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A B S T R A C T   

There is overwhelming evidence implicating Haemoglobin Subunit Beta (HBB) protein in the onset of beta 
thalassaemia. In this study for the first time, we used a combined SNP informatics and computer algorithms such 
as Neural network, Bayesian network, and Support Vector Machine to identify deleterious non-synonymous 
Single Nucleotide Polymorphisms (nsSNPs) present in the HBB gene. Our findings highlight three major muta-
tion points (R31G, W38S, and Q128P) within the HBB gene sequence that have significant statistical and 
computational associations with the onset of beta thalassaemia. The dynamic simulation study revealed that 
R31G, W38S, and Q128P elicited high structural perturbation and instability, however, the wild type protein 
was considerably stable. Ten compounds with therapeutic potential against HBB were also predicted by 
structure-based virtual screening. Interestingly, the instability caused by the mutations was reversed upon 
binding to a ligand. This study has been able to predict potential deleterious mutants that can be further explored 
in the understanding of the pathological basis of beta thalassaemia and the design of tailored inhibitors.   

1. Introduction 

Haemoglobin (Hb) is the main carrier of oxygen in the red blood cells 
(RBC). Structurally, it is made up of haem groups that covalently bind to 
the two alpha and two beta subunits [1]. Heritable disorders of Hb 
synthesis have been described as the most widely spread form of human 
monogenic disorders, chiefly among these disorders are those altering 
the adult Haemoglobin Subunit Beta gene (HBB) [2]. Sickle cell disease 
and beta thalassaemia have been identified as the most clinically sig-
nificant diseases that affect the HBB [1]. Beta thalassaemia is caused by 
a wide range of mutations that reduce the production of beta-globin [1]. 
Genetically, beta thalassaemia is caused due to mutation or deletions in 
the beta-globin gene, consequently resulting in reduced (beta+) or ab-
sent (beta0) production of beta chains of Hb. The incidence of beta 
thalassaemia cut across North and Sub-Saharan Africa, the Mediterra-
nean, Southeast Asia [2]. Due to the transcontinental movement of 

humans, beta thalassaemia is no longer endemic to the aforementioned 
countries but is now a major public health issue in Europe and North 
America. Thalassaemia major, thalassaemia intermedia, and thalas-
saemia minor are the main forms of beta thalassaemia [3]. Diagnosis of 
beta thalassaemia is either through haematological or genetic testing 
[4]. The HBB gene is a 1.6 kb long gene, it possesses 3 exons including 5′

and 3′ untranslated regions. Regulation of the HBB gene is via the 
adjacent 5’ promoter which houses the CACCC, CAAT, and TATA boxes 
[5]. Several transcription factors bind and regulate the function of the 
HBB gene, the most important of which is erythroid Kruppel-like factor 
1, which binds the proximal CACCC box [5]. The mutations of the HBB 
gene cause the abnormal formation of haemoglobin which leads to 
improper oxygen transportation and damage of red blood cells [6]. 
Patients with mutations in both HBB alleles that significantly reduce the 
HBB protein production suffer from severe anaemia and skeletal ab-
normalities [7]. Polymorphic forms of a gene having a frequency higher 
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than 1% are termed single nucleotide polymorphisms (SNPs) [8]. 
Identification of SNPs present in a gene is important in biomedical 
research because they can serve as biological markers that facilitate the 
recognition of genes implicated in the pathogenesis of a particular dis-
ease. SPNs have also found useful application in pinpointing the position 
of genes between a diseased group and a controlled group in 
genome-wide association study (GWAS). Furthermore, they can help 
provide insight into the correlation between phenotypes, drug meta-
bolism, and drug response. Most genetic variations, disorders, and ab-
normalities seen in humans emanate as a result of SNPs [9,10]. Taking 
into account the role HBB plays in haemoglobinopathies, it is expedient 
to study the implications of its polymorphic variants. Therefore, this 
study aims to identify deleterious and disease-causing non-synonymous 
Single Nucleotide Polymorphisms (SNPs) in HBB that could serve as 
molecular and genetic biomarkers for the diagnosis of beta thalas-
saemia. These SNPs could also be specifically targeted by inhibitors. 

