GUT MICROBIOME OF DIARRHOEIC UNDER-FIVE CHILDREN IN LAGOS

AND OGUN STATES, NIGERIA

UGBOKO, HARRIET UNUAGBON

13PCQ00507

MAY, 2021

GUT MICROBIOME OF DIARRHOEIC UNDER-FIVE CHILDREN IN LAGOS

AND OGUN STATES, NIGERIA

BY

UGBOKO, HARRIET UNUAGBON 13PCQ00507 B. Sc, MICROBIOLOGY, UNIVERSITY OF AGRICULTURE, ABEOKUTA. M. Sc, MICROBIOLOGY, COVENANT UNIVERSITY, OTA.

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN MICROBIOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA.

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Microbiology, in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State.

Mr. John A. Philip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, UGBOKO, HARRIET UNUAGBON (13PCQ00507), declare that I carried out this research under the supervision of Prof. Obinna C. Nwinyi and Prof. Solomon U. Oranusi of the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

UGBOKO, HARRIET UNUAGBON

Signature and Date

CERTIFICATION

We certify that this thesis titled "THE GUT MICROBIOME OF DIARRHOEIC UNDER-FIVE CHILDREN IN LAGOS AND OGUN STATES, NIGERIA" was carried out by UGBOKO, HARRIET UNUAGBON (13PCQ00507) in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Obinna C. Nwinyi and Prof. Solomon U. Oranusi. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph. D) degree in Microbiology.

Prof. Obinna C. Nwinyi	
(Supervisor)	Signature and Date
Prof. Solomon U. Oranusi	
(Co-Supervisor)	Signature and Date
Prof. Solomon U. Oranusi	
(Head of Department, Biological Sciences)	Signature and Date
Prof Olugbenga A. Olowe	
(External Examiner)	Signature and Date
Prof. Akan B. Williams	
(Dean, School of Postgraduate Studies)	Signature and Date

DEDICATION

This research is dedicated to Almighty God for divine inspiration. Also, to my very supportive husband, Lucky N. Ugboko (FCA), who stood by me consistently over the years.

ACKNOWLEDGEMENTS

I am forever grateful to God, my everlasting Father, for seeing me through this programme. I want to thank the Chancellor, Dr David O. Oyedepo, the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Registrar, Dr Oluwasegun P. Omidiora, the Dean School of Postgraduate Studies, Prof. Akan B. Williams, the Dean College of Science and Technology, Prof. Temidayo V. Omotosho. My profound gratitude goes to my main Supervisor Prof. Obinna C. Nwinyi and co-supervisor and the Head of Department of Biological Sciences, Prof. Solomon U. Oranusi for their laudable contributions and qualitative supervision of this work.

My sincere appreciation goes to the Dean of Student Affairs, Prof. Conrad A. Omonhinmin, for his mentorship. I appreciate Prof. Grace I. Olasehinde, Dr Angela O. Eni, Dr Olayemi O. Akinnola, the Head of Unit Microbiology, Dr Paul A. Akinduti, the Postgraduate Coordinator, Dr Isaac O. Ayanda, the Assistant Postgraduate Coordinator, Dr Eze F. Ahuekwe and other Faculty members of the Department of Biological Sciences for their assistance and encouragement. I cannot fail to mention the Chief Technologist, Mr Emmanuel Omonigbeyin (Baba Omo), Mrs Bosede Adekeye and other staff of Biology, Chemistry, Microbiology, and Molecular Biology for their timely support.

I appreciate the support from my senior colleagues in the Department of Biological Sciences, Dr Tomilola Adesina, Dr Bunmi Olopade, Dr Adetutu Bello, and my colleagues, Mrs Joan Imoisi, Mr Bode Onile-ere, and Miss Ena Olomukoro. I sincerely want to acknowledge my colleague's Dr Angela Okojide, Department of Psychology, Mr Julius Ola-Peters, Department of Economics, and Mr George Ametefe, Department of Biochemistry, for their moral and intellectual support during the cause of this work in Covenant University. I acknowledge the co-operation and support of Massey Street Children Hospital staff, Lagos Island, Orile-Agege General Hospital, Agege, Lagos State; Federal Medical Centre Idi-Aba, Abeokuta, and State Hospital, Ota, Ogun State.

I appreciate Dr Andreas Schreiber, Dr Eva Laubermair and the staff of Institute for molecular Genetics Martinsried (IMGM) Laboratories, GmbH, Germany for their excellent assistance in the metagenomic analysis of my samples.

