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Abstract: Measurement is one of the problems in the area of software engineering. Since traditional measurement 
theory has a major problem in defining empirical observations on software entities in terms of their 
measured quantities, Morasca has tried to solve this problem by proposing Weak Measurement theory. In 
this paper, we tried to evaluate the applicability of weak measurement theory by applying it on a newly 
proposed Modified Cognitive Complexity Measure (MCCM). We also investigated the applicability of 
Weak Extensive Structure for deciding on the type of scale for MCCM. It is observed that the MCCM is on 
weak ratio scale.  

1 INTRODUCTION 

The key element of any engineering process is 
measurement. Engineers use measures to better 
understand and assess the quality of engineered 
products or systems that they built. However, 
absolute measures are uncommon in software 
engineering. Instead, software engineers attempt to 
derive a set of indirect measures that provide an 
indication of quality of some representation of 
software. Software engineers plan ‘how’ an 
information system should be developed in order to 
achieve its quality objectives. The quality objectives 
may be listed as performance, reliability, availability 
and maintainability and are closely related to 
software complexity. Numbers of researchers have 
proposed variety of software complexity measures 
(Halstead, 1997), (Kushwaha and Misra, 2006), 
(Woodward and Hennel, 1979) and (Wang, 2003). 
Out of the numerous proposed measures, selecting a 
particular complexity measure is again a problem, as 
every measure has its own advantages and 
disadvantages. There is an ongoing effort to find 
such a comprehensive complexity measure, which 
addresses most of the parameters of software. 

Elements of measurement theory has been 
proposed and extensively discussed in literature 
(Briand et.al., 1996), (Basili, 2007), (Fenton, 1994), 
( ___, 1998), (Weyuker, 1998), (Zuse, 1991) and 
(Zuse, 1992) as a means to evaluate the software 
complexity measures. However, for  formal 
approach of measurement theory , there is a 
problem: How can we recognize and describe the 
attribute in the empirical observation domain in 
order to relate its values to the proposed metric? 
(Misra and Kilic, 2006). Naturally, the 
representational measurement theory does not care 
about the practical difficulty of making empirical 
observations on the attribute and their identification. 
These are the underlying reasons for proposal of 
weak measurement theory by (Morasca, 2003). He 
has argued that the representation condition is very 
demanding for state of art of software engineering 
measurement. Therefore, he proposed for weakening 
the representation condition and developed the 
concept of weak measurement theory. We will 
discuss on it in detail in section 3. 

In this paper, an effort has been made to validate 
MCCM (Misra, 2006) against the weak 
measurement theory. This theory for metric 
evaluation is more practical and useful and 



 

encompasses all the factors which are important for 
the evaluation of any proposed measure. We know 
that a newly proposed complexity measure is 
acceptable, only when its usefulness has been 
proved by a validation process. It must be validated 
and evaluated both formally and practically. The 
purpose of the validation is to prove the usefulness 
of software attribute, which is measured by proposed 
metric. Actually, validation in narrow sense is the 
process through which one can test whether the 
measure’s design purpose is achieved and the 
intended dimension of software is represented by the 
measure or not. According to (Fenton, 1991), by 
narrow sense validation the theoretical soundness of 
the measure is verified. Using a set of narrow sense 
validated measures one can show that the 
authentication of whole prediction system which is 
called validation in wide sense. From this 
perspective, the effort in this paper is to validate 
MCCM in narrow sense while our aim is to verify its 
theoretical soundness. A detailed discussion about 
the importance of validating software measures can 
be found in (Neal, 1997). 

A brief introduction of MCCM is given in 
section 2. We validated MCCM from the perspective 
of weak measurement theory in section 3. After that 
in section 4, we examined the scale of the MCCM 
through weak extensive structure concept. The 
conclusion drawn is in section 5. 

2 MODIFIED COGNITIVE 
COMPLEXITY MEASURE 

The complexity measures based on cognitive 
informatics are in developing phase. Wang’s 
cognitive functional size measure (Wang, 2003) 
depends upon internal architecture of the software, 
input and output. In MCCM (Misra, 2006), 
occurrences of operators and operands are taken into 
account in place of inputs and outputs. (Wang and 
Shao, 2003) claim that basic control structures are 
used for building logical software architecture, but 
operators and operands are equally important and 
part of design information. Once operators and 
operands have been considered, the number of input 
and output are automatically included. Further, the 
occurrence of operators and operands directly affect 
the architecture and as well as cognitive complexity 
of software, which was not taken into consideration 
in the cognitive functional size approach. Based on 
this, the cognitive complexity should depend on total 
occurrences of operators, operands and cognitive 

weights of basic control structures. Accordingly, 
MCCM is defined as: 

                     MCCM = Soo*Wc                   (1) 
where, Soo is the total occurrences of operators and 
operands and given by, 
 

                       SOO= Ni1 +Ni2              (2) 
where, Ni1:   The total occurrences of operators. 

