
WEAK MEASUREMENT THEORY AND MODIFIED
COGNITIVE COMPLEXITY MEASURE

Sanjay Misra, Hürevren Kılıç
Department of Computer Engineering, Atılım University,
Kızılcaşar Köyü, İncek, Gölbaşı, 06836, Ankara, Turkey

{smisra, hurevren}@atilim.edu.tr

Keywords: Validation criteria, weak measurement theory, software complexity measure, scale of a measure

Abstract: Measurement is one of the problems in the area of software engineering. Since traditional measurement
theory has a major problem in defining empirical observations on software entities in terms of their
measured quantities, Morasca has tried to solve this problem by proposing Weak Measurement theory. In
this paper, we tried to evaluate the applicability of weak measurement theory by applying it on a newly
proposed Modified Cognitive Complexity Measure (MCCM). We also investigated the applicability of
Weak Extensive Structure for deciding on the type of scale for MCCM. It is observed that the MCCM is on
weak ratio scale.

1 INTRODUCTION

The key element of any engineering process is
measurement. Engineers use measures to better
understand and assess the quality of engineered
products or systems that they built. However,
absolute measures are uncommon in software
engineering. Instead, software engineers attempt to
derive a set of indirect measures that provide an
indication of quality of some representation of
software. Software engineers plan ‘how’ an
information system should be developed in order to
achieve its quality objectives. The quality objectives
may be listed as performance, reliability, availability
and maintainability and are closely related to
software complexity. Numbers of researchers have
proposed variety of software complexity measures
(Halstead, 1997), (Kushwaha and Misra, 2006),
(Woodward and Hennel, 1979) and (Wang, 2003).
Out of the numerous proposed measures, selecting a
particular complexity measure is again a problem, as
every measure has its own advantages and
disadvantages. There is an ongoing effort to find
such a comprehensive complexity measure, which
addresses most of the parameters of software.

Elements of measurement theory has been
proposed and extensively discussed in literature
(Briand et.al., 1996), (Basili, 2007), (Fenton, 1994),
(___, 1998), (Weyuker, 1998), (Zuse, 1991) and
(Zuse, 1992) as a means to evaluate the software
complexity measures. However, for formal
approach of measurement theory , there is a
problem: How can we recognize and describe the
attribute in the empirical observation domain in
order to relate its values to the proposed metric?
(Misra and Kilic, 2006). Naturally, the
representational measurement theory does not care
about the practical difficulty of making empirical
observations on the attribute and their identification.
These are the underlying reasons for proposal of
weak measurement theory by (Morasca, 2003). He
has argued that the representation condition is very
demanding for state of art of software engineering
measurement. Therefore, he proposed for weakening
the representation condition and developed the
concept of weak measurement theory. We will
discuss on it in detail in section 3.

In this paper, an effort has been made to validate
MCCM (Misra, 2006) against the weak
measurement theory. This theory for metric
evaluation is more practical and useful and

encompasses all the factors which are important for
the evaluation of any proposed measure. We know
that a newly proposed complexity measure is
acceptable, only when its usefulness has been
proved by a validation process. It must be validated
and evaluated both formally and practically. The
purpose of the validation is to prove the usefulness
of software attribute, which is measured by proposed
metric. Actually, validation in narrow sense is the
process through which one can test whether the
measure’s design purpose is achieved and the
intended dimension of software is represented by the
measure or not. According to (Fenton, 1991), by
narrow sense validation the theoretical soundness of
the measure is verified. Using a set of narrow sense
validated measures one can show that the
authentication of whole prediction system which is
called validation in wide sense. From this
perspective, the effort in this paper is to validate
MCCM in narrow sense while our aim is to verify its
theoretical soundness. A detailed discussion about
the importance of validating software measures can
be found in (Neal, 1997).

A brief introduction of MCCM is given in
section 2. We validated MCCM from the perspective
of weak measurement theory in section 3. After that
in section 4, we examined the scale of the MCCM
through weak extensive structure concept. The
conclusion drawn is in section 5.

