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                                                      Corresponding author; akinmulewoadebola@yahoo.co.uk 

                        Abstract- 
The current synthetic plastic menace has driven researchers to sort sustainable 
alternatives. Polyhydroxyalkanoate (PHA) has been proven to be sustainable, 
biodegradable, biocompatible and hence could serve as suitable alternative. 
PHAs are biodegradable polyester produced by microorganisms that can be 
produced from renewable substrates such as starch and plant oils. These bio-
polyesters are accumulated in the intracellular granules and serve as carbon 
reserve for bacteria. Current studies show that there exists about 150 different 
monomers of PHA with shared properties similar to synthetic plastics which 
makes their application wide. This review is focused on giving a background 
study on polyhydroxyalkanoate, with special considerations on their 
physicochemical properties, its applications, the pathways that leads to its 
synthesis and the various applications.  

                                    Keywords: Biopolymers, Bioplastics, Plastics, Polyhydroxyalkanoate 

1. Introduction 

One of the major focal points constituted in United Nation’s Sustainable Development Goals 
(SDG) is to create the access to clean water and the maintenance of the environment [1] for the 
general populace in the world. Globally, petroleum-based polymer level as recorded by the 
Watch world Institute in 2015, has been on the increase within a span of 5 decades, leading to 
a gross value of 299 tons of waste needing efficient disposal methods [2]. However, plastic 
produced mainly from petroleum extracts are generally not easily biodegradable, thus creating 
pyramids of waste causing major environmental havocs [3], [4]. These petroleum-based 
plastics pose the biggest threat to the sustenance of the environment by their accumulation in 
the environment; majorly in the marine environment [5], [6].  

Several methods have been discovered by international organizations, researchers and 
government bodies to efficiently manage plastic wastes created [7]. One of the managerial 
strategies adopted by governmental incentives was to support recycling activities, illegal 
dumping and litter prevention [7]. Although this solution has greatly reduced environmental 
impact of these plastic wastes especially in Europe [7] this process tends not to be sustainable 
in developing economy such as Africa where little or minimal recycling is done [8]. To solve 
the environmental problem, there is a need for a method that can be widely employed across 
all sectors, economies and society. This solution is to produce biodegradable plastics that are 
not only environmentally friendly [9], [10], but also cost-effective compared to conventional 
plastics [11]. 

Polyhydroxyalkanoate (PHA) is one of the bio-polyesters that have gained recent attraction as 
a viable bioplastic, that passes the required properties of a safety engineering practice, being 
ethical and environmental-friendly [5], [11].  
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2. Polyhydroxyalkanoate 

The French scientist Maurice Limoges first discovered PHA in Bacillus megaterium in the 
form of poly (3-hydroxybutyrate) (PHB) in 1926 [5], [6], [12]. Polyhydroxyalkanoate (PHA) 
are thermoplastic polyesters with diverse structures and are produced by microorganisms 
(Table 1) when there is a limited nutrient supply such as nitrogen, oxygen, phosphorus, sulphur, 
in the presence of excess carbon [5], [9]. Under such stringent conditions, the organism is able 
to assimilate the carbon source and store as hydroxyalkanoates (HA) which is further 
polymerized into PHA [12], [13]. PHA accumulates intracellularly as polymer granules in the 
inclusion bodies and are secondary metabolites [14]. Asides from being part of the intracellular 
component of the cell, PHAs are storage compounds and source of energy for the organism 
when the carbon source in the environment is depleted [5], [14], [15], [16], [17]. Organisms 
that accumulate PHAs are able to withstand stress conditions such as heat, osmotic shock, 
ultraviolet irradiation [18]. 