      Ni2:   The total occurrences of operands. 
      SOO: Total occurrences of operators and 

operands. 
Wc is the cognitive weights of basic control 

structures. Basic Control Structures (BCS), 
sequence, branch and iteration (Wang and Shao, 
2002), (Wang and Shao, 2003), (Wang, 2004) are 
the basic logic building blocks of any software. The 
cognitive weight of BCS is the extent of difficulty or 
relative time and effort for comprehending given 
software modelled by a number of BCS’s. There are 
two different architectures for calculating Wbcs: 
either all the BCS’s are in a linear layout or some 
BCS’s are embedded in others. In the former case, 
sum of the weights of all n BCS’s; are added and in 
the latter, cognitive weights of inner BCS’s are 
multiplied with the weights of external BCS’s. The 
total cognitive weight of a software component Wc 
is defined as the sum of cognitive weight of its q 
linear blocks composed in individuals BCS’s. Since 
each block may consists of m layers of nesting 
BCS’s, and each layer with n linear BCS’s, the total 
cognitive weight, Wc can be calculated by:  
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In fact, cognitive weights correspond to the 
number of executed instructions. For example, if in a 
simple program without any loop, the weights 
assigned to such code is one. Cognitive weights of 
basic control structures are basic building blocks of 
software and the standard weights for different 
control structures are given in (Wang and Shao, 
2003). 

In Equation-1, the Soo values are multiplied by 
Wc values because of the possible higher structure 
value. For a simple program having only basic 
control structure the “sequence,” Wc will not have 
any additional contribution to complexity. 
Therefore, for those programs the complexities are 
only due to Soo. The above measure has been 
illustrated with the help of an example as described 
below: 



 

Example 1. An algorithm to calculate the factorial of 
a number, to illustrate the application of MCCM  

#include< stdio.h > 
#include< stdlib.h > 
#include< conio.h > 
 int main ()  
 { 

long int fact=1; 
   int n; 
   clrscr(); 
   printf("\ input the number");         
   scanf ("%d", &n);                        
   if (n==0)                                       
   else 
     for (int i=n;i>1;i--)fact=fact*i;                             
   printf("\nfactorial(n)=%1d",fact); 
   getch(); 
 }  

 
We illustrate the MCCM to calculate the complexity 
of this program as under: 

Total number of operands =15. 
Total number of operators = 24.  
Soo= 24+15= 39. 
BCS (sequence) W1 = 1. 
BCS (branch) W2 = 2. 
BCS (iteration) W3 = 3 
Wc = W1+W2+W3=1+2+3 = 6. 
MCCM = Soo* Wc = 39 * 6 = 234 CCU. 
Thus, the cognitive complexity measure value of 

the algorithm is 234 CCU. 
 

3 VALIDATING MCCM BY WEAK 
MEASUREMENT  

 
Measurement is simply the process of converting 
qualities to quantities. Such conversion process 
requires a formal description of the systems worked 
on. The components of the qualified system are (1) 
Entities whose attributes are wanted to be quantified; 
(2) Empirical binary relations showing the intuitive 
knowledge about the attributes and (3) Binary 
operations describing the production of new entities 
from the existing ones. Entities can either be 
physical objects or abstract artifacts that can be 
characterized or defined by a set of basic 
characteristics known as attribute (Wang, 2003). In 
the following paragraphs we describe the basic 
definition of measurement theory and check the 
validity of MCCM against it. We have also shown 
the problem related with the empirical observations 
in empirical relation system.  
 

Definition 1: (Empirical Relational System-ERS) 
(Zuse, 1991). For a given attribute, an Empirical 
Relational System is an ordered tuple 

ERS=<E, R1,...,Rn, o1,..., om> where 
E : the set of entities,  
R1, ..., Rn denote n empirical relations such that 

each Ri has an arity ni, and in
i ER ⊆   

o1, ..., om denote m empirical binary operations 
on the entities that produces new entities from the 
existing ones, so oj: EEE →×  and the 
operations are represented with an infix notation, for 
example, ek= ei oj el.  

