ISLANDING DETECTION FOR GRID-CONNECTED DISTRIBUTED GENERATION SYSTEMS USING CONVOLUTIONAL NEURAL NETWORK

ADENUGBA, FAVOUR TOLUWANIMI (11CK012393)

JANUARY, 2020

ISLANDING DETECTION FOR GRID-CONNECTED DISTRIBUTED GENERATION SYSTEMS USING CONVOLUTIONAL NEURAL NETWORK

BY

ADENUGBA, FAVOUR TOLUWANIMI (11CK012393)

B.Eng Electrical and Electronics Engineering, Covenant University Ota

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE MASTER OF ENGINEERING (M.Eng.) DEGREE IN ELECTRICAL AND ELECTRONICS ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY.

JANUARY, 2020

ii

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Electrical and Electronics Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Mr. John A. Philip (Secretary, School of Postgraduate Studies)

•••••

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ADENUGBA FAVOUR TOLUWANIMI (11CK012393) declare that this dissertation is a representation of my work, and is written and implemented by me under the supervision of Doctor Hope Orovwode of the Department of Electrical and Information Engineering, Covenant University. I attest that this dissertation has in no way been submitted either wholly or partially to any other university or institution of higher learning for the award of a masters' degree. All information cited from published and unpublished literature has been duly referenced.

ADENUGBA, FAVOUR TOLUWANIMI

.....

Signature and Date

CERTIFICATION

This is to certify that this dissertation **titled "ISLANDING DETECTION FOR GRID-CONNECTED DISTRIBUTED GENERATION SYSTEMS USING CONVOLUTIONAL NEURAL NETWORK"** is an original research work carried out by **ADENUGBA FAVOUR TOLUWANIMI** meets the requirements and regulations governing the award of Master of Engineering (M.Eng.) degree in Electrical and Electronics Engineering from the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, and is approved for its contribution to knowledge and literary presentation.

Dr Hope Orovwode (Supervisor)

Prof. Emmaunel Adetiba

(Head of Department)

Prof. Ogbonnaya I. Okoro

(External Examiner)

.....

Signature and Date

.....

Signature and Date

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This research work is dedicated primarily to our father God Almighty, our Lord and Savior Jesus Christ, and the sweet and gentle Holy Spirit, the all-knowing trinity for wisdom, knowledge, and understanding from above in carrying out this research work. Then to family, my dad and mom for their tremendous support and for teaching me all I know till my university days and my brother for support, love, and understanding.

ACKNOWLEDGMENTS

My deepest gratitude goes to God Almighty for His love, care, wisdom, knowledge, and understanding which has been upon my life.

My sincere appreciation goes to the Chancellor, Covenant University, Dr. David O. Oyedepo, for his tremendous financial and spiritual support and the great vision he has given us to run with. To the Vice-Chancellor, Engr. Prof. A.A.A Atayero, one of our own, I appreciate you sir, thank you for the great sacrifices you have made and for being an exemplary leader. Also, to the Deputy Vice-Chancellor, Prof. Akan Williams, the Dean School of Postgraduate Studies, Prof. Humphrey Adebayo, the Head of Department Electrical and Information Engineering Department, Prof. Adoghe for all their tireless pursuits in bringing to bear the realization of vision 10:2022. May God bless you all exceeding abundantly above all that you can ever ask or think.

My sincere appreciation goes to my wonderful supervisor, Dr. Hope Orovwode for his immense role in this research work, his fatherliness, support, chastisement, kind-heartedness, mentorship and advice throughout the stages of this research work. Many thanks to Dr. Felix Agbetuyi, Dr. Ademola Abdulkareem and Dr. Isaac Samuel for their kind words, support and advice all through the research and also to the entire Academic and Non-Academic staff in the Department of Electrical and Information Engineering I say a big thank you. May God bless you all exceeding abundantly above all that you can ever ask or think.

To my colleagues; Ayokunle Adesanya, Adebola Soyemi and Engr. Bola Akanle, Divine Ogbe, Adesina Akinmeji to name a few, whose support and contributions were tremendous all through my postgraduate studies. May God bless you all exceeding abundantly above all that you can ever ask or think.

My wholesome gratitude goes to my parents, Mr & Mrs. Adenugba who have always been there for me. For the homeschooling effort and contribution, I say a big thank you. Words cannot express how indebted I am to you. I pray you will live long enough to reap the benefits of the seeds you have sown in my life and that of my brother. I love you and may God bless you exceeding abundantly above all that you can ever ask or think.