2 MODIFIED COGNITIVE
COMPLEXITY MEASURE

The complexity measures based on cognitive
informatics are in developing phase. Wang’s
cognitive functional size measure (Wang, 2003)
depends upon internal architecture of the software,
input and output. In MCCM (Misra, 2006),
occurrences of operators and operands are taken into
account in place of inputs and outputs. (Wang and
Shao, 2003) claim that basic control structures are
used for building logical software architecture, but
operators and operands are equally important and
part of design information. Once operators and
operands have been considered, the number of input
and output are automatically included. Further, the
occurrence of operators and operands directly affect
the architecture and as well as cognitive complexity
of software, which was not taken into consideration
in the cognitive functional size approach. Based on
this, the cognitive complexity should depend on total
occurrences of operators, operands and cognitive

weights of basic control structures. Accordingly,
MCCM is defined as:

 MCCM = Soo*Wc (1)
where, Soo is the total occurrences of operators and
operands and given by,

 SOO= Ni1 +Ni2 (2)
where, Ni1: The total occurrences of operators.

 Ni2: The total occurrences of operands.
 SOO: Total occurrences of operators and

operands.
Wc is the cognitive weights of basic control

structures. Basic Control Structures (BCS),
sequence, branch and iteration (Wang and Shao,
2002), (Wang and Shao, 2003), (Wang, 2004) are
the basic logic building blocks of any software. The
cognitive weight of BCS is the extent of difficulty or
relative time and effort for comprehending given
software modelled by a number of BCS’s. There are
two different architectures for calculating Wbcs:
either all the BCS’s are in a linear layout or some
BCS’s are embedded in others. In the former case,
sum of the weights of all n BCS’s; are added and in
the latter, cognitive weights of inner BCS’s are
multiplied with the weights of external BCS’s. The
total cognitive weight of a software component Wc
is defined as the sum of cognitive weight of its q
linear blocks composed in individuals BCS’s. Since
each block may consists of m layers of nesting
BCS’s, and each layer with n linear BCS’s, the total
cognitive weight, Wc can be calculated by:

∑ ∏∑
= = =

⎥
⎦

⎤
⎢
⎣

⎡
=

q

j

m

k

n

i
cc ikjWW

1 1 1
),,(

(3)

In fact, cognitive weights correspond to the
number of executed instructions. For example, if in a
simple program without any loop, the weights
assigned to such code is one. Cognitive weights of
basic control structures are basic building blocks of
software and the standard weights for different
control structures are given in (Wang and Shao,
2003).

In Equation-1, the Soo values are multiplied by
Wc values because of the possible higher structure
value. For a simple program having only basic
control structure the “sequence,” Wc will not have
any additional contribution to complexity.
Therefore, for those programs the complexities are
only due to Soo. The above measure has been
illustrated with the help of an example as described
below:

Example 1. An algorithm to calculate the factorial of
a number, to illustrate the application of MCCM

#include< stdio.h >
#include< stdlib.h >
#include< conio.h >
 int main ()
 {

long int fact=1;
 int n;
 clrscr();
 printf("\ input the number");
 scanf ("%d", &n);
 if (n==0)
 else
 for (int i=n;i>1;i--)fact=fact*i;
 printf("\nfactorial(n)=%1d",fact);
 getch();
 }

We illustrate the MCCM to calculate the complexity
of this program as under:

Total number of operands =15.
Total number of operators = 24.
Soo= 24+15= 39.
BCS (sequence) W1 = 1.
BCS (branch) W2 = 2.
BCS (iteration) W3 = 3
Wc = W1+W2+W3=1+2+3 = 6.
MCCM = Soo* Wc = 39 * 6 = 234 CCU.
Thus, the cognitive complexity measure value of

the algorithm is 234 CCU.