The components of the quantification system are 
the values representing the decided quantities; the 
binary relations showing the dependencies among 
them and the binary operations describing the 
production of new values from the existing ones. In 
MCCM, the entities are the program bodies. The 
only empirical relation is assumed to be 
more_or_equal_complex and the only empirical 
binary operation is the concatenation of program 
bodies. However, from practical point of view there 
is a major problem for the identification and 
possibly the existence of such empirical 
observations. We can explain it by a solid example. 
Assume that we are given a program body P and we 
obtain a new program body Q by simply duplicating 
P. Also, assume that we are given another program 
body R for which there is no direct clear relation 
between P and R. One may easily establish the 
relation more_or_equal_complex between P and Q 
however it may not easy to make such an empirical 
observation between P and R. This is due to that we 
may not reach a consensus on how to order P and R 
based on their complexity.  

 
Definition 2: (Numerical Relational System-

NRS). A Numerical Relational System is an ordered 
tuple  

NRS=<V, S1,...,Sn, p1,..., pm> where 
V : the set of values,  
S1, ..., Sn denote n relations such that the arity of 

Si is equal to the arity of Ri, and in
i VS ⊆   

p1, ..., pm denote m numerical binary operations 
on the values that produces new values from the 
existing ones, so pj: VVV →×  and the 
operations are represented with an infix notation, for 
example, vk= vi pj vl.  

For MCCM, V is the set of positive integers, the 
binary relation is assumed to be ≥  and the 
numerical binary operation is the addition (i.e. +) of 
two positive integers.  

 
Definition 3: Measure m is a mapping of entities 

to the values i.e. m: VE → .  
The measure for MCCM is defined by Equation 

(1). Note that the measure by itself does not provide 



 

any mapping between empirical and numerical 
knowledge. 

 
Definition 4:  A measure must satisfy the 

following two conditions known as Representation 
Condition.  
 
∀ i∈1..n ∀ < 1e , …, 

ine >∈ inE  
  (< 1e ,…,

ine >∈ iR ⇔ <m( 1e ),…,m(
ine )>∈ iS ) 

(Part 1) 
 
∀ j∈1..m ∀ < 1e , 2e >∈ EE ×  
   (m(e1 oj e2)=m(e1) pj m(e2))   

 (Part 2) 
The first part of the Representation Condition 

says that for a given empirically observed relation 
between entities, there must exist a numerical 
relation between corresponding measured values and 
vice versa. In other words, any empirical observation 
should be measurable and any measurement result 
should be empirically observable. The second part 
says a measured value of an entity which is obtained 
by the application of an empirical binary operation 
on two entities should be equal to the value obtained 
by corresponding numerical binary operation 
executed over individually measured values of 
entities. In other words, complexity of the whole 
should be definable in terms of complexities of its 
parts and their higher order relations. 

For MCCM, the representation condition 
requires that (1) if for any two program body e1 and 
e2 are in more_or_equal_complex relation (i.e.<e1, 
e2>∈more_or_equal_complex) then the measured 
complexity value of entity e1 should be greater than 
the measured complexity value of entity e2 (i.e. 
m(e1) > m(e2)) and vice versa. When we reconsider 
the program bodies P and Q where Q is the double 
of P, we can say that since MCCM is based on the 
counting of operators, operands and cognitive 
weights of basic control structures, they also become 
double or vice versa. Consequently, for part (1) of 
the condition we can say that the empirically 
observed more_or_equal_complex relation between 
two program bodies leads to a numerical binary 
relation > among those entities or vice versa. 
However, part (1) is only satisfied if there is such 
clear empirically observable relations between 
program bodies for example P and Q. On the other 
hand, in case of P and R since we do not have any 
clear empirical relation between them, the 
requirement  
 
∀ i∈1..n ∀ < 1e , …, 

ine >∈ inE  
   (<m( 1e ),…,m(

ine )>∈ iS ⇒ < 1e ,…,
ine >∈ iR ) 

 
implied by part (1) may not be required anymore. 
The formal approach describing such relaxation is 

proposed by (Morasca, 2003). He has argued that the 
original definition of Representation Condition is 
very demanding for state of art of software 
engineering measurement. Therefore, he suggested 
weakening (only) the first part of the condition two 
way link ⇔ , to a one way link, ⇒  as follows: 
 

Definition 5: Weak Representation Condition is 
defined by[8]. 