TABLE OF CONTENTS

Page

ACC	CEPTANCE	iii
DEC	CLARATION	iv
CERTIFICATION DEDICATION		V
		vi
ACK	NOWLEDGEMENTS	vii
TAB	LE OF CONTENTS	viii
LIST	Γ OF FIGURES	xi
LIST OF TABLES		XV
LIST	Γ OF ABBREVIATIONS AND SYMBOLS	xvi
ABS	TRACT	xix
CHA	APTER ONE: INTRODUCTION	1
1.1	Background of the Study.	1
1.1	.1 Distributed Generation	2
1.2	Problem Statement	7
1.3	Aim of Research	8
1.4	Objectives of Research	8
1.5	Scope and Limitation of Research	8
1.6	Justification of the Study	9
1.7	Dissertation Summary	9
CHA	APTER TWO: LITERATURE REVIEW	11
2.1	Chapter Introduction	11
2.2	Islanding	11
2.2	2.1 What is Islanding?	11
2.2	2.2 Risk of Islanding	11
2.3	Review of Islanding Detection Methods (IDMs)	12

2.4	Re	view of Selected Works	28
2.5	An	Overview of CNN	34
2.5	5.1	CNN Architecture	35
2.6	Re	view Summary and Conclusion	37
СНА	CHAPTER THREE: MATERIALS AND METHODS		38
3.1	Ch	apter Introduction	38
3.2	Po	wer System Description	38
3.3	Da	ta Generation	46
3.3	5.1	Scalogram Image Representation	50
3.4	Th	e Islanding Detection Models	52
3.5	Th	e Proposed CNN Architectures	55
3.5	5.1	Defining the Architecture	56
3.5	5.2	The Learning Hyper Parameters	58
3.5	5.3	Performance Evaluation	62
3.6	So	ftware and Hardware Requirements	64
3.6	5.1	Software Requirements	64
3.6	5.2	Hardware Requirements	65
3.7	Ch	apter Summary	65
СНА	PTF	ER FOUR: RESULTS	66
4.1	Int	roduction	66
4.2	Da	ta Generation and Dataset Description	66
4.3	Tra	aining The Convolutional Neural Network Models	79
4.4	Th	e First Islanding Detection Model	80
4.5	Th	e Second Islanding Detection Model	87
4.6	Ch	apter Summary	96

CHAPTER FIVE: DISCUSSIONS

5.1	Chapter Introduction	97
5.2	First Islanding Detection Model	97
5.3	The Second Islanding Detection Model	99
5.4	Problems Encountered	100
5.5	Chapter Summary	101
СНА	PTER SIX: CONCLUSION AND RECOMMENDATION	102
6.1	Summary	102
6.2	Conclusion	103
6.3	Contributions to Knowledge	103
6.4	Recommendations	104
REFERENCES		105
APP	ENDIX I	112
APPENDIX II		113
APPENDIX III		116

97

LIST OF FIGURES

Figures	Title of Figures	Page
1.1	Basic Structure of a Centralized Power system	1
1.2	Basic Structure of a Power system with DG	2
1.3	Technical Challenges of integrating DG Resources to the Grid	5
2.1	Break Down of Islanding Detection Methods13	13
2.2	Block Diagram for Active IDMs	13
2.3	Wave Form for Active Frequency Drift	14
2.4	Block Diagram for Passive IDMs	16
2.5	Non-detection zones for UOF and UOV	17
2.6	Operation of PJD	18
2.7	Basic Operation of Communication Based IDMs	19
2.8	Topology of PLCC	20
2.9	Block Diagram for Signal Processing IDMs	21
2.10	Block Diagram for Intelligence-based IDMs	23
2.11	Basic ANN Structure	24
2.12	Basic PNN Structure	25
2.13	Basic SVM Operation	26
2.14	Block Diagram of Fuzzy Logic Operation	26
2.15	Comparison between DNN and ANN structure	27
2.16	General CNN architecture	35
2.17	Operation of the Convolutional Neural Network	36
3.1a	Simulink model for the power system under study	39
3.1b	Single Line Diagram for the power system under study	40
3.2	IGBT with a flyback protection diode used for switching	41
3.3	3-phase voltage source PWM inverter	42
3.4	Possible switching operations for PWM inverters	43
3.5	Locus comparison in maximum linear control voltage in Sine	43
	PWM and SVPWM	
3.6	Voltage Space Vector and its components in (d, q)	44
3.7	Basic Switching Vectors and Sectors	45
3.8	Three-phase breaker used to simulate islanding	46
3.9	Block parameters for three-phase breaker used to simulate	47