3 VALIDATING MCCM BY WEAK
MEASUREMENT

Measurement is simply the process of converting
qualities to quantities. Such conversion process
requires a formal description of the systems worked
on. The components of the qualified system are (1)
Entities whose attributes are wanted to be quantified;
(2) Empirical binary relations showing the intuitive
knowledge about the attributes and (3) Binary
operations describing the production of new entities
from the existing ones. Entities can either be
physical objects or abstract artifacts that can be
characterized or defined by a set of basic
characteristics known as attribute (Wang, 2003). In
the following paragraphs we describe the basic
definition of measurement theory and check the
validity of MCCM against it. We have also shown
the problem related with the empirical observations
in empirical relation system.

Definition 1: (Empirical Relational System-ERS)
(Zuse, 1991). For a given attribute, an Empirical
Relational System is an ordered tuple

ERS=<E, R1,...,Rn, o1,..., om> where
E : the set of entities,
R1, ..., Rn denote n empirical relations such that

each Ri has an arity ni, and in
i ER ⊆

o1, ..., om denote m empirical binary operations
on the entities that produces new entities from the
existing ones, so oj: EEE →× and the
operations are represented with an infix notation, for
example, ek= ei oj el.

The components of the quantification system are
the values representing the decided quantities; the
binary relations showing the dependencies among
them and the binary operations describing the
production of new values from the existing ones. In
MCCM, the entities are the program bodies. The
only empirical relation is assumed to be
more_or_equal_complex and the only empirical
binary operation is the concatenation of program
bodies. However, from practical point of view there
is a major problem for the identification and
possibly the existence of such empirical
observations. We can explain it by a solid example.
Assume that we are given a program body P and we
obtain a new program body Q by simply duplicating
P. Also, assume that we are given another program
body R for which there is no direct clear relation
between P and R. One may easily establish the
relation more_or_equal_complex between P and Q
however it may not easy to make such an empirical
observation between P and R. This is due to that we
may not reach a consensus on how to order P and R
based on their complexity.

Definition 2: (Numerical Relational System-

NRS). A Numerical Relational System is an ordered
tuple

NRS=<V, S1,...,Sn, p1,..., pm> where
V : the set of values,
S1, ..., Sn denote n relations such that the arity of

Si is equal to the arity of Ri, and in
i VS ⊆

p1, ..., pm denote m numerical binary operations
on the values that produces new values from the
existing ones, so pj: VVV →× and the
operations are represented with an infix notation, for
example, vk= vi pj vl.

For MCCM, V is the set of positive integers, the
binary relation is assumed to be ≥ and the
numerical binary operation is the addition (i.e. +) of
two positive integers.

Definition 3: Measure m is a mapping of entities

to the values i.e. m: VE → .
The measure for MCCM is defined by Equation

(1). Note that the measure by itself does not provide

any mapping between empirical and numerical
knowledge.

Definition 4: A measure must satisfy the

following two conditions known as Representation
Condition.

∀ i∈1..n ∀ < 1e , …,

ine >∈ inE
 (< 1e ,…,

ine >∈ iR ⇔ <m(1e),…,m(
ine)>∈ iS)

(Part 1)

∀ j∈1..m ∀ < 1e , 2e >∈ EE ×
 (m(e1 oj e2)=m(e1) pj m(e2))

 (Part 2)
The first part of the Representation Condition

says that for a given empirically observed relation
between entities, there must exist a numerical
relation between corresponding measured values and
vice versa. In other words, any empirical observation
should be measurable and any measurement result
should be empirically observable. The second part
says a measured value of an entity which is obtained
by the application of an empirical binary operation
on two entities should be equal to the value obtained
by corresponding numerical binary operation
executed over individually measured values of
entities. In other words, complexity of the whole
should be definable in terms of complexities of its
parts and their higher order relations.

