology features are good
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Figure 1. Simple illustration of the application of machine learning to predict essential genes.

predictors of gene essentiality [66, 112, 113]. However, these
studies have not established the important categories of features
that have the most discriminating power in machine learning
essentiality predictions.

Most feature generation tools are freeware and easy to use.
For example, protr [114] and rDNAse [115] are R packages for
generating protein and DNA features, respectively. By simply
supplying the sequences to the program in R, the features will
be automatically generated as output. A similar procedure is
applicable for Deeploc [116], a Linux-based tool for generating
protein sub-localization features, PSI-BLAST [24], a stand-alone
tool for generating homology features, among others. Some
widely used tools for feature generation are described in Table 4.
However, there are other features such as ontology features (e.g.
gene ontology, KEGG orthology), topology features (e.g. number
of damaged compounds [66]) that do not have standard tools to
generate them. During the implementation of these features by
researchers, there is a tendency for semantic errors to be intro-
duced in the analysis, thereby affecting the analysis’s eventual
outcome. In addition to the lack of standard tools to generate
the features above, the genome-scale databases (STRING, BioCyc,
KEGG, etc.) where the sequences are retrieved often contain

incomplete and error-prone data [81], which introduces bias and
error into downstream analysis.

Feature selection
Before applying machine learning techniques in data analysis,
one major task that must be performed is feature selection. This
feature selection is necessary to reduce the dimensionality of
the data and remove features that are not relevant to the classi-
fication task or could affect the quality of results or knowledge to
be mined from the data. It also reduces computational time and
cost. Feature selection is the process of identifying and obtaining
a subset of features from a bigger set of features to enhance a
classification technique’s performance. There are three methods
of feature selection: these are filters, wrappers and embedded.
The filter technique adopts statistical evaluation methods
to sort out the relevant features from the data independent
of any machine learning algorithm. The major advantage of
filters is the speed in selecting features but less accurate
than other methods, and examples include information gain,
mutual information and correlation-based feature selection
[124].
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Figure 2. Categories of features for gene essentiality prediction.

Wrapper methods work by evaluating a subset of features
using a machine learning algorithm that employs a search strat-
egy to look through the space of possible feature subsets, eval-
uating each subset based on the quality of a given algorithm’s
performance. Wrapper methods are computationally intensive;
examples of wrappers include Genetic Algorithm-Support Vec-
tor Machine (GA-SVM), forward selection, backward elimina-
tion and Recursive Feature Elimination (RFE) algorithm [125].
Embedded methods combine the advantages of both filter and
wrapper methods by performing feature selection during the
model training. Elastic Net, Ridge Regression and Random forest
are examples of machine learning models that can be used
for embedded feature selection [126]. The process of feature
selection can significantly affect the performance of machine
learning algorithms. In addition to the increase in complexity
of analysis occasioned by uninformed usage of features, there
is also the problem of multicollinearity (multiple features with
high correlation). Failure to remove features with high corre-
lation might affect the performance of the prediction model.
The type of target organism (prokaryotes or eukaryotes) also
determines the appropriate subset of essentiality prediction
features, as complex organisms require more variety of features
to describe essentiality [127].

In most cases, the positive samples outnumber the negative
samples in the data, leading to a class imbalance problem
and failure to address the problem affecting the classi-
fier’s performance. There are two major approaches used to
address the class imbalance problem, namely, random over-
sampling and random under-sampling approaches. The over-
sampling approach simply generates random samples to make
the minority class equals to the majority class. Synthetic

Minority Oversampling Technique (SMOTE) [128] and ADAptive
SYNthetic (ADASYN) [129] are state-of-the-art methods that
calculate the k nearest neighbors for each sample of the minority
class and randomly create multiple synthetic samples between
the observation and the nearest neighbors. Depending on the
number of additional samples required, ADASYN adds random
small values to the synthetic samples created to add a little
more variance between the minority and synthetic samples.
This technique was applied in our previous study [69].

Conversely, the random under-sampling technique elimi-
nates samples from the majority class to make the majority
class equal to the minority class. This sampling technique
generally leads to a reduction in data size or sample population,
which often reduces machine learning power, consequently
affecting model performance [130]. The random under-sampling
approach is not desirable if the size of the minority class
is small. Some studies have applied this method to address
class imbalance [131, 132]; Nigatu et al. [131] even stated that
the choice of a balancing approach does not influence the
performance of essential gene predictions. However, we believe
that using the over-sampling approach would yield better results
since a higher AUC score was obtained when the over-sampling
method was used, compared to under-sampling in the same
study.

An extension of feature selection is feature learning, which
is a set of techniques that allows a system to automatically dis-
cover the representations needed for feature detection or classi-
fication from raw data [133]. Unlike semi-structured data such
as tabular data that are mathematically and computationally
convenient to process, unstructured data such as images, video
and sensor data are yet to have a specific feature representation

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab128/6219158 by guest on 16 April 2021



Gene essentiality prediction 7

Table 2. Description of some selected intrinsic features

Subcategory Features Experimental importance References

Gene sequence GC Content, zCurve, Kgaps, Chou’s
Pseudo
Composition

The stability of a DNA double helix is majorly determined by
hydrogen bonds. Hence, a high number of GC pair with three
hydrogen bonds will provide more hydrogen bond than AT pair
with two hydrogen bonds

[85]

Protein sequence Chou’s Pseudo
Composition, KGaps,

Characterization of protein using a matrix of amino-acid
frequencies helps to deal with proteins without significant
sequential homology to other proteins

[86]

Codon Usage Codon bias index, Codon adaptation
index, Aromaticity

These features are mostly parameters that measure optimal codon
usage which determine the accurate translation of highly expressed
genes, transcription control, splicing and RNA structure. Essential
genes are more likely to use optimal codons. Deleterious
substitution in essential genes is expected to be negligible
compared to nonessential genes.