 
∀ i∈1..n ∀ < 1e , …, 

ine >∈ inE  
  (< 1e ,…,

ine >∈ iR ⇒ <m( 1e ),…,m(
ine )>∈ iS ) 

(Part 1) 
 
∀ j∈1..m ∀ < 1e , 2e >∈ EE ×  
   (m(e1 oj e2)=m(e1) pj m(e2))   

 (Part 2) 
When we consider the above example again, 

although we can calculate the MCCM values for P 
and R, this does not imply the existence of 
corresponding empirical relations between P and R. 
On the other hand, for a given 
more_or_equal_complex relation between P and Q 
that can be empirically observable one can always 
find corresponding metric values satisfying the 
Weak Representation Condition. 

For part two of the Representation Condition, we 
can say that the complexity value of a program body 
which is obtained by concatenation (i.e. the 
empirical binary operation) of e1 and e2 is equal to 
the sum (i.e. the numerical binary operation) of their 
calculated complexity values. Therefore, MCCM 
satisfies the second part of the Representation 
Condition. Finally, we can say that MCCM satisfies 
the Weak Representation condition. 

Showing the MCCM satisfies the Weak 
Representation Condition, we can investigate the 
type of the scale for our proposal. In order to be able 
to decide on the scale type we need to define the 
Weak Scale and Weak Meaningful Statement 
concepts (Morasca, 2003). 

 
Definition 6: A weak scale is a triple <ERS, 

NRS, m>, where ERS is an Empirical Relational 
System, NRS is a Numerical Relational System, and 
m is a measure that satisfies the Weak 
Representation Condition.  

 
Definition 7: A statement is called Weak 

Meaningful Statement if its truth value does not 
change if a weak scale is replaced by another weak 
scale. Formally, if S(m) is based on measure m and 
S(m’) is the same statement obtained by replacing m 
with m’, we have S(m) ⇔ S(m’).  

Based on the notion of weak meaningful 
statement we can talk about four different types of 
weak scales: 



 

Weak nominal scale: The meaningful statements 
of this class of scales are of the form m(e1) = m(e2) 
for at least one pair of entities e1 and e2. If for one 
scale, m(e1) = m(e2) is satisfied for a pair of entities 
e1 and e2 then we must have m’(e1) = m’(e2) for all 
other scales m’.  

Weak ordinal scale: <ERS, NRS, m> is a weak 
ordinal scale if m(e1) > m(e2) is a weak meaningful 
statement for at least one pair of entities e1, e2. It is 
not required that m(e1) > m(e2) or m(e1) = m(e2) be 
weak meaningful statements for all pairs of entities 
e1, e2. 

Weak interval scale: <ERS, NRS, m> is a weak 
interval scale if (m(e1) – m(e2)) / (m(e3) – m(e4)) = k 
is a weak meaningful statement for at least one four-
tuple of entities e1, e2, e3, e4 i.e., k is a constant value 
of all scales. It is not required that this statement is 
meaningful for all four-tuples of entities.  

Weak ratio scale: <ERS, NRS, m> is a weak ratio 
scale if m(e1) / m(e2) = k is a weak meaningful 
statement for at least one pair of entities e1, e2 i.e., k 
is a constant value of for all scales defined by the 
corresponding meaningful statement. Reconsider the 
two program bodies P and Q above as entities e1 and 
e2 where we calculate k as 2. Then, the statement 
m(Q) / m(P) = 2 is also a Weak Meaningful 
Statement for LOC or Control Complexity metrics. 
Therefore, we can informally say that MCCM is 
defined on weak ratio scale.  

A formal way of proving a given scale is a weak 
ratio scale or not, is done by investigating whether 
the scale’s Empirical Relation System is a Weak 
Extensive Structure or not (Briand, et.al., 1996).  

 
Definition 8: A hierarchy is a pair <E, R> where 

R ⊆  E×E is a binary relation on E such that it does 
not contain any cycle, i.e. any sequence of pairs 
{<e1, e2>, <e2, e3>, …, <ei, ei+1>, …, <en, en+1>} of 
any length n with ∀ i∈1..n R(ei, ei+1) such that 
e1=en+1.  