Islanding

3.10	Three-phase fault block	48
3.11	Block parameters for three-phase fault block in Simulink	49
3.12	Three-phase asynchronous machine block	49
3.13	Block parameters for the three-phase asynchronous machine	50
3.14	Graphical representation of sample time-series data	51
3.15	Scalogram representation of sample time-series data.	52
3.16	Process flow diagram for adopted methodology	52
3.17	Block diagram for the first islanding detection model	53
3.18	Flowchart for the first islanding detection model	54
3.19	Block diagram for the second islanding detection model	55
3.20	Flowchart for the second islanding detection model	56
3.21	Basic Structure for the CNN Architectures	57
3.22	Overfitting, optimum operation, and underfitting	60
3.23	Influence of Model Complexity on Underfitting and Overfitting	61
3.24	Effect of various learning rates on convergence	61
3.25	Process flow for the method adopted in updating hyper-	62
	parameters	
3.26	Process flow for CNN training and validation	63
3.27	Confusion Matrix	65
3.28	ROC curve	65
4.1	PCC voltage waveform for islanding event of -10% real and 2%	69
	reactive power mismatch	
4.2	Scalogram for islanding event of -10% real and 2% reactive	69
	power mismatch	
4.3	PCC voltage waveform for islanding event of -10% real and 2%	70
	reactive power mismatch when the signal is at SNR of 25db	
4.4	PCC voltage waveform for islanding event of -10% real and 2%	70
	reactive power mismatch when the signal is at SNR of 30db	
4.5	PCC voltage waveform for a motor switching event	71
4.6	Scalogram image for the motor switching event	71
4.7	PCC voltage waveform for the motor switching event when the	72
	signal is at SNR of 30db	

4.8	PCC voltage waveform for the motor switching event when the	72
	signal is at SNR of 30db	
4.9	PCC voltage waveform for a Load switching event	73
4.10	Scalogram image for the load switching event	73
4.11	PCC voltage waveform for the load switching event when the	74
4.12	signal is at SNR of 25db	74
	PCC voltage waveform for the load switching event when the	
4.13	signal is at SNR of 30db	75
	PCC voltage waveform for a three-phase fault event	
4.14	Scalogram image for the three-phase fault event	75
4.15	PCC voltage waveform for the three-phase fault event when the	76
4.16	signal is at SNR of 25db	76
	PCC voltage waveform for the three-phase fault event when the	
4.17	signal is at SNR of 30db	77
	PCC voltage waveform for a single-phase fault event	
4.18	Scalogram image for the single-phase fault event	77
4.19	PCC voltage waveform for the single-phase fault event when	78
4.20	the signal is at SNR of 25db	78
	PCC voltage waveform for the single-phase fault event when	
4.21	the signal is at SNR of 30db	79
	PCC voltage waveform for a line-to-line fault event	
4.22	Scalogram image for the line-to-line fault event	79
4.23	PCC voltage waveform for line-to-line fault event when the	80
	signal is at SNR of 25db	
4.24	PCC voltage waveform for line-to-line fault event when the	80
	signal is at SNR of 30db	
4.25	Scripting the CNN	81
4.26	Analysing the CNN in the deep learning toolbox	83
4.27	Relationship between accuracy and maximum number of epoch	83
4.28	Relationship between accuracy and learning rate at different	85
	filter sizes	
4.29	Final CNN architecture for the first islanding detection model	86
4.30	Training progress plot for final CNN architecture for the first	86

islanding detection model

4.31	Confusion matrix for the first islanding detection model	87
4.32	Confusion matrix for the first islanding detection model when	88
	tested with noisy data of SNR 25db	
4.33	Confusion matrix for the first islanding detection model when	88
	tested with noisy data of SNR 30db	
4.34	Relationship between accuracy and maximum number of epoch	90
4.35	Relationship between accuracy and learning rate at different	91
	filter sizes	
4.36	Final CNN architecture for second islanding detection model	92
4.37	Training progress plot for final CNN architecture for second	93
	islanding detection model	
4.38	Confusion matrix for the second islanding detection model	94
4.39	AUC and ROC for each class for second islanding detection	97
	model	
4.40	Confusion matrix for the second islanding detection model	98
	when tested with noisy data of SNR 25db	
4.41	Confusion matrix for the second islanding detection model	99
	when tested with noisy data of SNR 25db	