[87]

Transmembrane
Helix

Predicted helices count It predicts transmembrane helices and discriminates between
soluble and membrane proteins

[88]

format. Generative Adversarial Networks (GANs) [134], Varia-
tional Autoencoder (VAE) [135] and AutoRegressive Networks
[136] are types of deep generative models that use unsupervised
learning approaches to automatically learn a set of features that
best represents the data.

Feature importance in gene essentiality prediction

In this review, we sought to identify the category of features that
contributes most to gene essentiality prediction performance.
Gene essentiality information and features for Caenorhabditis
elegans were assembled. C. elegans is one of the eukaryotic model
organisms with complete sequencing and annotation of its
whole genome among others such as Drosophila melanogaster,
Mus musculus and Homo sapiens, which provided a solid
foundation for structural and functional genomics explorations
of the organism. Analysis of C. elegans essential genes in a
previous study by Quin et al. [137] shows that they have fewer
paralogs, encode proteins that are in protein interaction hubs,
and are highly expressed relative to nonessential genes. These
properties are similar properties to those of human disease
genes. This implies that more insight about essential genes as
relates to human diseases can be inferred from the outcome of
this analysis.

Essentiality label for all the genes was obtained from DEG [79]
and OGEE [80]. A total of 116 genes annotated as essential in both
databases were selected as the positive class and other genes
with ambiguous annotation were excluded from the dataset.
The remaining 10 468 genes represent the negative samples.
We generated commonly used 48 545 features according to
five categories, namely, gene sequence (27 727 features), pro-
tein sequence (11 937 features), network topology (25 features),
homology (10 features) and ontology (8846 features). Feature
selection was performed to reduce the complexity of the model
and a 10-fold cross-validation ML protocol was applied in which
the imbalances in the class labels were corrected based on the
training data. Finally, the overall performance was estimated
using five performance metrics (ROC-AUC, PR-AUC, F1-score,
Precision and Recall) based on the test dataset.

Light Gradient Boosting (Light GBM) ML classifier was used
for the classification task. GO term feature category outper-
formed other categories with ROC-AUC of 0.931 and PR-AUC of
0.193. Followed by the gene ontology category is the topology
category with ROC-AUC of 0.872 and PR-AUC of 0.065. Protein

sequence category performs least with ROC-AUC of 0.776 and
PR-AUC of 0.043 (Figure 3A). Topology (PPI) category features
showed the strongest ability to distinguish essential genes from
nonessential genes with an average feature importance score of
approximately 2000. Homology category features ranked second
to topology features also having high average feature impor-
tance scores of approximately 1000. GO terms, Gene and protein
sequence features all have their feature importance score in the
average of 100 as shown in Figure 3B. The superior performance
of GO features is presented in Figure 3C and 3D. The poor perfor-
mance based on precision, recall, F1-score and PR-AUC is due to
the high imbalance in the data. The ratio of essential genes to
nonessential genes is approximately 1:90.

Wang et al. [105] identified three criteria to consider when
choosing suitable features to predict essential proteins; these
are (i) ease of obtaining the feature and its availability for the
target organism, (ii) high predictive capacity to identify essential
proteins and (iii) the features should share minimal biological
meaning. Based on the ease of obtaining features and their
availability for the target organism, gene and protein sequence
features rank highest because most organisms’ gene and protein
sequence are present in Genbank and Ensembl databases. There
are bioinformatics tools for generating thousands of sequence
features (Table 4). Topology features rank highest based on the
high predictive capacity to identify essential genes as shown in
Figure 3, with degree centrality having the highest importance of
2800. Gene ontology features can be said to share a high degree
of biological meaning as this category of feature directly encodes
the biological function of the genes. See Figure S1 for the feature
ranking from each category.

In summary, although ontology category outperformed other
feature categories based on the result of our analysis, this should
be minimally applied because of its high correlation with the
biological meaning of the genes. The topology category satisfies
the criteria for selecting suitable features for essentiality pre-
diction highlighted by Wang et al. [105]. Hence more topology-
based features should be considered in essentiality prediction
tasks using the machine learning approach.

Relatedness of training and investigated data

The prediction performance of machine learning classifiers is
also dependent on the quality of data used to train the classifier.
The quality can either be measured based on the experimental
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Table 3. (a) Description of selected extrinsic features

Subcategory Features Experimental importance References

Homology Phyletic retention Genes with earlier phyletic origin (older genes) are
more likely to be essential and are more conserved
across species than nonessential as discovered in
bacteria. It is measured by the number of
organisms in which an ortholog is present.

[89–91]

Paralogy The existence of a duplicate of a gene in a genome
makes it less likely to be essential.

[87, 92]

Orthology Essential genes are more conserved across species
than nonessential as discovered in bacteria.