I will like to say a big thanks to my friends: Engr. Monday Illah of Chevron Nigeria Limited, Dr (Mrs) Nievel Maigida of Department of Ophthalmology, Jos University Teaching Hospital, Plateau State, Dr (Mrs) Taiwo Kolajo, of the Department of Computer Sciences, Federal University Lokoja, Kogi State, Mr Toluwase H. Fatoki of the Department of Biochemistry, Federal University Oye Ekiti, Ekiti State, Dr Iheanyi O. Okonko, of the Department of Microbiology, University of Port Harcourt, Dr Nadia N. Rodriguez Medina, of Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Publica, Mexico, and others.

My mentors, Professor Pauline E. Onyeukwu, of Department of Business Management, Baze University, Abuja, Engr Tola Akinyeoluwa, of Centre for Systems and Information Services, Covenant University, Dr Patrick Uzoka, of Federal College of Education, Ogwashukwu, Delta State, Mrs Victoria Ibeji, of 9mobile, Abuja, and others.

My warm appreciation goes to my parents, Elder Patrick and Mrs Theresa Erhabor, for their relentless care of me throughout this program; I am grateful to God who chose you two to be my parents. I appreciate my siblings and their spouses; Mr and Mrs Churchill Ogboh, Engr and Mrs Harry Ofume, Mr and Mrs Godwin Erhabor, Mr and Mrs Timi Bubagha, Engr and Mrs Barnabas Erhabor, and Engr and Mrs Olatunji Ajao, for their numerous supports. My

appreciation also goes to the Ugboko dynasty for their patience, understanding, and well wishes during this research.

My most profound appreciation goes to my husband, who also doubles as my hero, Lucky Ugboko (FCA). Your kind of love is rare. I am deeply grateful to you for your sacrifices, prayers, encouragements, and sponsorship. To our son, Praiseley Chukwuka, you are a rare gem. Thank you for your deep sense of maturity and steadfast support.

TABLE OF CONTENTS

TITLE ACCEN DECLA CERTI DEDIC ACKNO TABLE LIST O LIST O	R PAGE PAGE TANCE ARATION FICATION ATION OWLEDGEMENTS C OF CONTENTS F FIGURES F FIGURES F TABLES F ABBREVIATIONS	Page i iii iii iv v v vi vii xvii xvii xxvii xxvii xxvi
CHAPT	TER ONE: INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Problem	6
1.3	Research Questions	8
1.4	Aim and Objectives of the Study	8
1.5	Justification of the Study	9
1.6	Scope of the Study	12
1.7	Definition of Key Terms	12
CHAPT	TER TWO: LITERATURE REVIEW	16
2.1	Human Microbiome	16
2.2	The Gut Microbiome	17
	2.2.1 The Development of the Gut Microbiome	18
	2.2.2 Factors that Influence the Gut Microbiome in Children	19
2.3	The Anatomy of the Human Gut	24

2.4 The Diseases Associated with the Human Gut Microbiota	24
2.5 Mechanisms of Disease Prevention by the Gut Microbiota	28
2.6 Diarrhoea Incidence Among Under-five Children	30
2.7 Geographical Distribution of Diarrhoea and Population at Risk	30
2.8 Clinical Manifestation of Diarrhoeal Diseases	31
2.9 Aetiology of Diarrhoeal Diseases	34
2.9.1 Bacteria Associated with Diarrhoeal Diseases in Under-five Children	36
2.10 Co-Infections of Diarrhoeal Diseases	37
2.11 Mode of Transmission of Diarrhoea	38
2.12 Risk Factors Associated with Diarrhoea Prevalence in Children	38
2.12.1 Duration of Breastfeeding	38
2.12.2 The Source of Drinking Water	39
2.12.3 Hygiene and Sanitation	39
2.12.4 Age as a Determinant of Diarrhoea	40
2.12.5 The Level of Maternal Education	40
2.13 Laboratory Diagnosis of Diarrhoeal Diseases	41
2.13.1 Conventional Diagnostics	41
2.13.2 Molecular Diagnosis of Diarrhoeal Diseases	42
2.13.2.1 Polymerase Chain Reaction	42
2.13.3 Metagenomic Approach in Diarrhoea Diagnosis	43
2.14 Bioinformatics Application in Microbiome Studies	44
2.15 Treatment of Diarrhoeal Diseases	46
2.15.1 Fluid Replacement Therapy	46