2. Methodology 

2.1. Single nucleotide polymorphism data retrieval 

The protein sequence of Human HBB with accession number P68871 
was retrieved from the UniProt database [11]. HBB variants and their 
corresponding SNPs were retrieved from the National Centre for 
Biotechnology Information (NCBI) dbSNPs server [12]. The SNPs were 
filtered to fetch only those implicated in beta thalassaemia. Further-
more, only those reported to have clinical significance by ClinVar [13] 
were selected. 

2.2. HBB structure elucidation, functional impact and stability analysis of 
predicted HBB nsSNPs 

The available structures of HBB are those co-crystallized with Hae-
moglobin subunit alpha (HBA1 and HBA2) and protoporphyrin IX con-
taining FE. Due to the expected structural and dynamic effect of HBA1/ 
HBA2 and protoporphyrin IX containing FE on HBB, it was expedient for 
us to model the 3D structure of HBB using homology modelling tech-
nique. Homology modelling is a strategy employed in predicting the 3- 
dimensional structure of a protein [14]. We used Iterative Threading 
Assembly Refinement (I-TASSER) [15] which employs a hierarchical 
technique to determine protein structure. I-TASSER first pinpoints 
structures that could serve as a template from the Protein Data Bank 
(PDB) [16] by using Local Meta-Threading Server (LOMETS) [17]. 
Validation of the predicted HBB protein was assessed using Verify-3D 
[18], RAMPAGE [19], and ProSA web server [20]. Afterward, SiteMap 
[21] was used to identify potential binding pockets on the HBB protein. 
This is to facilitate the potential targeting of HBB in the drug design and 
development process. Point mutations were exerted on the modelled 
HBB 3D structure by using the “swapaa” command line in CHIMERA. 

Identification of pathological nsSNPs is essential in unravelling the 
potential impact of a protein in pathogenesis and the possibility of tar-
geting such protein by leveraging on the mutated amino acids. To 
evaluate the disease-causing potential of HBB nsSNPs, we used Sorting 
Intolerant from Tolerant (SIFT) [22], Polymorphism Phenotyping v2 
(Polyphen 2) [23], Predictor of human Deleterious Single Nucleotide 
Polymorphism (PhD-SNP) [24], and Protein Variation Effect Analyzer 
(PROVEAN v1.1) [25]. SIFT determines the impact of amino acid change 
by using a sequence-based homology algorithm. It classifies an amino 
acid change as either deleterious or tolerated based on the tolerance 
index (TI) score. SNPs having a TI score less than 0.05 are considered 
deleterious while those having a TI score ≥0.05 are considered toler-
ated. Just like SIFT, PolyPhen also evaluates whether an amino acid 
substitution is disease-causing. In addition, PolyPhen also determines if 
the substitution occurs in conserved regions. Based on the 
Position-specific counts (PSIC) score, PolyPhen classifies the mutational 
impact of a nsSNP as either benign or probably damaging [23]. PhD-SNP 

uses a supervised learning approach to classify the potential pathoge-
nicity of a nsSNP. PhD-SNP is trained with a dataset of pathological and 
neutral mutation data using a gradient boosting algorithm. Three 
functions (mutation parameters, solvent accessibility, and residue/-
sequence properties) are used to compute the pathogenicity index which 
ranges from 0 to 1 [24]. The structural stability of a protein is often 
affected by nsSNPs which consequently affect the protein structure. To 
access the stability of HBB nsSNPs, I-Mutant 2.0 [26], iPTREE-STAB 
[27], and MuPro [28] were used. I-Mutant evaluates the stability of a 
protein upon mutation by computing the Gibbs free energy using this 
simple equation. ΔΔG = ΔGmutant - ΔGwild protein in Kcal/mol at pH 7 and 
temperature 25 ◦C. 