[9]

Fractals Provides a measure of the structural complexity of
the genetic sequence

[39]

Ontology Domain enrichment The existence of a functional segment of a protein
sequence (domain) of a given organism in several
other organisms makes it more likely to be
essential.

[93, 94]

Gene Ontology, KEGG Orthology Functional enrichment of genes in biological
process, molecular function, cellular component as
well as metabolic pathways increases the
likelihood of a gene to be indispensable.

[95, 96]

Protein
localization

Nucleus, cytoplasm, mitochondrion, etc. The location of genes in the cell is likely to
determine their essentiality as essential genes are
mostly located within the nuclear membrane
while the nonessential are mostly found within
the cytoplasm.

[7, 97, 98]

Gene expression
features

Fluctuation in gene-expression The fluctuation range of mRNA expression values
of essential genes is often narrow while that of
nonessential genes has a wide range. Essentials
genes often have high expression values and are
more stable.

[99, 100]

Topology in a gene co-expression network Similar to topology features from metabolic
networks, hubs (high degree and centrality) and
bottlenecks (high betweenness) are found to
correlate with gene essentiality.

[101]

Expression Profile Genes that are not expressed under given
conditions are less likely to be essential.

[102]

(b) Description of selected Network topology-based features

Feature Description Formula

Degree Centrality
(DC) [103]

It describes the connectedness of a node
and is the number of edges connected to a
node. A gene with a high proportion of
incident edges either incoming or outgoing
edges is more likely to be essential.

DC(u) = ∑
uedge(u, v)

Betweenness
Centrality (BC)
[104]

A network attribute that quantifies the
ability of the node to monitor
communication between other nodes. It is
defined as the average fraction of the
shortest path that passes through the
node [105].

BC(u) = ∑
i∈V

∑
j∈V

p(i,u,j)
p(i,j) , i �= u �= jp(i, j) = no of the shortest paths from

node i to node j,
p(i, u, j) = no of the shortest paths from node i to node j, which pass
through node u.

Closeness
Centrality (CC)
[106]

It approximates how many edges are
required to access every other reaction
from a given reaction [97]. This graph
attribute describes how fast a node can
communicate with other nodes in a
network [107].

CC(u) = N−1∑
v∈V dis(u,v) N = no of reactions in the network

Eigenvector
Centrality [108]

It is defined as the principal eigenvector of
the adjacency matrix of the network and
assumes that the utility of a reaction is
determined by the utility of the
neighboring reactions. A reaction is scored
high if it is connected to high-scoring
reactions [109]

xi = 1
λ

∑
j∈Neighbor(i)xj = 1

λ

∑n
j=1AijxjNeighbor(i) = set of neighboring

reactions of reaction i,
n = total number of reactions
λ is a constant

(Continued)
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Gene essentiality prediction 9

Table 3. Continued

Feature Description Formula

Eccentricity [110] A topological attribute that quantifies the
longest distance from a specific reaction to
any other reaction

Ce(v) = n−1
max(dvi)

, i �= v, i ∈ V

Subgraph
Centrality

Subgraph centrality of a node describes
the number of subgraphs the node
participates in.

SC(u) = ∑∞
l=0

ul(u)
l! ul(u) = no of closed loops of length l that starts and ends

at node u.

Clustering
coefficient (CCo)
[111]

A non-supervised approach is to infer the
features of an object from its neighbor

SC(u) = ∑∞
l=0

ul(u)
l! ei = no of edges connecting the adjacent nodes of node i,

Ki = degree of node i.

Damage [66] Damage is a quantitative attribute that
accounts for the impact of a knocked-out
reaction on a network. Given a reaction u,
damage quantifies the number of
reactions affected by knocking out u.

Damage(u) = N − n (6)
n = no of nodes in the largest cluster of the subgraph that is obtained
from the network after deleting node u.

Table 4. Selected tools for generating the numerical representation of a sequence

Name Category Description Reference

PyFEAT DNA, RNA and Protein sequence Computes the frequency
distributions of various
permutations of the base
nucleotides/amino acids in the
sequence. Similar to rDNAse and
Protr

[117]

rDNAse DNA sequence Calculates nucleic acid
composition and autocorrelation
attribute of a DNA sequence

[115]

Protr Protein sequence Calculates state-of-the-art protein
sequence descriptors such as
amino acid composition and
autocorrelation

[114]

CodonW DNA and Protein sequence Computes codon usage and
correspondence analysis within a
sequence

[118]

NetworkX Network topology Generate topology features from
interaction data in Python

[119]

TopNet-like Yale Network
Analyzer

Network topology A Web system for managing,
comparing and mining multiple
networks

[120]

WCGNA package Network topology Generate topology features from
gene expression data in R

[121]

PSI-BLAST Evolution Estimates the identity and
similarity of a sequence

[24]

BUSCA Localization A Web system for predicting the
subcellular localization

[122]

TmHMM Server TmHMM An online system for predicting
transmembrane helices in
proteins

[88]

ProPAS Physico-chemical Calculates the Isoelectric point
(pI), Mass weight (MW) and
Hydrophobicity (Hy) properties of
protein sequences

[123]

Deeploc Localization A stand-alone application for
predicting subcellular localization
of proteins

[116]
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10 Aromolaran et al.