For MCCM, the representation condition
requires that (1) if for any two program body e1 and
e2 are in more_or_equal_complex relation (i.e.<e1,
e2>∈more_or_equal_complex) then the measured
complexity value of entity e1 should be greater than
the measured complexity value of entity e2 (i.e.
m(e1) > m(e2)) and vice versa. When we reconsider
the program bodies P and Q where Q is the double
of P, we can say that since MCCM is based on the
counting of operators, operands and cognitive
weights of basic control structures, they also become
double or vice versa. Consequently, for part (1) of
the condition we can say that the empirically
observed more_or_equal_complex relation between
two program bodies leads to a numerical binary
relation > among those entities or vice versa.
However, part (1) is only satisfied if there is such
clear empirically observable relations between
program bodies for example P and Q. On the other
hand, in case of P and R since we do not have any
clear empirical relation between them, the
requirement

∀ i∈1..n ∀ < 1e , …,

ine >∈ inE
 (<m(1e),…,m(

ine)>∈ iS ⇒ < 1e ,…,
ine >∈ iR)

implied by part (1) may not be required anymore.
The formal approach describing such relaxation is

proposed by (Morasca, 2003). He has argued that the
original definition of Representation Condition is
very demanding for state of art of software
engineering measurement. Therefore, he suggested
weakening (only) the first part of the condition two
way link ⇔ , to a one way link, ⇒ as follows:

Definition 5: Weak Representation Condition is
defined by[8].

∀ i∈1..n ∀ < 1e , …,

ine >∈ inE
 (< 1e ,…,

ine >∈ iR ⇒ <m(1e),…,m(
ine)>∈ iS)

(Part 1)

∀ j∈1..m ∀ < 1e , 2e >∈ EE ×
 (m(e1 oj e2)=m(e1) pj m(e2))

 (Part 2)
When we consider the above example again,

although we can calculate the MCCM values for P
and R, this does not imply the existence of
corresponding empirical relations between P and R.
On the other hand, for a given
more_or_equal_complex relation between P and Q
that can be empirically observable one can always
find corresponding metric values satisfying the
Weak Representation Condition.

For part two of the Representation Condition, we
can say that the complexity value of a program body
which is obtained by concatenation (i.e. the
empirical binary operation) of e1 and e2 is equal to
the sum (i.e. the numerical binary operation) of their
calculated complexity values. Therefore, MCCM
satisfies the second part of the Representation
Condition. Finally, we can say that MCCM satisfies
the Weak Representation condition.

Showing the MCCM satisfies the Weak
Representation Condition, we can investigate the
type of the scale for our proposal. In order to be able
to decide on the scale type we need to define the
Weak Scale and Weak Meaningful Statement
concepts (Morasca, 2003).

Definition 6: A weak scale is a triple <ERS,

NRS, m>, where ERS is an Empirical Relational
System, NRS is a Numerical Relational System, and
m is a measure that satisfies the Weak
Representation Condition.

Definition 7: A statement is called Weak

Meaningful Statement if its truth value does not
change if a weak scale is replaced by another weak
scale. Formally, if S(m) is based on measure m and
S(m’) is the same statement obtained by replacing m
with m’, we have S(m) ⇔ S(m’).

Based on the notion of weak meaningful
statement we can talk about four different types of
weak scales:

Weak nominal scale: The meaningful statements
of this class of scales are of the form m(e1) = m(e2)
for at least one pair of entities e1 and e2. If for one
scale, m(e1) = m(e2) is satisfied for a pair of entities
e1 and e2 then we must have m’(e1) = m’(e2) for all
other scales m’.

Weak ordinal scale: <ERS, NRS, m> is a weak
ordinal scale if m(e1) > m(e2) is a weak meaningful
statement for at least one pair of entities e1, e2. It is
not required that m(e1) > m(e2) or m(e1) = m(e2) be
weak meaningful statements for all pairs of entities
e1, e2.

Weak interval scale: <ERS, NRS, m> is a weak
interval scale if (m(e1) – m(e2)) / (m(e3) – m(e4)) = k
is a weak meaningful statement for at least one four-
tuple of entities e1, e2, e3, e4 i.e., k is a constant value
of all scales. It is not required that this statement is
meaningful for all four-tuples of entities.

Weak ratio scale: <ERS, NRS, m> is a weak ratio
scale if m(e1) / m(e2) = k is a weak meaningful
statement for at least one pair of entities e1, e2 i.e., k
is a constant value of for all scales defined by the
corresponding meaningful statement. Reconsider the
two program bodies P and Q above as entities e1 and
e2 where we calculate k as 2. Then, the statement
m(Q) / m(P) = 2 is also a Weak Meaningful
Statement for LOC or Control Complexity metrics.
Therefore, we can informally say that MCCM is
defined on weak ratio scale.

