PAPER • OPEN ACCESS

Temperature and Short- wave Irradiation Trends in Ikogosi Climatic Change Pattern

To cite this article: T.J. Abodunrin and M.E. Emetere 2021 IOP Conf. Ser.: Earth Environ. Sci. 665 012058

View the article online for updates and enhancements.

This content was downloaded from IP address 165.73.192.253 on 10/09/2021 at 13:35

IOP Conf. Series: Earth and Environmental Science 665 (2021) 012058

Temperature and Short- wave Irradiation Trends in Ikogosi Climatic Change Pattern

¹Abodunrin T.J., ¹Emetere M.E.

¹Department of Physics, Covenant University, P.M.B. 1023, Ota, Ogun state, Nigeria.

Temitope.abodunrin@covenantuniversity.edu.ng

Abstract. Every living or non-living thing has its unique temperature consequent of absorption of electromagnetic radiation, light. The source of this molecular kinetic is Solar energy incident on Earth's surface, the sole supplier of life on the planet. This phenomenon markedly determines the climatic conditions in our habitat. Atypical of previous much-required characteristic balance in nature, myriads of surface processes, ranging from evaporation, photosynthesis and even terrestrial carbon uptake effects are becoming altered in nature. These effects on longterm timing of events defines global warming, it distinguishes the diurnal from seasonal course of surface temperatures and shortwave radiation which contains larger quantity of energy and longwave radiation which holds less amount of energy. Earth's emitted longwave radiation, also has major practical implications on solar energy technologies, agricultural productivity, profound environmental, societal, and economic implications. There is cumulative evidence that the volume of solar radiation incident on the Earth's surface is not constant but experiences substantial decadal variations. In view of the certainty of unpredictability of these climatic changes, a positive recourse lies in utilizing these enormous natural forces to solve Man's energy crisis challenge. Thus, this study uses meteorological data from MERRE to investigate the prospect of shortwave radiation in Ikogosi SW Nigeria and its implications technologically and environmentally in the future of energy prospecting first locally, and on a spatial scale.

1. Introduction

The greenhouse effect is deep-rooted on amplified absorptions of greenhouse gases, such as CO₂ [1]. The effect of this is a direct reduction in the amount of outward-bound longwave radiation to space. Consequently, this energy amasses in the climate system giving rise to the warming of the planet [2]. Although several climatic models on CO₂ explain global energy accumulation as being a product of an upsurge in absorbed solar radiation, this merely gives a broad understanding of the specific [3]. In general, conservation of Global energy is prerequisite for understanding Earth's climatic changes especially in the wake of safety of lives and economic losses. This calls for reckoning, beginning with diverse discrepancies in atmospheric composition that bring about left-over energy imbalance at the top of atmosphere to drive global warming, and ultimately to part of this radiation that is left to sink in the world ocean as artificial lake for energy build-up [4]. The sun gives off shortwave radiation from its tremendously hot temperature. This short wave gets transmitted as either ultraviolet rays, characteristic of sunburn and visible light [5]. Once in the Earth's atmosphere, clouds and the surface of the Earth absorb the radiation, the ground surface gets warm and in turn re-emits this energy as

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

longwave radiation in the form of infrared rays. Most of the Sun's incident light is absorbed while some is reflected, the effect determines a good or bad World food harvest and comfort in our environment [6]. In another perspective, bodies of open water are repositories of virtually all the sunlight dropping on them. Thus, the depth of infiltration of absorption is determined by both the wavelength of the light and optical properties of the body of water. These optical properties and solar attenuation are influenced by the density of the water, either on account of its sedimental composition or plankton, this affects the volume of aquatic food available annually [7]. In temperate regions, Albedo effect of fresh snow has about the highest value amongst all-natural substances on the land, in reflecting over 80% of solar radiation, this accounts for differences in crop production, architectural designs of houses and energy usage relative to the tropics [8]. Lush foliage absorbs powerfully in the visible spectrum, but reflect in the near-infrared range, and dormant flora reflect up to 25 % of visible light, while sand in the desert can reflect as much as 40% of total incoming shortwave radiation, this provides crucial information to Engineers, Medical Scientists and Economists in developing fiscal policies [9]. Bringing these facts together, transpiration, the process whereby Plants lose water vapor through the course of taking carbon dioxide from the atmosphere is affiliated with photosynthesis. This describes the positive solitary use of carbondioxide in the entire ecosystem. As foliage repetitively adjusts the production of biomass against environmental stresses of temperature, sunlight, and water availability, a measure of stability can be attained in the erratic weather conditions [10-11]. In addition, altitudinal differences bring about progressive variations in Earth's radiation budget owing to reflectivity of land and other surfaces. This thereby creates huge possibilities for the surface energy balance and the distribution of surface heating in mountainous areas, which is the prospect this research seeks to investigate from Ikogosi perspective.