Figure 3. The performance evaluation of five categories of features generated from C. elegans, using 10-fold CV of light GBM classifier. (A) Heatmap shows GO terms

feature category having superior scores except in recall where topology (PPI) features performs better. (B) Feature importance of the feature categories shows three

interesting clusters with PPI features having highest importance in the top cluster, homology features occupy the middle cluster while GO terms, gene sequence and

protein categories cluster at the bottom. (C) Shows GO terms category has superior ROC-AUC. (D) PR-AUC curve shows performance difference between all categories

of features with GO terms category having superior performance.

process’ accuracy that produces the data or the data’s closeness
to the target domain. Cheng et al. [130] stated that essential
genes obtained from genome-wide gene deletion experiments
produced superior quality datasets than essential genes identi-
fied through transposon mutagenesis, RNA interference (RNAi)
and other methods. It is a general principle in machine learning;
the bigger the training data’s size, the better the predictive
model’s performance. This was also validated by Cheng et al.
[130] that varied the input data’s size and concluded that there
was a significant improvement in the machine learning model’s
robustness and predictive accuracy. However, the data quality
referred to in this study is the closeness or correlation of the
input data to the target domain or the question the study sought

to answer. For instance, the data collected on breast cancer will
perform optimally when used to investigate breast cancer than
when used to investigate prostate cancer.

The prediction of a gene’s essentiality with a machine
learning approach, the classifier can be trained by learning the
characteristics from known essential genes of the target organ-
ism (intraspecies) or transferring essential gene annotations
from a closely related model organism (cross-organism) [10].
However, for an understudied microbe, each approach has its
potential limitations; the intraspecies approach is constricted
by the often-small number of known essential genes. The cross-
organism approach is limited by the availability of model organ-
isms closely related to the understudied organism based on
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Gene essentiality prediction 11

evolutionary distance. Deng et al. [10] investigated three
approaches to predict essential genes based on the number
of known essential genes by studying four bacteria organisms to
validate the impact of relatedness on prediction performance.
Two prokaryotes (Escherichia coli K-12 and Acinetobacter baylyi
ADP1) and two eukaryotes (Saccharomyces cerevisiae S288c and
Neurospora crassa OR74A) were evaluated individually and in
pairs. The first (intra) approach which requires learning from the
known essential genes in the target organism will be suitable if
the number of known essential genes is at least 2% and 4% of
the total genes in prokaryotes and eukaryotes, respectively. The
second (cross) approach which involves transferring essential
gene annotations from a related model organism is suitable
when the number of known essential genes is less than 2%
(4% in eukaryotes) of the total genes and there is a closely
related organism. The third approach (hybrid) combines both
approaches and outperforms both of them when applied to
an understudied organism. Peng et al. [2] also stated there is
improved prediction performance if the organism under study
belongs to the same phylogenetic lineage with the reference
species. Hence, it can be inferred that relatedness of data can
significantly improve the performance of predictive models.

Application of machine learning in predicting essential
genes

Gene essentiality prediction is naturally a classification problem
because a set of label samples representing all possible classes
within the population is used to classify unlabeled samples.
Therefore, several supervised learning approaches have been
used to predict gene or protein essentiality. There is no single
ML algorithm that performs best in all domains or given different
problems or data types [38]. Not all machine learning algorithms
are suitable for essentiality prediction as a wrong choice will
produce a poor prediction, meaning that the quality of prediction
is also dependent on the choice of machine learning algorithm
used. A summary of some selected studies that applied machine
learning techniques to predict essential genes (Table 5) shows
that the performance of each technique is due to factors such as
quality of features and the type of algorithm used to train the
classifier. Some studies focus on a single organism to train and
test the classifier (intra-organism). However, some combined
data from different but similar organisms (cross-organism) to
train and test the classifier.

The application of a broad collection of intrinsic and extrin-
sic features has been shown to improve the performance of
gene essentiality classifiers [69]. Also, the power of deep neural
networks is yet to be fully exploited in essentiality prediction
problems as recent studies that applied deep neural networks to
predict essential genes have reported superior performance and
accuracy compared to conventional classifiers like SVM, Random
forest, Decision tree, Logistic regression among others [45, 46].

Prediction evaluation

In determining essential genes using the computational
approach, it is pertinent to validate the model’s predictions
and evaluate its performance. This is because poor prediction
accuracy will defeat the basic purpose of applying computational
approaches to complement experimental approaches. A model
is evaluated based on its performance on unseen data and
not the training data. As a standard practice to obtain reliable
estimates of a machine learning model’s performance, k-
fold cross-validation is among the reliable methods available,

Figure 4. Confusion matrix (TP = True positive, FP = False positive, TN = True

negative, FN = False negative)

particularly for small datasets. K-fold cross-validation technique
operates by randomly dividing the training data into k groups,
using the k-1 groups to construct the model, and using the kth
group to evaluate the model. It stores the performance of the
model and repeats the process for the remaining groups.

One of the methods used to evaluate the model’s perfor-
mance is by comparing the predicted values to the real values for
regression problems. This can be achieved by estimating either
Mean Absolute Error (MAE) (see Equ.1), Mean Squared Error (MSE)
(see Equ.2) or Normalized Mean Squared Error (NMSE) (see Equ.3)
[142].