A formal way of proving a given scale is a weak
ratio scale or not, is done by investigating whether
the scale’s Empirical Relation System is a Weak
Extensive Structure or not (Briand, et.al., 1996).

Definition 8: A hierarchy is a pair <E, R> where

R ⊆ E×E is a binary relation on E such that it does
not contain any cycle, i.e. any sequence of pairs
{<e1, e2>, <e2, e3>, …, <ei, ei+1>, …, <en, en+1>} of
any length n with ∀ i∈1..n R(ei, ei+1) such that
e1=en+1.

4 WEAK EXTENSIVE
STRUCTURE

Definition 9: Let E be a set, R be a binary relation on
E, and o is a total function o: E×E →E. The
relational system (E, R, o) is a Weak Extensive
Structure if and only if the following axioms holds
(Morasca, 2003).

A1:
∀ e1, e2, e3 ∈ E (Eq(e1 o (e2 o e3), (e1 o e2) o e3)
where Eq is an equivalence relation defined as
Eq(e1, e2) ⇔ ¬R(e1, e2) ∧ ¬R(e2, e1) (axiom of
weak associativity).

A2:
< E, R > is a hierarchy (axiom of hierarchy).

A3:
∀ e1, e2, e3 ∈ E (R(e1, e2) ⇒ ¬R(e2 o e3, e1 o e3))
(axiom of monotonicity).

A4:
∀ e1, e2, e3, e4 ∈ E (R(e1, e2) ⇒ ∃ n∈N ¬R(ne2 o
e4, ne1 o e3) where ne is recursively defined for any
e∈E as 1e=e and ∀ n > 1 ne=(n-1)e o e
(Archimedean Axiom).

For our proposal MCCM, the empirical relation
R has the meaning “more or equal complex than"
and the binary operation o between two objects is
the “concatenation” of two program bodies. Now,
we will investigate the validity of the above axioms
for our empirical relation system (ERS=<E,
more_or_equal_complex, concatenation>) defined
for MCCM:

A1:
When we consider the example program bodies P, Q
and R, since we do not have any knowledge of
relation between R and the other two, we cannot say
that P concatenated with (Q concatenated with R) is
more_or_equal_complex than (P concatenated with
Q) concatenated with R. Therefore, the
concatenation operator of MCCM satisfies the weak
associativity property.

A2:
For any program bodies X being
more_or_equal_complex Y and Y being
more_or_equal_complex Z, the Z can never be
more_or_equal_complex than X. Therefore, we can
say that <E, more_or_equal_complex > is a
hierarchy.

A3:
When we consider the example program a body P, Q
and R, having Q is more_or_equal_complex than P
we cannot say that the same relation between Q
concatenated with R and P concatenated with R
because we have no knowledge of empirical relation
of R and the others. Then, monotonicity property is
also satisfied.

A4:
If entity e1 is more_or_equal_complex than e2 then
for any e3 e4, we cannot establish a new
more_or_equal_complex relation by any number of
concatenations; say n times, of e1 and e2 to
themselves followed by concatenation of e3 and e4
with them, respectively. This is because we may not
have any knowledge of relation between the results

of ne2 concatenated with e4 and ne1 concatenated
with e3 due to unknown relation between each of e3
and e4 with other two. Consequently, Archimedean
axiom is also satisfied.

As a result, the ERS description of the proposed
MCCM is a Weak Extensive Structure. Based on the
theorems “Existence of an Additive Scale for a
Weak Extensive Structures” and “Weak Additive
Scale and Weak Ratio Scales” given by in (Morasca,
2003) we can say that MCCM is defined on Weak
Ratio Scale. Note that among the scales defined
above, the ratio scale is the highest in level.
Therefore, it may be more powerful than the other
scales reflect.