4 WEAK EXTENSIVE 
STRUCTURE 

Definition 9: Let E be a set, R be a binary relation on 
E, and o is a total function o: E×E →E. The 
relational system (E, R, o) is a Weak Extensive 
Structure if and only if the following axioms holds 
(Morasca, 2003). 
 
A1: 
∀  e1, e2, e3 ∈  E  (Eq(e1 o (e2 o e3), (e1 o e2) o e3) 
where Eq is an equivalence relation defined as  
Eq(e1, e2) ⇔ ¬R(e1, e2) ∧  ¬R(e2, e1) (axiom of 
weak associativity). 

A2:  
< E, R > is a hierarchy (axiom of hierarchy). 
 
A3:  
∀ e1, e2, e3 ∈  E (R(e1, e2) ⇒  ¬R(e2 o e3, e1 o e3)) 
(axiom of monotonicity). 
 
A4: 
∀ e1, e2, e3, e4 ∈  E (R(e1, e2) ⇒ ∃ n∈N ¬R(ne2 o 
e4, ne1 o e3) where ne is recursively defined for any  
e∈E as 1e=e and ∀ n > 1 ne=(n-1)e o e 
(Archimedean Axiom). 
 

For our proposal MCCM, the empirical relation 
R has the meaning “more or equal complex than" 
and the binary operation o between two objects is 
the “concatenation” of two program bodies. Now, 
we will investigate the validity of the above axioms 
for our empirical relation system (ERS=<E, 
more_or_equal_complex, concatenation>) defined 
for MCCM: 
 
A1:  
When we consider the example program bodies P, Q 
and R, since we do not have any knowledge of 
relation between R and the other two, we cannot say 
that P concatenated with (Q concatenated with R) is 
more_or_equal_complex than (P concatenated with 
Q) concatenated with R. Therefore, the 
concatenation operator of MCCM satisfies the weak 
associativity property. 
 
A2:  
For any program bodies X being 
more_or_equal_complex Y and Y being 
more_or_equal_complex Z, the Z can never be 
more_or_equal_complex than X. Therefore, we can 
say that <E, more_or_equal_complex > is a 
hierarchy. 
 
A3:  
When we consider the example program a body P, Q 
and R, having Q is more_or_equal_complex than P 
we cannot say that the same relation between Q 
concatenated with R and P concatenated with R 
because we have no knowledge of empirical relation 
of R and the others. Then, monotonicity property is 
also satisfied. 
 
A4:  
If entity e1 is more_or_equal_complex than e2 then 
for any e3 e4, we cannot establish a new 
more_or_equal_complex relation by any number of 
concatenations; say n times, of e1 and e2 to 
themselves followed by concatenation of e3 and e4 
with them, respectively. This is because we may not 
have any knowledge of relation between the results 



 

of ne2 concatenated with e4 and ne1 concatenated 
with e3 due to unknown relation between each of e3 
and e4 with other two. Consequently, Archimedean 
axiom is also satisfied. 
 
As a result, the ERS description of the proposed 
MCCM is a Weak Extensive Structure. Based on the 
theorems “Existence of an Additive Scale for a 
Weak Extensive Structures” and “Weak Additive 
Scale and Weak Ratio Scales” given by in (Morasca, 
2003) we can say that MCCM is defined on Weak 
Ratio Scale. Note that among the scales defined 
above, the ratio scale is the highest in level. 
Therefore, it may be more powerful than the other 
scales reflect.    

5  CONCLUSIONS 

MCCM is a new proposed complexity measure 
based on cognitive aspects software development. 
Any proposed complexity measure should be 
validated and evaluated against mathematical tool of 
measurement theory which is extensively used in the 
literature as a means to evaluate software 
engineering metrics. However it is known that in 
classical measurement theory there is problem in 
defining empirical observations on software entities 
in terms of their measured quantities. Consequently, 
the proposal of weak measurement theory is thought 
to be a useful alternative for validating and 
evaluating the MCCM. We showed that MCCM 
satisfies most of the parameters required by the 
weak measurement theory and it is also found that 
the proposed measure is on weak ratio scale.  

In the light of the experiences we propose the 
future work to include the following: 

1. Further researches on weak measurement 
theory are required. Weak measurement theory is 
only a partial solution to problem related to 
definition of a measure based on measurement 
theory.  

2. To the best of our knowledge, complexity 
measures based on cognitive aspects are not tested 
by the practitioners. This is also a task for future 
work. 
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