MAE = mean
(
absolute

(
Valuepred − Valuereal

))
(1)

MSE = mean
(
square

(
Valuepred − Valuereal

))
(2)

NMSE = mean
(
square

(
Valuepred − Valuereal

))

mean
(
square

(
Valuereal − Valuerealpred

)) (3)

The use of MSE has the disadvantage of not being measured
in the same unit as the target variable, making it difficult to
interpret from the user’s perspective. There is no benchmark
to determine if a prediction is good or not when MAE is used
as the evaluation metric. Notwithstanding, NMSE is a better
statistic that calculates the ratio between the model’s output
and a benchmark value. NMSE values range from 0 to 1 where
values close to 0 indicate good performance and values close to 1
indicate that the model performs worse and not predictive [142].
The set of standard metrics used to evaluate a binary classifi-
cation model’s performance is depicted in Table 6. To compute
the evaluation metrics, basic parameters such as True positives
(TP), False positives (FP), True Negatives (TN) and False negatives
(FN) must be calculated (Figure 4). A prediction is TP if correctly
predicted as Positive; FP if wrongly predicted as Positive. TN is
correctly predicted as Negative, and FN is wrongly predicted as
Negative.

Evaluation of predictive models for binary classification
using precision, recall, and by extension, F1-score considers
only the positive class as the class of interest while neglecting
the negative class. They use only three of the confusion matrix
values: TP, FP and FN, while the 4th value, TN, is not used
in these metrics. This means that the value of TN is not
considered in the model evaluation. Although accuracy uses
all the confusion matrix values, it produces a misleading
measurement if the samples in one class are more than the
other class. Gene essentiality prediction focuses only on the
positive class (essential genes); therefore, these metrics will
provide a good performance evaluation. However, if both positive
and negative classes are of interest, then Matthews Correlation
Coefficient (MCC) will be a better measure. MCC considers all
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Table 5. Performance of some selected studies that used machine learning techniques to predict gene essentiality

ML algorithms features Type of prediction Purpose of the study Performance

NN, SVM [6] DC and gene expression Intra-organism Essential protein
prediction in E. coli and S.
cerevisiae

ROC-AUC ranges from
0.69 to 0.89

WKNN, SVM, Ensemble
[138]

DC and Sequence-related Intra-organism Essential gene prediction
in S. cerevisiae

Recall ranges from 0.73 to
0.81

NB [7] DC and Sequence-related Intra-organism Essential gene prediction
in E. coli and S. cerevisiae

ROC-AUC ranges from
0.6984 to 0.7004

C4.5 decision tree [139] DC Intra-organism Essential gene prediction
in E. coli

F-measure ranges from
0.797 to 0.834

SVM [111] Centrality and
Sequence-related

Intra-organism Essential gene prediction
in E. coli and S. cerevisiae

Precision ranges from 0.72
to 0.83

Single and Ensemble
Decision tree [97]

Centrality, localization
and gene ontology terms

Intra-organism Essential gene prediction
in S. cerevisiae

ROC-AUC within the
range 0.667 to 0.808

SVM [66] Centrality Cross-organism Essential gene prediction
in distantly related
bacteria

ROC-AUC within the
range of 0.75 to 0.81

Ensemble [10] Centrality, gene
expression, and
Sequence-related

Cross-organism Essential gene prediction
in distantly related
bacteria

ROC-AUC scores within
0.69 and 0.89

FWM (NB, LR, genetic
algorithm) [127]

Centrality, gene
expression, and
Sequence-related

Cross-organism Essential gene prediction
in bacteria species

ROC-AUC ranges from
0.77 to 0.95

NB, LR, C4.5 decision tree
and CN2 rule [15]

Gene expression and
Sequence-related

Cross-organism Essential gene prediction
in eukaryotic fungal
species to identify
potential drug target

ROC-AUC scores between
0.69 and 0.89

NB [130] Centrality, gene
expression and
Sequence-related

Cross-organism Essential gene prediction
in bacteria species

ROC-AUC scores range
from 0.781 to 0.941

SVM [96] Gene ontology terms and
KEGG pathways

Intra-organism Essential gene prediction
in human leukemia cell
line

MCC score of 0.951

SVM [140] Centrality and
Sequence-related

Cross-organism Essential gene prediction
in distantly related
bacteria

ROC-AUC scores of 0.857
and precision of 0.335

Ensemble [141] Centrality, gene
expression and
Sequence-related

Intra-organism Prediction of essential
protein in S. cerevisiae
using a unique network
centrality feature

Precision scores between
0.651 and 0.862

Deep Neural Network [45] Topology features, gene
expression profiles,
localization

Intra-organism Essential protein
prediction in S. cerevisiae

ROC-AUC scores between
0.831 and 0.841

Deep Neural Network [46] Sequence features Cross-organism Essential gene prediction
in bacteria species

ROC-AUC scores between
0.838 and 0.842

Ensemble [69] Sequence, Topology,
Homology, Ontology,
Localization

Intra-organism Prediction of essential
genes in D. melanogaster

ROC-AUC score of 0.922

Abbreviations: NN, neural network; DC, degree centrality; ROC-AUC, area under the receiver operating characteristic curve; WKNN, weighted k-nearest-neighbor; SVM, support vector
machine; NB, Naive Bayes; FWM, feature-based weighted Naïve Bayes model; PIN, protein–protein interaction network; LR, logistic regression; MCC, Matthews correlation coefficient.

four values in the confusion matrix, and a high value (close to 1)
means that both classes are predicted well, even if one class is
disproportionately (under or over) represented.