2.3. Dynamical and structural differences between wild and mutant HBB 

To evaluate the structural and dynamic differences that may occur 
between the wild HBB and Mutant HBB, we used molecular dynamic 
simulation (MDS). The MDS protocol used has been widely discussed in 
our previous publications [29,30]. Briefly, the FF14SB forcefield of 
AMBER18 was used to parameterize the mutant and wild HBB proteins. 
The topology and parameter files were generated with the aid of the 
LEAP module. Afterward, restraint potential of 500kcal/molÅ, partial 
minimization of 2500 steps, full minimization of 5000 steps, gradual 
system thermalization from 0 to 300 k, and system equilibration of 1000 
ps at 300 k without restraints while atmospheric pressure was kept 
constant at 1 bar using the Berendsen barostat were carried out [31]. 
Afterward, an MD run of 100ns was carried out [32]. At every 1ps, co-
ordinates and trajectories generated were saved. They were further 
analysed using CPPTRAJ and PTRAJ [33]. Point mutations were 
induced at position 31, 38, and 128 of the wild HBB protein to get the 
mutant HBB (R31G, W38S, and Q128P). This was carried out with the 
aid of the MODELLER module in UCSF chimera [34]. 

3. Result 

3.1. HBB modelling and structural characterization 

The protein sequence of HBB (147 AA residues) with accession 
number P68871 was retrieved from UniProt [11]. This sequence was 
then inputted in I-TASSER and 1DXT [35] was used as the template 
structure to model the 3D-structure of HBB. The modelled structure has 
a confidence score (C-score) of 1.25, an estimated TM-Score of 0.89 ±
0.07, and an estimated Root Mean Square Deviation (RMSD) of 2.3 ±
1.8 Å. C-score is used to evaluate the standard of HBB in I-TASSER 
(Fig. 1). The range of the C-score is usually between − 5 and 2. C-score of 
higher value shows that the predicted structure has high confidence. 
RMSD and TM-score are parameters used in evaluating the structural 
alikeness between a model structure and a standard structure, especially 
when the structure of the native protein is known. However, since the 
native structure is not known, the TM-score and RMSD were evaluated 
based on C-score. TM-score is a new parameter for structure similarity 
necessitated due to the sensitivity of RMSD to local error [36]. 

Structure validation after modelling is an important aspect of ho-
mology modelling, as the structural integrity of the crude model needs to 
be investigated because this would improve the reliability and usage of 
the modelled structure in downstream bioinformatics or dynamical 
analysis. Verify-3D, RAMPAGE, and ProSA (z-score) were used to vali-
date the quality of the predicted HBB protein. Analysis using Verify-3D 
revealed that HBB protein had a profile score of 80%. This suggests that 
80% of the amino acid residues of HBB have an average 3D-1D score of 
≥0.2 (Fig. 2C). RAMPAGE predicted 95.2%, 2.8%, and 2.1% residues to 
be in favoured, allowed, and outlier regions respectively (Fig. 2B). To 
further validate the modelled structure, we used ProSA. ProSA uses Z- 
score to access the overall quality of a structure. ProSA assessment 
revealed that the modelled HBB structure has a Z-score of − 8.53 
(Fig. 2A) suggestive of the fact that the modelled structure falls within 
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the standard of scores attributed to proteins of similar size. Taken 
together, findings from RAMPAGE, ProSA, and Verify-3D validation 
revealed the modelled HBB structure has a very good quality and thus, 
can be used for further structural analysis. 

3.2. Evaluation of HBB druggability via binding site analysis 

SiteMap [21] predicts potential binding sites of a protein using the 
following parameters, site score, pocket-size, Dscore, exposure, enclo-
sure, hydrophobicity, and hydrophilicity [21]. For a site to be consid-
ered druggable its Dscore, Sitescore, SiteSize, enclosure score, 
hydrophilicity score, and hydrophobicity score, are expected to be 
greater than 1.108, 1.091, 156, 0.807, 0.926, and 1.374 respectively. 
Exposure and enclosure are druggability properties used in determining 
how open or accessible the site is to solvent. Comparing the enclosure 
and exposure scores, it can be deduced that the site is not well exposed to 
solvent, this is evidenced by the deep cleft seen in the 3D structural 
depiction of the site (Fig. 3B). Furthermore, the site is highly hydro-
phobic, this could explain why the site had a high enclosure score, hence 
the burial of the site deeper in the protein structure. Dscore (1.275) also 
revealed that the site is highly druggable (Table 1). 