2.15.2 Antibiotic Therapy		47
2.16 Prevention and Management of I	Diarrhoeal Infection	48
2.16.1 Improved Water Supply	and Sanitation	48
2.16.2 Diarrhoea Vaccines		49
2.16.3 Food as a Remedy of Dia	arrhoea in Under-5 children	50
2.17 Research Gaps from Previous St	udies	51
CHAPTER THREE: MATERIALS AN	ND METHODS	54
3.1 Materials		54
3.1.1 Chemicals / Reagents		54
3.1.2 Instrumentation		54
3.1.5 Media		55
3.1.6 Antibiotics		55
3.1.6 Quality Control Organism	18	56
3.1.7 Polymerase Chain Reacti	on (PCR) Primers	56
3.2 Methods		56
3.2.1 Study Design		56
3.2.2 Study Area		57
3.2.3 Study Population		60
3.2.4 Ethical Consideration		61
3.2.5 Consent/Assent		61
3.2.6 Determination of Risk Fa	actors Associated with Diarrhoea	62
3.2.7 Hospital Data Collection		62
3.2.8 Questionnaire		62

	3.2.9	Sample Size Determination	63
3.3	Steril	zation and Aseptic Techniques	64
3.4	Media	a Preparation	64
3.5	Colle	ction and Transportation of Samples	64
3.6	Samp	le Analyses	65
	3.6.1	Macroscopic Examination	65
	3.6.2 0	Cultural Analysis	65
3.7	Identi	fication of Bacterial Isolates	66
	3.7.1	Morphological and Biochemical Identification of Bacterial Isolates	66
	3.7.2 I	dentification of Isolates using API 20E Test	70
3.8	Antin	nicrobial Susceptibility Testing	70
	3.8.1	Agar Diffusion Test	70
3.9	Metag	genomic analysis of the Samples	72
	3.9.1	Faecal Microbial DNA Extraction	72
		3.9.1.1 DNA Quantity Check	73
		3.9.1.2 Transportation of DNA Samples	73
	3.9.2	Amplicon-based Metagenomics Analysis	73
		3.9.2.1 Amplification Strategy	74
		3.9.2.2 Amplicon Quality Check using Agarose Gel Electrophoresis	76
	3.9.3	Library Generation	77
		3.9.3.1 Amplicon Purification and Quantitation	77
		3.9.3.2 Library Normalisation and Pooling	77
		3.9.3.3 Integrity Control and Quantification of the Library Pool	77

3.9.3.4 Library Denaturation and Preparation for Sequencing	78
3.9.3.5 Cluster Generation and Sequencing	78
3.9.3.6 Software Applied for Metagenomic Data Analysis	80
3.10 Data Analysis	80
3.10.1 Metagenomic Primary Data Analysis	80
3.10.2 Basic Bioinformatic Analysis	80
3.10.3 Questionnaire and Microbiological Data Analysis	81
CHAPTER FOUR: RESULTS	82
4.1 Determination of the Prevalence Rate of Diarrhoea among Under-5	90
4.2 Determination of the Risk Factors Associated with Diarrhoea among Under-5	90
Children in the Study area	
4.2.1 Demography of <mark>S</mark> tudy Participants	90
4.3 Identification and Prevalence of Bacterial Isolates in Diarrhoeic and non-	105
Diarrhoeic Samples	
4.3.2 Sample <mark>D</mark> istribution based on <mark>D</mark> iarrhoea <mark>S</mark> tatus of the <mark>C</mark> hildren	106
4.3.3 Stool Macroscopy	107
4.4 Determination of the Antibiotic Susceptibility Patterns of the Enteric Bacterial	114
Isolates	
4.5 Investigation of the Taxonomic Profile of the Gut Microbiome in Diarrhoeic and	121
non-Diarrhoeic Under-5 Children in the <mark>S</mark> tudy <mark>A</mark> rea	
4.5.1 Sequence Read	121
4.5.2 Alpha Diversity of the Samples	123
4.5.3 Beta <mark>D</mark> iversity of the <mark>S</mark> amples	128

4.5.4 Taxonomic Abundance in the Study	133
4.5.5 Taxonomic Composition of the Samples to Genus Level	138
CHAPTER FIVE: DISCUSSION	143
5.1 Risk factors of diarrhoeal disease among under-five children in the study area	143
5.2 The rate of diarrhoea prevalence in the study area	143
5.3 Identification and prevalence of bacterial isolates in diarrhoeic and non-	147
diarrhoeic samples in the study area	
5.4 Antibiotic Profile of the isolates	149
5.5 Evaluation of the gut microbiota of the diarrhoeic and non-diarrhoeic children in	151
the study area	
CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS	159
6.1 Summary	159
6.2 Conclusion	160
6.3 Contributions to knowledge	161
6.4 Recommendations	162
6.4.1 Limitations to the study	163
6.4.2 Areas for further studies	163
REFERENCES	165
APPENDIXES	199
Appendix I: Consent form and Questionnaire	199
Appendix II: Ethical Approvals	203
Appendix III: Media Composition	206