Area Under Receiver Operating Characteristic (ROC-AUC)
curve graphically represents the trade-off between true positive
rate (sensitivity) and false positive rate (1—specificity) of a given
model at different thresholds. It is used to select optimal binary
classifiers independently from class distribution, and its scores
range from 0 to 1. Area Under Precision-Recall curves (PR-AUC)
graphically represents the trade-off between the true positive
rate and the positive predictive value for a predictive model
using different probability thresholds. The Precision-Recall plot

is more informative than the ROC-AUC plot when evaluating
binary classifiers on imbalanced datasets [146].

Challenges in machine learning approach for future
research

The computational approaches have significantly bridged the
gaps identified in the experimental approaches to predicting
essential genes. However, there still exist some areas that need
to be improved upon. First, information from model organisms
used to train the classifiers is often incomplete and contains
false positives and false negatives due to experimental errors
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Table 6. Standard evaluation metrics for binary classification

Metric Description Formula

Accuracy It measures the degree of correctness of a model with respect
to both positive and negative classes.

TP+TN
TP+TN+FP+FN

Precision or Positive
Predictive Value (PPV)

It measures the ratio of true positives with regards to all
positives predicted by the model [143].

TP
TP+FP

Sensitivity or Recall Measures the proportion of actual positives that are correctly
identified as such. Also known as True positive rate [143].

TP
TP+FN

Specificity Measures the proportion of actual negatives that are correctly
identified as such. Also known as True negative rate.

TN
TN+FP

F1-score It is the harmonic mean of recall and precision F1 = ( recall−1+precision−1

2 )
−1

= 2 · precision·recall
precision+recall

Matthews correlation
coefficient (MCC)

It is a balanced measurement even if the sizes of positive and
negative samples have a great difference. The coefficient
ranges between +1 and − 1. 1 represents a perfect prediction, 0
is better than random prediction and − 1 indicates total
disagreement between prediction and observation [144].

TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Cohen’s Kappa It measures the degree of agreement between the output of
two models. If κ = 1 then the models are in perfect agreement
and κ = 0 means there is no agreement between models [145]

κ ≡ p0−pe
1−pe

p0 is the relative observed agreement
among models, pe is the hypothetical
probability of chance agreement.

and consequently, affects the classifier [84, 105]. Recent publica-
tions have revealed that studies that assemble their class labels
from multiple sources (databases or studies) produce superior
results compared to those that used a single source [45, 69].
Second, the limited availability of model organisms and evo-
lutionary distance to the target organism is another challenge
because the prediction performance deteriorates as distance
increases.

Third, several studies have reported that some nonessential
genes became essential when placed in different environmen-
tal conditions [105, 147, 148]. This poses a big challenge to
ML techniques due to label inaccuracy and inconsistency. For
instance, a study of gene essentiality experiment by Juhas et al.
[23] reported inconsistent results of essential genes in the same
organisms under similar experimental conditions. This lack of
consensus makes it difficult to determine gene essentiality in
model organisms, let alone in non-model or poorly researched
organisms. Moreover, the prediction of essential genes is signifi-
cantly affected by the upregulation of isoenzymes which occurs
as a result of the longer duration required for conducting exper-
iments [9]. The reliability of an ML approach is questionable if
the class label for the training data is based on one experimental
condition only. Consequently, studies that combine essentiality
labels from multiple experiments for ML analysis will produce an
improved performance for absolute gene essentiality prediction.

The differences in the outcome of gene essentiality studies
are possibly a result of ‘conditional’ or contextual essentiality
because the essentiality of a gene depends on its context,
which might be a defined growth media or conditions, genetic
context, or a particular developmental stage of a microorganism
[149]. This leads to the more specialized use of ML to predict
conditionally essential genes, which is the fourth challenge
identified by this review. The application of ML techniques to
predict conditionally essential genes has not been suitable [2]
majorly because there are insufficient labels to train predictive
models for diverse biological conditions in several organisms.
For instance, the use of ML techniques to predict essential
genes in immune response condition requires annotating class
labels from the literature, which might not be sufficient to
train an ML model thereby making the approach inappropriate.
Hence, there is a need to develop protocols and techniques

capable of predicting conditional gene essentiality using
machine learning.

Cooperative machine learning (CML) [150] could answer
the limitation of machine learning techniques in predicting
conditionally essential genes. CML is an extension of active
learning that efficiently combines human intelligence with the
machine’s rapid computation ability to annotate unlabeled data.
The trained classifier uses the small labeled data for its training
as shown in Figure 5. Therefore, given a small labeled data of a
condition of interest, CML can be used to predict the unlabeled
section of the data. Another interesting technique that could
be applied to predict conditionally essential genes is a deep
generative model such as Generative Adversarial Networks
(GANs). GANs are state-of-the-art deep learning models that
can model high-dimensional data, handle missing data, and can
provide multimodal outputs. The generative modeling provided
by GANs makes it a potentially suitable technique to address
the limitation of ML in predicting conditional essential genes.
Conditional GANs can be used to generate new examples for
tasks that require more samples for model training, thereby
making it a plausible technique for conditional essentiality
prediction. See the conference report by Ian Goodfellow for
details about GANs [151].