The residues making up the predicted binding site are reported in 
Fig. 3C. Again, the high hydrophobicity score reported could also be due 
to the high number of hydrophobic residues such as leucine, 

Fig. 2. Assessment and validation of HBB Protein showing ProSA plot (A), Ramachandra plot (B) and Verify3D plot (C).  

Fig. 1. In-silico 3-Dimensional structure of HBB modelled using ab-initio ho-
mology modelling. 
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phenylalanine, tyrosine, alanine, and valine present in this predicted 
binding site. 

3.3. SNP informatics analysis 

3.3.1. Identification of deleterious and damaging nsSNPs 
Discovery and study of protein variants are important in under-

standing the involvement of a protein in diseases condition. Most 
especially variants that are pathological [9]. A total of 78 HBB nsSNPs 
were fetched from the NCBI dbSNP database. The retrieval process was 
filtered to retrieve only nsSNPs implicated in beta thalassaemia. 
Furthermore, we made sure that the nsSNPs retrieved were those that 
have clinical significance as reported by ClinVar [13]. After rigorous 

screening and filtering, of the 76 SNPs retrieved from NCBI dbSNP, 3 
nsSNPs with rsID rs33910569, rs33991059, and rs35684407 were 
jointly predicted to be disease-causing (Table 2). These three nsSNPs 
were further used for downstream analysis. The stability of the three 
predicted nsSNPs revealed that they had a decreased stability and a 
negative discriminatory direction of thermal stability change. By 
implication, it means that when compared to the wild type protein, these 
mutations alter the stability of HBB protein and by extension its activity. 
The impact of the mutations on the affinity and stability between the 
subunits was investigated with the aid of mCSM-PPI2 [37]. mCSM-PPI2 
is a server used in evaluating the impact of mutation on protein-protein 
interaction and affinity [37]. Human Hemoglobin with PDB ID 1BZ0 
[38] was inputted into the mCSM-PPI2 server. Upon mutation, it was 
observed that the predicted affinity change (ΔΔGAffinity) between the 
dimeric subunits of R31G, W38S, and Q128P were − 2.022 kcal/mol, 
− 1.705 kcal/mol, and − 2.261 kcal/mol respectively. This is suggestive 
of the fact that upon mutation, the affinity between the subunits 
reduced, probably due to the loss of crucial bonds such as hydrogen 
bond that hold the subunits in their native special conformation. 

This finding was corroborated by the bond loss in the mutant pro-
teins. In the wild type protein of R31G, NH1 and NH2 atoms of HBBArg31 

subunit formed a strong polar bond (covalent) with the O atom of 
HBAPhe117 subunit respectively; atom CG of HBBArg31 subunit elicited 
hydrophobic interactions with atoms CB and CG of HBAPro119 subunit, 
while NH2 formed another polar bond with atom ND1 of HBAPro119 

Fig. 3. Structural elucidation of the active site predicted by SiteMap highlighting the surface representation of HBB protein (A), binding cleft cavity (B), and active 
site residues (C and D). 

Table 1 
HBB druggability properties assessment and their corre-
sponding score.  

Druggability Properties Score 

Site Score 1.188 
Site Size 163 
DScore 1.275 
Site Exposure 0.375 
Enclosure 0.816 
Hydrophobicity 2.970 
Hydrophilicity 0.474  

Table 2 
Damaging and Deleterious SNPs predicted by PolyPhen, PhD-SNP, SIFT, and PROVEAN with their corresponding scores.  

