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Abstract. In this paper, the solution of Klein Gordon Equation is sought. Frobenius method was 

used to solve the Klein Gordon (KG) equation with equal scalar and vector harmonic oscillator 

plus inverse quadratic potential for s - waves. A corresponding un-normalized wavefunction was 

obtained for the Frobenius equation in the form of a power series. 
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1.  Introduction 

Klein-Gordon-Fock Equation (KGFE) also referred to as Klein-Gordon- Equation is a second order in 

space-and-time differential model whose solutions contain a quantum scalar. The KGFE has a wide 

range of application when modelling various problems in relation to quantum mechanics, condensed 

matter physics and so on [1-5].  Solutions of KGFEs and similar differential equations in pure and 

applied sciences have been considered using some analytical, numerical and approximate methods [6-

14]. In this paper, the solutions of the Klein-Gordon-Fock equation will be considered via Frobenius 

method of solution.  The KGFE to be considered takes the following form with the harmonic oscillator 

plus inverse quadratic (HO+IQ) potential: 

2

2
( )

g
V z kz

z
                (1) 

where z represents spherical coordinate, k  is arbitrary constant and g   is the inverse quadratic potential 

strength. Dong and Lozada-Cassou [15] have used algebraic method to solve the Schrodinger equation 

in three dimensions with the potential in equation (1) and obtained eigenfunctions and eigenvalues of 

the Schrodinger equation. Also, Ikhdair and Sever [16] solved the D-dimensional radial Schrodinger 

equation with some molecular potential and obtained the solution for ( )HO IQ   potential as a special 

case of pseudo harmonic oscillator for 0l   waves. 

In this paper, we shall obtain a power series solution for the Klein-Gordon equation with ( )HO IQ   

potential by Frobenius method. 
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2.  Klein Gordon Equation 

 

The Klein - Gordon (KG) equation with equal scalar potential ( )S z   and vector potential ( )V z  in 

natural units ( 1)h c    is given as 

 2

2 2

2
[( 2( ) ( ))] ( ) 0

d U z
E M E M V z U z

dz
               (2)  

where M is the rest mass and E is the relativistic energy. Using an appropriate transformation, 
2z r ,   

(2) is reduced to the ordinary differential equation of the form: 
2

2

2 2

( ) 1 ( ) 1
( ) ( ) 0

2 4

d U r dU r
Dr Cr F U r

dr r dr r
                (3) 

where the radial wave function is U (r); C, D and F are potential parameters given by 

             
2 2 , 2( ) , 2( )C E M D E M k F E M g       ,         (4) 

where k  is an arbitrary constant and g  is the inverse quadratic potential strength (as earlier stated in 

(1). 

For simplicity sake, we introduce the notation, N1 as follows: 

N1:  
2

1
( ) ,

2

( )
4

P r

Dr Cr F
Q r





   



  

into (3), to have:  

                     
2

2 2

( ) ( ) ( ) ( )
( ) 0

d U r P r dU r Q r
U r

dr r dr r
                 (5) 

 

In this form, Frobenius method can be applied to solve (5). This demands the expansion of the solution 

around regular singular points, at 0r    and r   , of the differential equation. In what follows, we 

shall only consider the regular point for which the solution is physically meaningful namely; at 0r   . 

Therefore, the radial wave function is represented by the generalized power series: 

 

0

( ) i

i

i

U r r a r




                                                                                                                    (6)  

where 0 0a  . Substituting Eqn. (6} in Eqn. (5) yields: 

2 1

2
0 0 0

( ) ( )
( )( 1) ( ) 0i i i

i i i

i i i

P r Q r
i i a r i a r a r

r r

    
  

    

  

                                  (7)                  

That is,  

2

0

( )( 1) ( )( ) ( ) 0[ ] i

i

i

i i P r i Q r a r   


 



       .                      (8)  

By isolating the      first  term  of  the  sum  starting  from     i = 0 ,       we  obtained: 

  2

0( 1) ( ) ( ) 0P r Q r a r       .                                        (9)                  

Now, since each coefficient goes to zero from the linear independence of powers of r and noting that 0 0a   

we obtained the indicial equation as follows 
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P r Q r
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 

   

    

              (10)  

which is solved for ,  after replacing ( )P r  and ( )Q r  (see notation N1 for the expressions). Thus, we have: 

    

   

2

0

1 2

1 1
lim 1 1 4 1 1 4 ,

4 4

1 1
1 1 4  and 1 1 4 .

4 4

r
Dr cr F F

F F



 




       


      


.                       (11) 

 

By Fuchs’s theorem [16], the generalized series (6) converges and the Klein-Gordon equation has two linearly 

independent solutions obtained as generalized series. 

Now at i = 1, after replacing P(r) and Q(r) in (8), we obtain: 

          
0 1

1
(1 ) (1 ) 0

4 2 4

C F
a a  

 
      
 

                                      (12) 

which can only be true if C = 0 and 1 0a  . Similarly at i > 1 we have: 

1 2

1
( )( 1) ( ) 0.

2 4 4 4
i i i

F C D
i i i a a a    

 
         

 
                      (13) 

We re-write (13) and apply little algebra as follows: 
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     
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     
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



                      (14) 

Equation (14) denotes the recurrence relation for the coefficients of the series (6) as 

              

Putting the values of C, D and F in (14) yields: 

   
    

2 2

2 1

1
2

2
, 1.

4 2

i i

i

E M ka E M a
a i

i i E M g 

   
 

    
                        (15) 

Notice that the value of   determines the behaviour of the radial wave function U (r) as 0r  . 

Clearly, for    to be well behaved, 
1

4
F     thus, the acceptable solution would be the one that contains 

the series with 
1  . 

Finally, the solution of the Klein-Gordon equation, that is the radial wave function, is obtained in the 

form: 

      1

0

( ) i

i

i

U r r a r




                                                         (16) 

Here, ia  is defined by (15) for all ,i  where 
1  . 
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3.  Conclusions 

In conclusion, we have obtained the corresponding un-normalized wave function (16) using the 

Frobenius method for the Klein Gordon equation with equal scalar and vector harmonic oscillator plus 

inverse quadratic potential for S-waves. The energy eigenvalues are obtained as roots of the series (16), 

after truncating at a suitably high order, say N . This is possible with arbitrary accuracy because the 

series converges. 
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