 

Table 1: Production of PHA by microorganisms 
Microorganism Carbon source PHA References 
Cupriavidus necator H16  
 

Glucose, 
fructose, acetic acid, valeric 
acid 
Acetate, butyrate, lactic acid, 
propionic acid 
 

P3HB 
 
PHV 

[6] 
 
[18] 

Burkholderia sp. DSMZ 9243  
 

Sucrose or gluconate PHB 
P(3HPE) 

[6] 

Burkholderia cepacia ATCC 
17759  
 

Xylose 
 
Glycerol 

P(3HB-co-3HV)  
 
P3HB 
 
 

[6] 
 
[18] 

Burkholderia sacchari IPT189  
 

Sucrose: propionic acid 
 

P(3HB-co-3HV)  
 

[6] 

Pseudomonas sp. DSY-82  Both SCL-PHA and 
MCL-PHA  

[19] 

Pseudomonas stutzeri A1501  
 

   

ARCHAEA    

Haloferax Mediterranean Vinasse 
Crude glycerol 

P3HB-co-3HV 
P3HB-co-3HV 

[18] 
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Macrae and Wilkinson first reported the biodegradability of PHB produced by Bacillus cereus 
and Bacillus megaterium in 1958 [14]. The major interests on PHAs are because they are 
biodegradable, recyclable, biocompatible, non-toxic and are environmentally friendly upon 
degradation.  

2.1. General properties and structure of PHAs 

PHAs are flexible, crystalline, elastic and have thermoplastic properties similar to synthetic 
plastics when extracted from the cell [9], [14].  The mechanical properties of PHA like the 
tensile strength (40MPa), Young’s modulus (3.5 GPA) are similar to synthetic plastics. PHAs 
are soluble in chloroforms and other chlorinated hydrocarbons but insoluble in water. They are 
non-toxic which makes them biocompatible. 

The diverse structures of PHA is dependent on the carbon source [10] and the microorganism 
involved (Table 1). Majority of PHA identified consists of (R)-3-hydroxy fatty acid monomers 
linked by ester bonds. The R-configuration is due to their chirality and stereo-specificity of the 
enzymes involved in biosynthesis. The carbon atoms present in the HA monomer unit 
determines the length of PHAs [14]. PHAs are grouped into four based on the number carbon 
atoms present in each HA monomer unit. The four groups include: the short chain length PHA, 
Medium chain length PHA, Long chain length PHA and the co-polymers consisting of short 
chain and medium chain length polyhydroxyalkanoate. 

Short chain length PHAs (PHASCL) have less than or equal to five carbon atoms in their HA 
monomer unit [6]. They are the most common, highly crystallinity (55-80%) which makes 
them brittle and possess low melting temperature (173 – 1800C) [20].  Examples include: poly 
(3-hydroxybutyrate) P(3HB), poly(4-hydroxybutyrate) P(4HB) and poly(3-hydroxyvalerate) 
P(3HV) or the copolymer P(3HB-co-3HV) as seen in Fig. 1 [20].   

Medium chain length (MCL) monomers have up to six to 14 carbon atoms present in their HA 
monomer unit and are called Medium-chain lengths PHAs (PHAMCL) [21]. Their structure 
could also include functional groups belonging to the halogens, olefins, cyano as well as alkyl 
groups [4], [14]. Examples include poly (3-hydroxyhexanoate) P(3HHx), poly(3-
hydroxyoctanoate) P(3HO) and copolymers such as P(3HHx-co-3HO). According to the 
reports of [20], PHAMCL are most desirable because they possess superior thermo mechanical 
properties. PHAMCL have lower melting temperature (39- 610C), are more flexible and have 
more elasticity than PHASCL. 

Long chain length PHAs (PHALCL) are uncommon and have more than 14 carbon atoms present 
in their HA monomers [7], [15]. Examples include Poly(3-hydroxypentadecanoate), Poly(3-
hydroxhexadecanoate).  
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Figure 1: General Structure of PHAs.  The term R refers to the length of the side chain while 
the asterisk denotes the chiral centre of PHA- building block. R determines the type of HA 
monomer unit [18] 

2.2.Identification of intracellular PHA granules 

Methods of screening for the presence of PHA polymers in microbial cells are grouped into 2; 
genotypic and phenotypic screening. Genotypic screening is rapid and specific for the 
identification of microbes capable of producing PHAs using molecular techniques such as the 
Polymerase Chain Reaction (PCR) [15]. The genes responsible for PHA synthesis are 
embedded in an operon called phaCAB operon which codes for the following; β-Ketothiolase 
(phaA gene), Acetoacetyl-CoA reductase (phaB gene) and PHA-polymerase (also called PHA 
synthase) (phaC gene). The synthase gene (phaC) is most studied of all the associated genes 
of PHA and is classified (Table 2) based on the substrate specificity of the PHA synthase 
enzymes and the gene locus [23], [24]. Various primers have been designed from characterised 
PHA producers to rapidly identify these genes present in PHA producing microbes (Table 3).   