S/N rsID SIFT SIFT Prediction PhD-SNP PolyPhen PolyPhen Prediction PROVEAN 

SIFT Score Prediction PolyPhen Score Prediction 

1 rs33910569 0.002 Deleterious Disease 1.000 Probably damaging Deleterious 
2 rs33991059 0.035 Deleterious Disease 1.000 Probably damaging Deleterious 
3 rs35684407 0.01 Deleterious Disease 1.000 Probably damaging Deleterious  
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subunit. However, upon mutation, all these bonds were lost (Fig. 4A). 
Trp38 of HBB formed several hydrophobic interactions with Tyr40 and 
Arg 141 of the HBA subunit. A polar bond was also formed between 
atom NE1 of Trp38 and atom OD1 of HBAAsp94 subunit. In contrast to the 
bond behaviour of R31G, W38S formed a hydrogen bond between atom 
CD of HBAArg92 and O of HBBSer38, while it still maintained a polar bond 
between atom CB of HBAArg92 and O of HBBSer38 (Fig. 4B). Gln 128 
formed a strong hydrogen bond, van der Waals, and hydrophobic in-
teractions with Cys 104, Arg31, and Val 111 of the HBA subunit, upon 
mutation, all these bonds were lost but for an atomic clash between 
Pro128 and Arg31. This clash is however not regarded as a proper bond 
(Fig. 4C). Aside from affecting the stability and affinity between the Hb 
tetramers, these mutations also altered the intra-atomic interactions 
within the residues. 

3.4. Wild and mutant HBB as a potential drug target 

Structure-based virtual screening (SBVS) is a computational tech-
nique employed in the drug design and discovery pipeline to screen 
small molecules or ligands libraries for a potential bioactive compound 
against a particular drug target. DrugBank [39] was used as our library 

of choice because it is an open-source and a comprehensive database. It 
contains a detailed pharmaceutical, pharmacological and chemical data 
of each drug. It is common among pharmacists, medicinal chemists, 
physicians, students, and users from pharmaceutical industries. 20 
different molecules were reported to be related to HBB, either as an 
activator, inducer, oxidizer, or binder. Ten of these compounds were 
selected for molecular docking using AutoDockTools [40]; this is to 
evaluate the binding score. A grid box with coordinate (centre: x =
25.0517, y = 26.4691, z = 29.7493 and size: x = 19.5235, y = 19.8934, 
z = 17.8235) was set around the earlier predicted binding site. The 
compounds showed an appreciable amount of binding score (Table 3). 

When 2, 6-dicarboxynaphthalene was docked with the mutant pro-
teins, it was discovered that 2, 6-dicarboxynaphthalene elicited some 
interactions such as electrostatic, ionic, and van der Waals with some of 
the active site residues. The three mutant proteins elicited similar 
interaction with 2, 6-dicarboxynaphthalene as shown in Fig. 5D. Even 
though the mutated residues do not have direct interaction with the 2, 6- 
dicarboxynaphthalene, the stabilizing effect of 2, 6-dicarboxynaphtha-
lene on the mutant protein could be due to the interaction between 
the mutated residues and active site residues. Ala 28 which is a crucial 
residue in the active site of HBB, formed a pi-pi stack interaction with 2, 

Fig. 4. Effect of mutation on the inter-subunit interactions between HBB and HBA.  
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6-dicarboxynaphthalene, the residue interaction network plot revealed 
that Gly31 formed a hydrogen bond with Ala28 thereby providing 
additional stabilizing effect between Ala28 and 2, 6-dicarboxynaphtha-
lene (Fig. 5A). A similar trend was observed in the Pro128 and Ser38 
mutant proteins. Pro128 formed a van der Waals interaction with 
Ala139 (Fig. 5B) while Ser38 formed hydrogen bond with Glu44 
(Fig. 5C). Ala139 and Glu44 formed hydrogen bond and pi-pi stack 
interaction with 2, 6-dicarboxynaphthalene. Just like the Gly31 Ala28 
interaction, we could infer that Pro128 and Ser38 helped in providing an 
additional however indirect stabilizing bonds for the overall binding. 