LIST OF TABLES

]	Page
,	2
	3
4	4
4	4
:	5
,	28
4	43
4	46
:	50
	66
:	82
:	82
mber of	84
:	84
letection	85
the first	86
:	89
9	90
mber of	90
9	91
letection	91
second	93
n model	96
	mber of letection he first mber of letection second n model

LIST OF ABBREVIATIONS AND SYMBOLS

SYMBOLS

 Σ - Summation

ABBREVIATIONS

- DG Distributed Generation
- CIGRE Conseil International des Grands Réseaux Électriques
- CG Centralized Generation
- PQ Power Quality
- CNN Convolutional Neural Network
- DNN Deep Neural Network
- ANN Artificial Neural Network
- SVM Support Vector Machine
- NDZ No Detection Zone
- PCC Point of Common Coupling
- AC Alternating Current
- DC Direct Current
- IDMs Islanding Detection Methods
- AFD Active Frequency Drift
- SFS Sandia Frequency Shift
- SVS Sandia Voltage Shift
- SFS Slip Mode Frequency Shift
- UOV Under/Over Voltage
- UOF Under/Over Frequency
- MATLAB Matrix Laboratory

- PJD Phase Jump Detection
- RoCoP Rate of Change of Power
- RoCoF Rate of Change of Frequency
- SPD Signal Produced by Disconnect
- PLCC Power Line Carrier Communication
- SCADA Supervisory Control and Data Acquisition
- WT Wavelet Transform
- TTT Time-Time Transform
- $ST-S\mbox{-}Transform$
- FT Fourier Transform
- STFT Short Time Fourier Transform
- FFT Fast Fourier
- AI Artificial Intelligence
- FL Fuzzy Logic
- RMS Root Mean Square
- RBF Radial Basis Function
- PNN Probabilistic Neural Network
- THD Total Harmonic Distortion
- BFVB Basic Frequency Variable Bridge
- IGBT Insulated Gate Bipolar Transistor
- PWM Pulse Width Modulation
- SVPWM Space Vector Pulse Width Modulation
- CWT Continuous Wavelet Transform
- PSEC/ FD Power System Event Classification / Fault Detection

ROC – Receiver Operating Characteristics

SNR – Signal-to-Noise ratio

ABSTRACT

In the world today the lack of adequate supply of electricity is still a major problem especially in developing and underdeveloped countries. The global electrification rate is put at 75% and this figure has to go up in the coming years in other to promote sustainable development and eliminate world poverty. Distributed generation (DG) integration with the grid has been increasing worldwide due to the advantages it can provide to the electrical power systems, such as the possibility of reducing transmission and distribution losses, environmental benefits, the increase in the reliability of the power supply and the deferral of transmission and distribution investments. This makes it a suitable mechanism to improve electrification rate all over the world. Unintentional islanding is a major technical challenge that bedevils this system. Some researchers have developed islanding detection models to detect islanding and regard all other events that take place while the grid is still connected as Non-Islanding events while others have developed islanding detection models to detect islanding as well as identify Nonislanding disturbances when they occur (Islanding and Non-Islanding disturbance detection). Both system types are developed in this research. This research presents image-based islanding detection models using convolutional neural network. These models utilize scalogram images obtained from the aggregated phase voltages at point of common coupling (PCC). Therefore the models utilize the PCC voltage as the islanding detection parameter. The power system, islanding, and non-islanding events are simulated in MATLAB, wavelet transform is applied to the voltage signals obtained from the PCC for the different events to obtain the scalogram representation of the event. In both models developed a portion of this image data generated is used to train the classifier while the other part is used to test the classifier. The immunity of the developed models to noise is also investigated, the noise introduced did not have an adverse effect on the models. The results obtained from the simulation proves the ability of the proposed classifiers to detect islanding. The proposed models compare favourably with existing techniques and methods. For the first model, detection accuracy of 99.83% was obtained while for the second system detection accuracy of 99.2% was obtained.

Keywords: Convolutional Neural Network (CNN), Distributed Generation, Scalogram, Unintentional Islanding, Islanding Detection, Non-Islanding Disturbance.