Phenotypic screening involves identification based on microscopy by using distinct stains such 
as the Nile red, Nile blue A or the Sudan black stain, under the phase contrast or fluorescent 
microscope [25]. This traditional method is often times more laborious and fails to distinguish 
the polymer type [15]. Hence, molecular identification is the most effective and rapid method 
for identification.  
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Table 2: Well-studied classes of PHA synthase genes and examples of organisms that 
bear these genes [16] 
Gene class Gene  Organism  

Class I phaC Cupriavidus necator 
Class II phaC1 and phaC2 Pseudomonas aeruginosa 
Class III phaC and phaE Allochromatium vinosum 

Chromatium vinosum  

Thiocystis violace  

Class IV phaC and phaR Bacillus megaterium 

 

 

 

Table 3 List of primers proven to screen PHA producing microbes 
Primer 

ID 

Primer sequence Positive isolates  References 

B1F 
B1R 
B2R 

5'-AACTCCTGGGCTTGAAGACA-3'  
5'-TCGCAATATGATCACGGCTA-3'  
5'-ACGGTCCACCAACGTTACAT-3'  
 

Bacillus sphaericus, 
Bacillus circulans, 
Bacillus brevis, 
Bacillu sphaericus, 
Bacillus sphaericus  
 

[25] 

E1-D  
 
E1- R  
 
E2-D  
 
E2-R  

5'GGAGCGTCGTAGATGAGTAACAAGA
A3'  
5'AGGTTGGCGCCGA TGCCGTTGAA3'  
 
5'TGCTGGCCTGGCGCA TTCCCA A3'  
 
5'AAGTGGTAGTAGAGGTTGCC3  

Burkholderia cepacia, 
Pseudomonas spp. 

[26] 
 
 
 
 
 

G-D 
 
G-IR 

5’ GTG CCG CC(GC) (CT)(AG)(GC) ATC 
AAC AAG T-3’  
5’-GTT CCA G(AT) ACA G(GC) A 
(GT)(AG) T CGA A-3’)  

Comamonas sp, 
Bacillus sp., Aeromonas 
sp., Caulobac ter sp  
 

[20], [27] 
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phaCF1 
phaCF3 
phaCR1 

5’TGATSSAGCTGATCCAGTAC3’ 
5’CCGCTGCTGATCGTBCCGCC3’ 
5′ GTGCCGCCGAYGCAGTAGCC3′  

Bacillus megaterium, 
Bacillus cereus, 
Cupriavidus necator 
 

[24] 

phaC1F1 
phaC1F2 
phaC1R1 
phaC1R1 

5’-TGGARCTGATCCAGTAC-3’ 
5’-SATCAACCTGATGACCGA-3’ 
5’-CGGGTTGAGRATGCTCTG-3’ 
5’-TGGTGTCGTTGTTCCAG-3’ 

Halomonas spp., 
Staphylococcus spp., 
Paracoccus spp. 

[28] 

 
3. BIOSYNTHESIS OF POLYHYDROXYALKANOATE AND APPLICATIONS 

PHAs are synthesised by microbes (bacteria and archaea) from various carbon sources which 
includes; saccharides, alkanes, alkanoic acids, alcohols and gases (Table 1). Majority of PHA 
accumulating microbes are Gram negative while few are Gram positive [9]. PHA accumulating 
organisms belonging to the archaea are majorly limited to the Haloarchaeal species [14]. 
Carbon sources could also include wastes serving as renewable sources such as acetate, waste 
frying or cooking oil, crude glycerol, molasses, wastewater [9], [20].  