3.5. Dynamic difference between wild HBB and mutant HBB 

We plotted the Cα backbone RMSD values during the simulation run 
of the mutant HBB (Mut_HBBR31G, Mut_HBBQ128P, and Mut_HBBW38S) 

and ligand-bound mutants (Lig_HBBR31G, Lig_HBBQ128P, and 
Lig_HBBW38S) relative to their starting coordinate (Fig. 6B). The RMSD 
revealed that Mut_HBBR31G, Mut_HBBQ128P, and Mut_HBBW38S had 
average RMSD values of 1.69 Å, 1.94 Å, and 2.22 Å respectively, while 
Lig_HBBR31G, Lig_HBBQ128P, and Lig_HBBW38S had average RMSD values 
of 2.00 Å, 1.89 Å, and 2.12 Å. This revealed that Mut_HBBR31G, 
Mut_HBBQ128P, and Mut_HBBW38S elicited high Cα atom motional 
movement and instability, however, upon binding with 2,6-dicarboxy-
naphthalene the instability observed in the Mut_HBBQ128P, and 
Mut_HBBW38S systems were reversed. This observation is evident in the 
plot depiction (Fig. 6B) and the average RMSD of the systems. The 
Mut_HBBR31G system did not exhibit the “instability-stability” behaviour 
of the Mut_HBBQ128P and Mut_HBBW38S systems. Furthermore, the four 
systems achieved convergence earlier in the simulation run, around 
10ns. A similar trend was observed in the ROG plot (Fig. 6D). PCA is an 

Table 3 
Binders with potential efficacy against HBB predicted by Structure-based virtual screening.  

Ligands DrugBank ID Structure Binding Score (Kcal/mol) 

Iron Dextran DB00893 − 4.4 

2-[(2-methoxy-5-methylphenoxy)methyl]pyridine DB07427 − 4.7 

4-[(5-methoxy-2-methylphenoxy)methyl]pyridine DB07428 − 4.6 

4-Carboxycinnamic Acid DB02126 − 4.7 

Sebacic acid DB07645 − 4.2 

2-[4-({[(3,5-dichlorophenyl)amino]carbonyl}amino)phenoxy]-2-methylpropanoic acid DB08077 − 4.2 

2,6-dicarboxynaphthalene DB08262 − 5.2 

Efaproxiral DB08486 − 5.0 

Trimesic acid DB08632 − 4.6 

Sodium ferric gluconate complex DB09517 − 5.1  
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important parameter used in unravelling the conformational changes 
and mobility of a protein during simulation [41]. Fig. 5A shows the ei-
genvalues projection during the MD simulation of Mut_HBBR31G, 
Mut_HBBQ128P, Mut_HBBW38S, Lig_HBBR31G, Lig_HBBQ128P, and 
Lig_HBBW38S along with the principal components PC1 and PC2. The six 
systems exhibited unique atomic conformation and motion along the 
subspace ev1/PC1 vs ev2/PC2. Mut_HBBR31G, Mut_HBBQ128P, and 
Mut_HBBW38S elicited the lowest dispersive motion when compared to 
Lig_HBBR31G, Lig_HBBQ128P, and Lig_HBBW38S. This observation is sug-
gestive of the fact that the mutations increased the motional movement 
of HBB, however, this dispersive motion was stabilized upon 2,6-dicar-
boxynaphthalene binding. RMSF was used to elucidate the flexibility 
and motion of individual residues in the proteins. Mut_HBBR31G, 
Mut_HBBQ128P, and Mut_HBBW38S had overall average RMSF values and 
flexibility. As observed in the PCA and RMSD plots, the flexibility of the 
residues was altered (Fig. 6E). The hydrogen bond (Fig. S1) and SASA 
(Fig. S2) plots of the six systems also corroborated the results discussed 
above. The mutant Mut_HBBR31G, Mut_HBBQ128P, Mut_HBBW38S proteins 
had an average total number of hydrogen bonds of 61, 60, and 62 
respectively, however, upon binding with 2, 6-dicarboxynaphthalene, 
the hydrogen bonds increased to 64, 61 and 63 respectively (Fig. S1). 