2. Methodology

In order to obtain the relationship between diurnal temperature and short-wave irradiation, average monthly temperature (K) and incoming shortwave radiation (W m⁻²) data were obtained for Ikogosi for thirty-eight years. The pattern for this duration of time symbolizes a characteristic pattern in the source data obtained from MERRE, and plotted with software programs to elicit the direct correlation between the two afore-mentioned parameters. Details of further analysis required for actualizing the set objective in this study was actualized with curve fitting regression analysis and analysis of variance (ANOVA) with ORIGIN software. This clearly depicted variational trends in Earth's radiation budget for all the months of the year as stipulated by the curves, significant for interpreting future climatic trends in Ikogosi SW Nigeria.

3. Results and Discussion

3.1. Temperature Vs SWR Plots

4. In Figure 1, a notable pattern is observed all through the months of the years for which this study is carried out. SWR shows a tendency of being equal or even higher than the surface temperature of the atmosphere. This is especially true for May, June, November and December. This results in the following aftermaths, bulk surface temperature which is higher than skin layer temperature. There is high cloud cover producing a high volume of condensation. In order to explain the reason why SWR is higher than the temperature, a seeming deviation from conservation principles, it is imperative to employ the albedo effect. This is a tendency in which Ikogosi experiences high reflection of solar radiation from its landmass. Eventually, more of this incident radiation is returned to space, and Ikogosi surface temperature drops. There are several points of intersection between the two parameters, these are initial protrusion of turbulence which balance off at the points. They are short-lived for all the months of the year, to create the energy equilibrium nature requires for balance.

Figure 1: Albedo effect in Ikogosi Temperature-SWR weather patterns

3.2. Curve fitting regression analysis of Ikogosi Temperature-SWR relationships

The curves show the line of best-fit for each month, this illustrates a non-linear relationship between SWR and temperature. The shape is predominantly exponential growth or logarithmic decay in all the months. In mathematics, this translates to a quadratic function. A single exception to this observation occurs in April Temperature, where SWR changes is directly proportional to temperature changes. The future implications of these fluctuations in Ikogosi climatic future lies in the albedo effect. Ikogosi landmass is highly reflective, thus more radiation is sent back to space consequently, bringing about the cooling effect observed. This is largely on account of the dense foliage present, deforestation and other industrial activities could decrease these albedo effect, if they are not regulated as illustrated by Figure 2.

3.3. Statistical Analysis of Ikogosi Temperature-SWR Regression Curves

In evaluating the goodness-of-fit of simulated SWR versus temperature for the set points depict no outlier but a perfect fit in all the months as shown in Figure 2. This means that, this result can be used in a statistical context useful in prediction of future models or in testing hypotheses. The measure of wellness of the model is adjudged excellent based on this variation from the mean being approximately equal to unity. The adjusted R squared negative value observed does not indicate any adverse situation but indicates a valid measure.

3.4. Analysis of variance (ANOVA) of Ikogosi Temperature-SWR data

The ANOVA is a collection of statistical model outcomes, it separates the data into two distinct groups, Pr. > 0.0012 and Pr. < 0.979. Most of the months fall within the latter class, which is the systematic factor, SWR in this case study.

IOP Conf. Series: Earth and Environmental Science **665** (2021) 012058 doi:10.1088/1755-1315/665/1/012058