Absence of a central store for documenting experimentally
identified essential sets of genes and gene products was also
identified in this study as major challenges. Since the machine
learning approach requires annotation of model organisms with
experimentally determined gene essentiality for its construc-
tion, only a few model organisms [such as Drosophila melanogaster
[152], Mus musculus [153] and Saccharomyces cerevisiae [154] have
a dedicated database for essentiality annotation.

Conclusion
Identification of essential genes is imperative because it
provides an understanding of the core structure and function
of a cell, accelerates the discovery of drug targets, guides the
engineering of new organisms, provides knowledge about the
basic requirements for a cell, and proffers insights into the
correlations between genotype and phenotype. Computational
approaches have been advanced to serve as alternative

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab128/6219158 by guest on 16 April 2021



14 Aromolaran et al.

Figure 5. Conceptual framework for cooperative machine learning (1) the initial model is trained using the limited labeled data (2) the trained model is used to predict

the unlabeled data (3) predictions with low confidence is selected (4) and manually annotated by the oracle (5) the initial model is retrained using the predicted added

to the labeled data [155].

and complement experimental approaches. Three important
factors that determine the prediction performance of machine
learning methods are (i) predictive power of selected features
(ii) relatedness of training and prediction dataset and (iii)
suitability of machine learning algorithm. Topology features
were identified to possess high discriminating power in gene
essentiality prediction and less biological correlation to the gene
function, thus making it a highly suitable feature category for
essentiality prediction. Embedded feature selection methods are
practically suitable compared to other techniques due to their
ability to handle large feature sets and superior performance.
Several challenges in using computational approaches to predict
essential genes were highlighted with a view of further studies in
them. State-of-the-art machine learning approach such as deep
learning provides a brighter prospect of developing prediction
models that can predict essential genes in related organisms
and distantly related organisms by taking advantage of the
automatic feature selection and accuracy in deep learning
methods. Furthermore, cooperative machine learning and
Generative Adversarial Networks could be further exploited
to develop models that can perform conditional essentiality
predictions.

Key Points
• The choice of features and ML technique is vital to

gene essentiality prediction.
• Most data sources contain a significant measure of

incompleteness and error that affects downstream ML
analysis.

• Feature category such as gene ontology that has a high
correlation with the biological meaning of the genes
should be minimally applied.

• Cooperative machine learning technique could pro-
vide an answer to the prediction of conditionally
essential genes.

Author’s contribution

All authors contributed to this work. O.A. contributed to the
original idea and conception. O.A. achieved the implemen-
tation of the comparative analysis. O.A. and D.A. performed
data curation and Visualization. J.O., I.I. and O.A. wrote the
manuscript. O.A., J.O., I.I. and D.A. were responsible for the
final version’s critical revision and approval.

Acknowledgments

This work is fully supported by the Covenant University and
Covenant University Center for Research, Innovation and
Discovery.

References
1. Hart T, Brown KR, Sircoulomb F, et al. Measuring error

rates in genomic perturbation screens: gold standards
for human functional genomics. Mol Syst BiolEMBO Press
2014;10:733.

2. Peng C, Lin Y, Luo H, et al. A comprehensive overview of
online resources to identify and predict bacterial essential
genes. Front MicrobiolFrontiers 2017;8:2331.

3. Li J, Shou J, Guo Y, et al. Efficient inversions and duplications
of mammalian regulatory DNA elements and gene clus-
ters by CRISPR/Cas9. J Mol Cell BiolOxford University Press
2015;7:284–98.

4. Pavlovic G, Erbs V, Andre P, et al. Generation of targeted
overexpressing models by CRISPR/Cas9 and need of care-
ful validation of your knock-in line obtained by nuclease
genome editing. Transgenic Res 2016;25:254–5.

5. Flora A, Welcker J. CRISPR Genome Engineering: Advan-
tages and Limitations., Rodent Research Models 2017;22

6. Chen Y, Xu D. Understanding protein dispensability
through machine-learning analysis of high-throughput
data. Bioinformatics 2005 [cited 2018 May 17];21:575–81.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab128/6219158 by guest on 16 April 2021



Gene essentiality prediction 15

Available from. http://www.ncbi.nlm.nih.gov/pubme
d/15479713.

7. Gustafson AM, Snitkin ES, Parker SC, et al. Towards the
identification of essential genes using targeted genome
sequencing and comparative analysis. BMC Genomics
2006;7:265.

8. Seringhaus M, Paccanaro A, Borneman A, et al. Predict-
ing essential genes in fungal genomes. PCR Methods Appl.
Cold Spring Harbor Laboratory Press 2006 [cited 2018 Jul
14];16:1126–35. Available from. http://www.ncbi.nlm.nih.go
v/pubmed/16899653.

9. Mobegi FM, van Hijum SAFT, Burghout P, et al. From micro-
bial gene essentiality to novel antimicrobial drug targets.
BMC GenomicsBioMed Central 2014;15:958.

10. Deng J, Deng L, Su S, et al. Investigating the predictability of
essential genes across distantly related organisms using an
integrative approach. Nucleic Acids Res 2011 [cited 2018 May
17];39:795–807. Available from. http://www.ncbi.nlm.nih.go
v/pubmed/20870748.

11. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human
protein reference database—2009 update. Nucleic Acids
ResOxford University Press 2009;37:D767–72.

12. Costa PR, Acencio ML, Lemke N. A machine learning
approach for genome-wide prediction of morbid and drug-
gable human genes based on systems-level data. BMC
GenomicsSpringer 2010;11:1–15.