Appendix IV: Hospital Based Data	209
Appendix V: Prevalence of Enteric Bacteria	229
Appendix VI: Biochemical Characteristics of the Isolates	235
Appendix VII: Antimicrobial Susceptibility Testing	241
Appendix VIII: Gut Microbiome Analysis	258

LIST OF FIGURES

Figures	Title of Figures	Pages
2.1	Factors that can affect the gut microbiome	20
2.2	The Anatomy of the gastrointestinal tract of a child	25
2.3	Countries with high diarrhoea mortality rates	31
3.1	Map of Nigeria showing the selected Local Government Areas	59
3.2	Scheme of the four-primer amplification strategy	75
3.3	Agarose gel image of Index PCR products	76
3.4	Schematic overview of the cluster generation by bridge amplification	79
4.1	The prevalence rate of diarrhoea in Lagos and Ogun states during the study	85
4.2	The prevalence rate of diarrhoea in Lagos state during the study	94
4.3	The prevalence rate of diarrhoea to other diseases in Lagos and Ogun states	114
4.4	The prevalence rate of diarrhoea to other diseases in Lagos state during the study	115
4.5	The prevalence rate of diarrhoea to other diseases in Ogun state during the study	116
4.6	Prevalence of bacteria isolated based on age group in months	125
4.7	Age distribution of total bacteria count during the study	126
4.8	The distribution of bacteria isolated from the samples based on the gender	127
4.9	Enteric bacteria recovered from the diarrhoeic group only	128
4.10	Alpha diversity rarefaction plot for all diarrhoeic and non-diarrhoeic samples	139
	from all study locations in this study	
4.11	Alpha diversity rarefaction plot for all diarrhoeic and non-diarrhoeic samples	
	with locations highlighted	140

4.12	Alpha diversity measures by study groups	141
4.13	Non-metric multidimensional scaling plot of diversity between diarrhoeic and	144
	non-diarrhoeic samples	
4.14	Phylogenetic tree based on Yule and Clayton's distance showing the relationship	145
	among the gut microbiome of all the samples	
4.15	Inter sample comparison of samples from diarrhoeic children	146
4.16	Inter sample comparison of samples from healthy children	147
4.17	Phylum level taxonomic abundance of all samples	149
4.18	Phylum level taxonomic abundance of the diarrhoeic samples	150
4.19	Phylum level taxonomic abundance of the non-diarrhoeic samples	151
4.20	The relative abundance of each phylum in the diarrhoeic and non-diarrhoeic	152
	groups	

LIST OF TABLES

Tables	Title of Tables	Pages
2.1	Innate and Environmental Factors that Impact the Diversity and Stability of the	22
	Human Microbiota	
2.2	Application of Metagenomics in Diarrhoea Diagnosis	44
2.3	Gaps in literature from related studies	52
3.1	Clinical Laboratory Standard Institute, 2018 guideline	70
3.2	Metagenomic sample labels	72
3.3	16S rRNA primer for PCR	75
4.1	Socio-demographic variables of the study participants	83
4.2	Health conditions of the children that participated in the study	86
4.3	Comparison of the health condition of the participants in Lagos and Ogun State	88
4.4	Distribution of stool samples collected based on age group and sex	90
4.5	Distribution of stool samples collected from the diarrhoeic children based on	96
	consistency	
4.6	The relationship between age group and gender of the child and diarrhoea disease	98
	occurrence among under-five children in the study area	
4.7	The relationship between demographic and socio-economic variables of mother's	100
	and diarrhoea disease occurrence among under-five children in the study area	
4.8	The relationship between the health condition and environmental variables and	102
	diarrhoea disease occurrence among under-five children in the study	
4.9	Comparison of age and gender variables of under-five children in Lagos and Ogun	104
	state in relationship with diarrhoea occurrence	