The condition required for PHA accumulation differ in bacteria. Some bacteria genera 
accumulate PHA in a limiting nutrient culture with excess carbon source (Cupriavidus necator, 
Protomonas extorquens) while others accumulate PHA during the growth phase without 
requiring the limitation of an essential nutrient (Recombinant Escherichia coli, Alcaligenes 
latus). These attributes should be placed under consideration during PHA production [14]. 
Other characteristics to be considered during PHA accumulation is the type of PHA polymer 
to be produced. The substrate or carbon source utilised determines the type of PHA produced 
[9] because of the substrate specificity of the enzymes involved, hence, the metabolic pathway 
would differ [6], [10]. For example, Cupriavidus necator (formerly called Ralstonia eutropha) 
produced a copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid P(HB-HV) in a 
medium containing glucose when propionic acid was added to it [4], [14]. Rhodococcus sp. 
produced a PHASCL while utilizing hexanoate [14].  

The pathway leading to the synthesis of PHA is linked to existing metabolic pathway (such as 
cycle (or TCA cycle), de novo fatty acid and the β-oxidation pathway) of the microorganism 
by shared intermediates (Fig 2); most common intermediate being acetyl-CoA from Krebs 
cycle [18].  High amounts of coenzyme A produced from the Krebs cycle inhibits the enzymatic 
activity of 3-ketothiolase (PhaA) and channels the acetyl CoA back to the Krebs cycle which 
in turn inhibits PHA synthesis. This occurs in a growth medium with high level of rich nutrients 
(nitrogen, phosphorus). Alternatively, in a limiting nutrient growth medium (with excess 
carbon), the levels of coenzyme A produced is low and are non-inhibitory towards the Pha A 
enzyme, thereby allowing acetyl CoA to be channelled for PHA synthesis [18].  

3.1. Biosynthesis of Short-chain-length Polyhydroxyalkanoate (PHASCL) 

Polyhydroxybutyrate (PHB), the most characterised PHA and the most common PHASCL is 
synthesized by three major enzymatic reactions from acetyl CoA [20]. The enzymes involved 
are: β-Ketothiolase (phbA gene), Acetoacetyl-CoA reductase (phbB gene) and PHB-
polymerase (phbC gene). The organism Cupriavidus necator uses the pathway to synthesise 
PHB in a limiting essential nutrient medium containing glucose. 
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• Condensation: the enzyme β-Ketothiolase condenses 2 moles of acetyl CoA into 
acetoacetyl-CoA  

• Reduction: the acetoacetyl CoA is reduced to (R)-3-hydroxybutyryl-CoA by the 
NADPH-dependent enzyme, acetoacetyl-CoA reductase [22] 

• Polymerization: finally, the enzyme P(3HB) polymerase (PHA synthase) polymerizes 
(R)-3-hydroxybutyryl-CoA to PHB 

 

3.2. Biosynthesis of medium-chain-length Polyhydroxyalkanoate (PHAMCL) 

PHAMCL are majorly synthesised through the de novo fatty acid pathway or the fatty acid β-
oxidation cycle by converting intermediates of the fatty acid metabolism to (R)-3-hydroxyacyl-
CoA. The intermediates such as 3-Keto-acyl-CoA are used as the substrates by the PHA 
synthase enzyme for further polymerisation into PHAMCL (Figure 2). Pseudomonas spp is an 
example of organism that utilizes this pathway for the synthesis of 3-hydroxyacyl moieties 
which is further polymerized to PHAMCL [29].  
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Fig 2: Synthesis of PHASCL and PHAMCL via existing pathways [14] 

3.3. Key enzymes involved in biosynthesis of PHAs 

The major enzyme involved in the biosynthesis of PHA is the synthase enzyme (PhaC) encoded 
on the phaC gene [23]. It is most studied because it is directly involved in catalysing the 
committed steps to leading to PHA synthesis [29]. The gene that encodes this enzyme is also 
the most characterised as seen in table 2. Asides the well characterised PhaC enzyme, there are 
other enzymes associated with the biosynthesis of PHA (Table 3). 
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Table 3: Enzymes involved in the biosynthesis of PHA [18] 
No. ENZYME ABBREVIATION SPECIES 