4. Discussion 

SNPs have been described as the most common form of genetic 
variability in a given population. SNPs may be specific to an individual 
or caught across a population. Hence the study of SNPs through 
SNPinformatics approach can facilitate the quick identification of po-
tential biomarkers that spread across the genome. It has been discovered 
that individuals respond differently to drugs, SNPinformatics approach 
could be used to identify the genetic variation in individuals that 
regulate and determine drug metabolism. 

A wide spectrum of genetic mutations that affect the production of 

beta globin has been implicated in the onset of beta globin related 
pathological conditions, such as beta thalassaemia [7,42]. Genetic var-
iants of beta thalassaemia that lead to the manifestation of anaemia and 
a range of clinically asymptomatic conditions attest to how a monogenic 
disorder can lead to different diseases [43]. Although various nsSNPs 
have been clinically reported to cause beta thalassaemia [5,44], we used 
a different SNP informatics approach to identify three nsSNPs that could 
be targeted in the treatment of beta thalassaemia. Several SNPs have 
been identified on the beta globin gene, some of them have been 
routinely used as genetic biomarkers such as prenatal diagnosis. 
Hashemi-Soteh et al., identified five SNPs (IVSII-74 (G/T), IVS11-16 
(C/G), IVSII-81 (C/T), codon 2 (C/T), and IVS11-666 (T/C)), that 
could be used for the genetic testing of prenatal diagnosis in Iran [45]. 
Other variants that are currently used in genetic testing of beta thalas-
saemia include but are not limited to IVSI-5. Codon 41/42 (TCTT), 
IVS1-1 (G > T/A), 619-bp deletion, codon 8/9 (+G), codon 15 (G > A), 
codon 16 (-C), poly-A site (T > C), and codon 15 (-T) [46,47]. Although 
the computational tools used in the identification of deleterious nsSNPs 
employ different predictive models to evaluate pathogenicity, the pre-
dictions are sometimes not the same. Hence, it is advisable to use more 
than one predictive tool. The overlapping positive results or jointly 
predicted pathogenicity can then be used as a measure of accuracy and 
reliability. 

There exists a co-crystallized complex of the alpha subunit, proto-
porphyrin IX containing FE, and a beta subunit. The existing structures 
have 146 amino acid length compared to the primary sequence that is 
translated into 147 amino acids. Valine is present at position 2 of the 
primary sequence while it is absent in some crystallized structures found 
in PDB. Due to the chemical interactions and the attendant effect of 
these molecules on the structural integrity of HBB, we employed ab-initio 
modelling to obtain the 3D structure of HBB independent of any 
chemical interaction. Determination of the potential binding pocket of a 
protein is essential in the drug discovery process, as this can help 

Fig. 5. A schematic describing the impact of R31G (A), Q128P (B), and W38S (C) on active site residues interaction with 2,6-dicarboxynaphthalene. Interaction plot 
of 2,6-dicarboxynaphthalene and active site residues (D). Superimposed structures of the wild and mutant proteins (Grey = wild protein, Cornflower = R31G, Purple 
= Q128P, and Green = W38S). 
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Fig. 6. PCA scatter plots depicting a distinct separation of motions between Mut_HBBR31G, Mut_HBBQ128P, Mut_HBBW38S, Lig_HBBR31G, Lig_HBBQ128P, and 
Lig_HBBW38S along the first two principal components (A). Backbone RMSDs are depicted as a function of time for Mut_HBBR31G, Mut_HBBQ128P, Mut_HBBW38S, 
Lig_HBBR31G, Lig_HBBQ128P, and Lig_HBBW38S (B) Amino acid substitution between the wild HBB and mutant HBB (C). Radius of gyration of C-α atoms of 
Mut_HBBR31G, Mut_HBBQ128P, Mut_HBBW38S, Lig_HBBR31G, Lig_HBBQ128P, and Lig_HBBW38S versus time at 300 k (D). RMSF of the C-α of Mut_HBBR31G, Mut_HBBQ128P, 
Mut_HBBW38S, Lig_HBBR31G, Lig_HBBQ128P, and Lig_HBBW38S. 
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provide more insight into the druggability and targetability of the pro-
tein. Therefore, we employed an online server, SiteMap [21] to char-
acterize the potential binding site of HBB. 