- 4.10 Comparison of demographic and socio-economic status of mothers in Lagos and 105Ogun state in relationship with diarrhoea occurrence among under-five children
- 4.11 Overview of mothers/caregivers' socio-demographic status as determinants of 108 diarrhoea occurrence in the Study
- 4.12 Overview of health history and the environment as risk factors for diarrhoea 109 occurrence in the Study
- 4.13 Multiple logistic regression analysis of determinants of diarrhoea occurrence among 110 under-five children in the Study Area
- 4.14 The total population of under-five Children that visited the Paediatric Departments 112of the selected health facilities from January to December 2018
- 4.15 Rate of diarrhoea occurrence based on gender among Children under-5 Years in the 113 study area from January to December 2018.
- 4.16 Prevalence of diarrhoea based on Locations and time of the Study 118
- 4.17 Biochemical characteristics of members of Enterobacteriaceae isolates using API 120
 20E Kit
- 4.18 Biochemical Characteristics of other Gram-negative Non-Enterobacteriaceae 121
- 4.19 Biochemical characteristics of Gram-positive isolates 122
- 4.20 The comparative prevalence rate of bacterial organisms isolated from diarrhoeic and 123 non-children
- 4.21 Antimicrobial susceptibility profile of the Gram-negative isolates from the diarrhoeic 130 and non-diarrhoeic samples
- 4.22 Antimicrobial susceptibility profile of the Gram-positive isolates from the diarrhoeic 131 and non-diarrhoeic samples

4.23	Comparison between the antimicrobial resistance profiles of 241 Gram-negative	132
	isolates obtained from diarrhoeic and non-diarrhoeic samples	
4.24	Comparison between the antimicrobial resistance profiles of 38 Gram-positive	133
	isolates obtained from diarrhoeic and non-diarrhoeic samples	
4.25	Antibiotic resistance profile of the Gram-negative enteric bacilli	134
4.26	Antibiotic resistance profile of the Gram-positive bacteria	135
4.27	Number of reads in each sample after processing	137
4.28	Summary of alpha diversity measures	142
4.29	The relative abundance of each phylum across the study groups	154
4.30	An overview of the major bacterial taxa within the study samples	155
A1	Data for diarrhoea incidence among children aged 0-5 in Lagos state from January	226
	to December 2018	
A2	Data for diarrhoea incidence among children aged 0-5years in Ogun state from	227
	January to December 2018	
A3	Data for disease incidence among children aged 0-59months at Massey Street	228
	Children's Hospital, Lagos-Island, Lagos State	
A4	Data for disease incidence among children aged 0-59 months at Orile-Agege general	229
	hospital, Agege, Lagos State	
A5	Data for disease incidence among children aged 0-59 months at Federal Medical	230
	Centre Abeokuta, Ogun state	
A6	Data for disease incidence among Children Aged 0-5 at State Hospital Ota Ogun	231
	State	
A7	Data for Diarrhoea incidence among Children Aged 0-5 in Lagos State	232

A8	The relative abundance of Firmicutes across the study locations	278
A9	The relative abundance of Bacteroidetes across the study locations	280
A10	The relative abundance of Actinobacteria across the study locations	281
A11	The relative abundance of Verrucomicrobia across the study locations	282

LIST OF ABBREVIATIONS

API:	Analytical Profile Index
ATCC:	American Type Culture Collection
AIDS:	Acquired Immunodeficiency Syndrome
Bp:	Base pairs
CDC:	Centre for Disease Control and prevention
DAS:	Deep Amplicon Sequencing
DNA:	Deoxyribonucleic Acid
dNTP:	Deoxynucleoside triphosphate
DsDNA:	Double-stranded DNA
DTC:	Difficult to Culture
EDTA:	Ethylene Diaminetetraacetic Acid
Gb:	Giga bases
GBD:	Global Burden of Disease
gDNA:	Genomic DNA
HIV:	Human Immunodeficiency Virus
HMP:	Human Microbiome Project
IMGM:	Institute for Molecular Genetics Martinsried
LGA:	Local Government Area
MSS:	Metagenome Shotgun Sequencing
NCDC:	Nigeria Centre for Disease Control
NGS:	Next Generation Sequencing
NMDS:	Non-metric Multidimensional Scaling
NTC:	No Template control
OR:	Odds Ratio
ORS:	Oral Rehydration Solution
ORT:	Oral Rehydration Therapy