5 CONCLUSIONS

MCCM is a new proposed complexity measure
based on cognitive aspects software development.
Any proposed complexity measure should be
validated and evaluated against mathematical tool of
measurement theory which is extensively used in the
literature as a means to evaluate software
engineering metrics. However it is known that in
classical measurement theory there is problem in
defining empirical observations on software entities
in terms of their measured quantities. Consequently,
the proposal of weak measurement theory is thought
to be a useful alternative for validating and
evaluating the MCCM. We showed that MCCM
satisfies most of the parameters required by the
weak measurement theory and it is also found that
the proposed measure is on weak ratio scale.

In the light of the experiences we propose the
future work to include the following:

1. Further researches on weak measurement
theory are required. Weak measurement theory is
only a partial solution to problem related to
definition of a measure based on measurement
theory.

2. To the best of our knowledge, complexity
measures based on cognitive aspects are not tested
by the practitioners. This is also a task for future
work.

REFERENCES

Briand, L.C., Morasca, S., and Basili, V.R., 1996. Property
based Software Engineering Measurement. IEEE
Transactions on SE, vol. 22, 1, pp.68-86.

Basili, V., 2007. The Role of Controlled Experiments in
Software Engineering Research," in Empirical
Software Engineering Issues, LNCS 4336, V.Basili et
al., (Eds.), pp.33-37.

Halstead M.H., 1997. Elements of Software Science.
Elsevier North-Holland. New York.

Fenton, N., 1994. Software Measurement: A Necessary
Scientific Basis,” IEEE Trans. Software Engineering,
Vol. SE-20, no. 3, pp.199-206.

Fenton, N. Software Metrics: A Rigorious Approach,
Chapman & Hill, London, UK, 1991.

____, 1998, IEEE Computer Society Standard for
Software Quality Metrics Methodology. Revision IEEE
Standard 1061-1998.

Kushwaha D.S. and Misra A.K., 2006. Robustness
Analysis of Cognitive Information Complexity
Measure using Weyuker’s Properties. ACM SIGSOFT
Software Engineering Notes. 31: 1-6.

Morasca S., 2003. Foundations of a Weak Measurement-
Theoretic Approach to Software Measurement. LNCS.
2621, pp.200-215.

Misra S. and Hurevren Kilic, 2006. Measurement theory
and Validation Criteria for Software Complexity
measure. ACM SIGSOFT Software Engineering Notes.
31, no.6. pp.1-3

Misra S., 2006. Modified Cognitive Complexity measure.
Proc. of 21st ISCIS’06, Lecture Notes in Computer
Science. 4263.pp. 1050-1059.

Neal R.D., 1997, Modeling the Object-Oriented Space
Through Validated Measures,
Aerospace Conference, 1997. Proceedings., IEEE
Volume 4, 1-8 Feb. 1997 Page(s):315 - 327 vol.4

Weyuker E.J., 1988. Evaluating Software Complexity
Measure. IEEE Transaction on Software Engineering.
14: pp. 1357-1365.

Woodward M.R. and Hennel M. A., 1979. David. A
Measure of Control Flow Complexity in Program Text.
IEEE Transaction on Software Engineering. 1. pp.45-
50.

Wang Y.; Shao J., 2002. On Cognitive Informatics.
Keynote Lecture. Proceeding of the 1st IEEE Inter-
national Conference on Cognitive Informatics. pp. 34–
42.

Wang Y. and Shao J. , 2003. A New Measure of Software
Complexity Based on Cognitive Weight. Can. J. Elect.
Comput. Engg. Pp.69-74.

Wang Y., 2004. On Cognitive Informatics: Foundation of
Software Engineering. Proceeding of the 3rd IEEE
International Conference on Cognitive Informatics
(ICCI'04) .IEEE CS Press .pp.22-31.

Wang, Y., 2003. The Measurement Theory for Software
Engineering. Proceedings of Canadian Conference on
Electrical and Computer Engineering CCECE 2003,
pp. 1321-1324.

Zuse, H., 1991. Software Complexity Measures and
Methods. de Gruyter.

Zuse, H., 1992. Properties of Software Measures.
Software Quality Journal, vol. 1, pp. 225- 260.