rs33910569, rs33991059, and rs35684407 were identified as 
disease-causing. rs33910569 has Glutamine replaced with Proline at 
position 128. Several studies have mapped a mutation at the position 
consistent with rs33910569 [48,49]. For example, Girodon et al., used a 
Computer-designed denaturing gradient gel electrophoresis (DGGE) to 
characterize and determine a missense mutation in the exon 3 of 
beta-globin where Arg was substituted for Gln [50]. rs33991059 has 
Tryptophan being substituted by Ser at position 38. Experimental 
studies that have confirmed the existence of this mutation include but 
are not limited to the researches of Fujita [51], Yamaoka [52], Kornblit 
et al. [53] etc. Arginine is substituted by Glycine at position 31 of the 
beta subunit of HBB [54]. This substitution was believed to be a β0 -thal 
allele since heterozygous individuals show elevated Hb A2 β0 -thal trait 
[55]. Individuals with mutations in both HBB alleles that significantly 
reduce the HBB protein production suffer from severe anaemia and 
skeletal abnormalities [7]. These three nsSNPs were further used for 
downstream analysis. The stability of the three predicted nsSNPs 
revealed that they had a decreased stability and a negative discrimina-
tory direction of thermal stability change. Several studies have reported 
the effect of mutations in the HBB subunit of Hb on the oxygen 
binding-dissociation state of Hb especially in residues close to the Hb 
binding cleft [56–59]. 31G and 38S are close to the Hb binding site, 
therefore, it is expected that the change in helical distance and insta-
bility provoked by 31G and 38S mutations, will disrupt the native 
conformational state of the protoporphyrin IX containing FE centre. 
Hence, reducing the affinity of the protoporphyrin IX containing FE 
centre for oxygen and consequently the oxygen transport capability of 
Hb. This could be the reason despite the high proportion of red blood 
cells produced by patients with thalassaemia, they still have a high 
incidence of anaemia. 

To elucidate the time-wise structural event of HBB protein upon 
mutation, we employed RMSD) and Principal Component Analysis 
(PCA). RMSD is a widely used quantitative variable used in the esti-
mation of structural stability between two different structures [29]. The 
RMSD values can be determined for different parts of an atom, however, 
the Cα of the whole protein is often calculated during MD simulation. 
The stability plot revealed that the effect of the mutation was markedly 
reduced upon binding of a ligand. 

5. Conclusion 

One of the major aims of identifying deleterious nsSNPs is functional 
and structural analysis. In-depth knowledge of the conformational 
change of a protein can help unravel the mechanisms of disease phe-
notypes and in the identification of potential drugs that can therapeu-
tically alter the function of the proteins [9]. nsSNPs have been reported 
to disrupt the structure-function relationship of a protein, which has led 
to the onset of diverse disease amongst humans and other species [60]. 
Due to the rapid change in the genomic landscape of humans brought 
about by exposure to chemical, sunlight, and radiation etc. it is 
becoming increasingly difficult for experimental Biologists to keep track 
of these nsSNPs. Computational algorithms have provided a sigh of relief 
in the quick identification of these deleterious nsSNPs. We used an 
in-silico approach to identify SNP that could serve as biomarkers for 
genetic testing of beta-thalassaemia. Among these SNPs, rs33910569 
and rs33991059 have been experimentally validated. Furthermore, we 
were able to predict some drugs with potential therapeutic efficacy 
against HBB. Being a computational study, one of the limitations of this 
research is the need for experimental investigation of these genes as the 
result cannot be outrightly taken as a justification to be used in humans. 
Functional assays using cell lines could be explored as well. Another 
major limitation of this study is the disparity in the output of the pre-
diction tools used in this study. This is due to the different algorithms 

employed by the tools. This limitation was circumvented to a point by 
using more than one tool for a particular analysis. The predicted com-
pounds also need thorough therapeutic validation and toxicity evalua-
tion. The future prospect of this research is to experimentally validate 
the SNPs predicted. 
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