OTU:	Operational Taxonomic Unit
PCR:	Polymerase Chain Reaction
PE:	Paired End
PF:	Passed Filter
QC:	Quality Control
RNA:	Ribonucleic Acid
SAV:	Sequence Analysis Viewer
SBS:	Sequencing by Synthesis
SDG:	Sustainable Development Goals
IBM-SPSS: Sciences	International Business Machines-Statistical Package for the Social
	International Business Machines-Statistical Package for the Social Solid Phase Reversible Immobilization
Sciences	
Sciences SPRI:	Solid Phase Reversible Immobilization
Sciences SPRI: SsDNA:	Solid Phase Reversible Immobilization Single-stranded DNA
Sciences SPRI: SsDNA: TE:	Solid Phase Reversible Immobilization Single-stranded DNA Tris-EDTA
Sciences SPRI: SsDNA: TE: TS:	Solid Phase Reversible Immobilization Single-stranded DNA Tris-EDTA Target Specific
Sciences SPRI: SsDNA: TE: TS: UNICEF:	Solid Phase Reversible Immobilization Single-stranded DNA Tris-EDTA Target Specific United Nations Children's Fund

ABSTRACT

Diarrhoea is a major cause of morbidity and mortality in young children. This study aimed to investigate the gut microbiome of under-five diarrhoeic children in Lagos and Ogun States. Hospital records were obtained from the four healthcare facilities used. Ethical approval was obtained from two tertiary institutions. A total of 180 stool samples were taken from underfive diarrhoeic and non-diarrhoeic children from two states in approximately a ratio of four to one (4:1). Samples were analysed using standard, cultural and biochemical techniques. Isolates were further identified using the API 20E test. An Antibiogram profile of the pure isolates was conducted using the disks diffusion technique. Amplicon-based metagenomic analyses were carried out on DNA isolates obtained from stool samples of diarrhoeic and healthy children. The species richness and species abundance were determined using the Microbial Genomics Module version 4.0 (Qiagen). Data obtained from the questionnaires, hospital records, and antibiogram were analysed using logistic regression, Chi-square and student t-tests. This study showed an overall prevalence rate of 11.1% for diarrhoea in Lagos and Ogun States. Mother's educational status (OR= 11.459, P= 0.0001), mother's employment status (OR= 2.082, P= 0.025) and family income (OR= 7.613, P=0.0001), were the factors significantly associated with diarrhoea. A total of 279 isolates obtained were predominantly members of the Enterobacteriaceae. Others include Pseudomonas, Staphylococcus, Bacillus, Acinetobacter, and *Alcaligenes*. Most of the bacteria isolated from the diarrhoeic children were resistant to multiple class of antibiotics; Penicillins, Sulonamides, Tetracyclines, and Cefuroxime in a decreasing order. The isolates were more resistant to Ampicillin (83.4%), Augmentin (79.6%), Trimethoprim-Sulphamethoxazole 70.5%), and Tetracycline (65.6%) and more sensitive to Nitrofurantoin (68.9%), Gentamycin 67.2%), Ofloxacin (65.9%), and Ciprofloxacin (61.8%). The phylogenetic diversity revealed six bacterial phyla which include Firmicutes (51.7%), Bacteroidetes (9.1%), Proteobacteria (27.1%), Actinobacteria (11.5%), Fusobacteria (0.5%), and Verrucomicrobia (0.1%). The major classes in the Firmicutes were Bacilli (71%) and Clostridia 24%. The classes under Proteobacteria were mainly Gammaproteobacteria (99.9%) while Alphaproteobacteria occurred (0.1%). The two classes, Actinobacteria (50%) and Coriobacteriia (50%), in the phylum Actinobacteria, were represented equally. The phyla Bacteroidetes, Fusobacteria and Verrucomicrobia were represented by a single class each which is: Bacteroidia (100%), Fusobacteriia (100%) and Verrucomicrobiae (100%), respectively. The predominant phyla detected among the diarrhoeic samples were Firmicutes (50.4%) and Proteobacteria (37.2%). There was a remarkable increase in the abundance of Proteobacteria in the diarrhoeic group (37.2%), compared to the healthy group (6.5%) at p<0.0001. The total number of different species presented decreased in the diarrhoeic children (341, 31%) and increased in the non-diarrhoeic children (774, 69%). Also, the proportion of Escherichia coli, Shigella, Staphylococcus and Klebsiella were in abundance in the diarrhoeic group. In contrast, Bifidobacterium, Faecalibacterium, Lactobacillus, Clostridium (sensu stricto), and Bacteroides significantly decreased in the diarrhoeic group. This suggests that diarrhoeal diseases thrive in the dysbiotic gut, which is characterised by the depletion of beneficial microbes and increased pathogens in the gut.

Keywords: Bacteria, Children, Diarrhoea, Gut Microbiome, Metagenome