13. Huang X, Liu H, Li X, et al. Revealing Alzheimer’s disease
genes spectrum in the whole-genome by machine learning.
BMC NeurolSpringer 2018;18:5.

14. Panchen AL. Homology-history of a concept. Novartis Found
SympWiley Online Library 1999;225:5–18.

15. Lu Y, Deng J, Rhodes JC, et al. Predicting essential genes for
identifying potential drug targets in aspergillus fumigatus.
Comput Chem. Elsevier 2014 [cited 2018 May 17];50:29–40.
Available from. https://www.sciencedirect.com/science/a
rticle/pii/S1476927114000139.

16. Mushegian AR, Koonin EV. A minimal gene set for cellular
life derived by comparison of complete bacterial genomes.
Proc Natl Acad SciNational Acad Sciences 1996;93:10268–73.

17. Liu W, Fang L, Li M, et al. Comparative genomics of
mycoplasma: analysis of conserved essential genes and
diversity of the pan-genome. PLoS OnePublic Library of
Science 2012;7:e35698.

18. Fagen JR, Leonard MT, McCullough CM, et al. Compara-
tive genomics of cultured and uncultured strains suggests
genes essential for free-living growth of Liberibacter. PLoS
OnePublic Library of Science 2014;9:e84469.

19. Rout S, Warhurst DC, Suar M, et al. In silico compara-
tive genomics analysis of plasmodium falciparum for the
identification of putative essential genes and therapeutic
candidates. J Microbiol MethodsElsevier 2015;109:1–8.

20. Yang X, Li Y, Zang J, et al. Analysis of pan-genome to identify
the core genes and essential genes of Brucella spp. Mol
Genet GenomicsSpringer 2016;291:905–12.

21. Zdobnov EM, von Mering C, Letunic I, et al. Paucity of
genes on the drosophila X chromosome showing male-
biased expression. Science (80- ) [Internet]. American Asso-
ciation for the Advancement of Science 2002 [cited 2019
Oct 25];298:149–59. Available from. http://www.sciencema
g.org/lookup/doi/10.1126/science.1077061.

22. Wei W, Ning L-W, Ye Y-N, et al. Geptop: a gene essentiality
prediction tool for sequenced bacterial genomes based on
orthology and phylogeny. PLoS OnePublic Library of Science
2013;8:e72343.

23. Juhas M, Eberl L, Glass JI. Essence of life: essential genes of
minimal genomes. Trends Cell BiolElsevier 2011;21:562–8.

24. Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST
and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids ResOxford University Press
1997;25:3389–402.

25. Ye J, McGinnis S, Madden TL. BLAST: improvements for
better sequence analysis. Nucleic Acids ResOxford University
Press 2006;34:W6–9.

26. Thiele I, Palsson BØ. A protocol for generating a high-
quality genome-scale metabolic reconstruction. Nat Pro-
toc [Internet]. NIH Public Access 2010 [cited 2018 May
15];5:93–121. Available from. http://www.ncbi.nlm.nih.gov/
pubmed/20057383.

27. Kauffman KJ, Prakash P, Edwards JS. Advances in flux
balance analysis. Curr Opin BiotechnolElsevier 2003;14:491–6.

28. Papp B, Pal C, Hurst LD. Metabolic network analysis of the
causes and evolution of enzyme dispensability in yeast.
NatureNature Publishing Group 2004;429:661–4.

29. Raman K, Chandra N. Flux balance analysis of biological
systems: applications and challenges. Brief BioinformOxford
Univ Press 2009;10:435–49.

30. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis?
Nat BiotechnolNature Publishing Group 2010;28:245.

31. Basler G. Computational prediction of essential metabolic
genes using constraint-based approaches. Gene Essential-
itySpringer 2015;1279:183–204.

32. Levashina EA. Immune responses in Anopheles gambiae.
Insect Biochem Mol Biol 2004;34:673–8.

33. Mahadevan R, Edwards JS, Doyle FJ, III. Dynamic flux bal-
ance analysis of diauxic growth in Escherichia coli. Biophys
JElsevier 2002;83:1331–40.

34. Zomorrodi AR, Suthers PF, Ranganathan S, et al. Mathemati-
cal optimization applications in metabolic networks. Metab
EngElsevier 2012;14:672–86.

35. Shlomi T, Berkman O, Ruppin E. Regulatory on/off min-
imization of metabolic flux changes after genetic per-
turbations. Proc Natl Acad SciNational Acad Sciences
2005;102:7695–700.

36. Segre D, Vitkup D, Church GM. Analysis of optimality in
natural and perturbed metabolic networks. Proc Natl Acad
SciNational Acad Sciences 2002;99:15112–7.

37. Li G-H, Dai S, Han F, et al. FastMM: an efficient toolbox for
personalized constraint-based metabolic modeling. BMC
Bioinformatics BioMed Central 2020;21:1–7.

38. Sakr S, Elshawi R, Ahmed AM, et al. Comparison of machine
learning techniques to predict all-cause mortality using
fitness data: the Henry ford exercise testing (FIT) project.
BMC med inform Decis Mak. BioMed Central 2017;17:174.

39. Yu Y, Yang L, Liu Z, et al. Gene essentiality prediction based
on fractal features and machine learning. Mol Biosyst Royal
Society of Chemistry 2017;13:577–84.
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