1 Glyceraldehyde-3-phosphate 
dehydrogenase  

- Cupriavidus necator  

2 Pyruvate dehydrogenase complex  - Cupriavidus necator and 
Burkholderia cepacia 

3 3-Ketothiolase  PhaA Cupriavidus necator 

4 NADPH-dependent acetoacetyl-CoA 
reductase 

PhaB Cupriavidus necator 

Rhizobium (Cicer) sp. CC 
1192  

5 PHA synthase  PhaC Cupriavidus necator 

6  Acetyl-CoAcarboxylase  ACC Escherichia coli K-
12MG1655  

7 Malonyl-CoA:ACPtransacylase  FabD Escherichia coli K-
12MG1655  

8 3-Ketoacyl carrier protein synthase  FabH Escherichia coli K-
12MG1655  

9 NADPH-dependent 3-Ketoacyl 
reductase 

FabG Pseudomonas aeruginosa  

10 Succinic semialdehyde 
dehydrogenase  

SucD Clostridium kluyveri  

11 4-Hydroxybutyrate dehydrogenase  4HbD Clostridium kluyveri  

12 4-Hydroxybutyrate-CoA: CoA 
transferase 

OrfZ Clostridium kluyveri 

13 Alcohol dehydrogenase, putative  - Aeromonas hydrophila 
4AK4  

14 Hydroxyacyl-CoA synthase, putative  - Mutants and recombinants 
of Cupriavidus necator  

15 Methylmalonyl-CoA mutase  Sbm Escherichia coli W3110  

16 Methylmalonyl-CoA racemase  - Nocardia corallina 

17 Methylmalonyl-CoA decarboxylase  YgfG Escherichia coli W3110 

18 Acyl-CoA synthetase  FadD
 Pseudomonas putida CA-3 

and Escherichia coli 
MG1655  

19 (R)-Enoyl-CoA hydratase  PhaJ Pseudomonas putida 
KT2440  

20 3-Ketoacyl-CoA thiolase  FadA Pseudomonas putida 
KT2442  

21 3-Hydroxyacyl-ACP:CoA 
transacylase  

PhaG Pseudomonas mendocina  

22 Cyclohexanol dehydrogenase  ChnA Acinetobacter sp. SE19 and 
Brevibacterium epidermidis 
HCU  
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23 Cyclohexanone monooxygenases  ChnB Acinetobacter sp. SE19 and 
Brevibacterium epidermidis 
HCU  

24 Caprolactone hydrolase  ChnC Acinetobacter sp. SE19 and 
Brevibacterium epidermidis 
HCU  

25 6-Hydroxyhexanoate dehydrogenase  ChnD Acinetobacter sp. SE19 and 
Brevibacterium epidermidis 
HCU 

26 6-Oxohexanoate dehydrogenase  ChnE Acinetobacter sp. SE19 and 
Brevibacterium epidermidis 
HCU 

 

3.4. Application 

The versatile application of PHA are due to their biocompatibility [4]. Several applications 
include: bone tissue engineering [11], [30], drug delivery or as drug itself (Albureikan, 2019), 
packaging, biofuels [16]. Due to the absence of inflammatory responses to PHAs when used 
as catalysts for drug delivery, scaffold bone tissue, they have been further applied to bio-
implants for the body of humans including animals [5]. PHB showed promising results when 
used as a nerve graft in rats for nerve regeneration. PHA are compatible for bone tissue 
engineering because when they biodegrade, their degraded components which is 3-
hydroxybutyrate is a component of the blood usually produced in the liver when fatty acid is 
broken down [30]. PHAs are recently been applied in nanotechnology for specific detection of 
hepatitis B virus [5]. 

4. CONCLUSION  

Industrial production of polyhydroxyalkanoate is not yet on full scale because of high 
production cost as opposed to the synthetic plastics. Understanding the biosynthetic pathways 
and further manipulating the pathways would be key to achieving low and competitive 
production cost, as well as product design of the desired polymer.  

5. RECOMMENDATION  

More research should focus on achieving PHA blends with better mechanical strength, this 
would enhance PHA application in bone tissue engineering.  
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