Figure 2: Curve fitting of Ikogosi Temperature-SWR weather trend

· · ·	Intercept		1	B1	В	Statistics	
	Value	Standard Error	Value	Standard Error	Value Standard Error		Adj. R-Square
Tempt	7834.10981	7207.9645	-7.55681	7.21173	0.00189	0.0018	-0.02108
SWR	164024.48418	111703.084	-163.2658	111.76145	0.04067	0.02795	0.12698
February	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	8598.43184	6190.0212	-8.33225	6.19326	0.00209	0.00155	0.02576
SWR	159396.72771	100266.53307	-158.92003	100.31892	0.03966	0.02509	0.06521
March	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-702.57586	5752.85354	0.99223	5.75586	-2.486E-4	0.00144	-0.05429
SWR	256214.00961	89044.7216	-255.55028	89.09124	0.06377	0.02228	0.26444
April	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-10481.65131	6230.40273	10.77552	6.23366	-0.0027	0.00156	0.02543
SWR	230656.04301	82434.26659	-230.37574	82.47734	0.05757	0.02063	0.15392
May	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-12747.57135	5352.71152	13.04326	5.35551	-0.00326	0.00134	0.09412
SWR	41381.02069	100044.31616	-40.86421	100.09659	0.01013	0.02504	0.00382
June	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-11021.91031	5444.3158	11.32144	5.44716	-0.00283	0.00136	0.06258
SWR	98776.84248	110666.4519	-98.48178	110.72427	0.02459	0.02769	-0.02373
July	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-11489.30851	4762.4498	11.79474	4.76494	-0.00295	0.00119	0.11842
SWR	136580.69202	121721.17208	-136.15082	121.78477	0.03398	0.03046	0.00721
August	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-9735.81745	6532.63699	9.99942	6.53605	-0.00249	0.00163	0.08304
SWR	189851.34286	116202.21328	-189.74195	116.26293	0.04745	0.02908	0.01/29
September	-2.91271E-12	5.00398E-12	15.05000	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-15584.49201	6144.0802	15.85662	6.14729	-0.00396	0.00154	0.15392
SWR	360598.87962	128635.99417	-360.61499	128.7032	0.0902	0.03219	0.13349
October	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	-7841.73649	7275.22082	8.13795	7.27902	-0.00204	0.00182	-0.01833
SWR	343740.6523	95272.11543	-344.13135	95.32189	0.08618	0.02384	0.26669
November	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	2848.18918	4878.93849	-2.59042	4.88149	6.54986E-4	0.00122	0.08581
SWR	474699.48934	105477.37358	-475.11291	105.53248	0.11893	0.0264	0.34568
December	-2.91271E-12	5.00398E-12	1	5.0066E-15	-7.85654E-19	1.25227E-18	1
Tempt	14985.80877	5987.00027	-14.73007	5.99013	0.00369	0.0015	0.1474
SWR	409032.62852	103654.80647	-409.24409	103.70896	0.10241	0.02594	0.27068

Table 1: Statistical Analysis of Temperature-SWR of Ikogosi

IOP Conf. Series: Earth and Environmental Science 665 (2021) 012058

doi:10.1088/1755-1315/665/1/012058

		DF	Sum of Squares	Mean Square	E Value	Prob>F		Total	38	4940			
	Model	2	1 07588	0.0970/	0.60774	0.55007		Model	2	3.63319	1.8166	1.49568	0.23769
Tempt	Free	2	E0 E0100	1,60550	0.00774	0.55007	Tempt.	Error	36	43.72415	1.21456		
	Error	30	58.52130	1.02009				Total	38	47.35734			
	lotal	38	60.49724				SWR	Model	2	1895.06698	947.53349	4.45648	0.01865
SWR E	Model	2	2938.53634	1469.26817	3.76343	0.0328		Error	36	7654.28613	212.61906		
	Error	36	14054.6315	390.40643				Total	38	9549.35311			
	Total	38	16993.16784					Model	2	4940	2470	3 15267E33	0
February	Model	2	4940	2470	3.15267E33	0	May	Error	36	2.82046E-29	7.83462E-31	0.10201200	
	Error	36	2.82046E-29	7.83462E-31				Total	38	4940			
	Total	38	4940					Model	2	5.33226	2.66613	2.97404	0.06377
Tempt	Model	2	3.6021	1.80105	1.50229	0.23625	Tempt. SWR	Error	36	32.27281	0.89647		
	Error	36	43,1592	1,19887				Total	38	37.60508			
	Total	38	46 7613					Model	2	672.00435	336.00218	1.07293	0.35269
	Model	2	1462 95195	731 47597	2 32542	0 11225		Error	36	11273.89475	313.16374		
Q1//D	Error	26	1122/ 02217	214 55649	2.02042	0.11220		Total	38	11945.8991			
OWIN	Ellu	20	10706 00510	314.33040				Model	2	4940	2470	3.15267E33	0
	I otal	38	12/80.98512	0.170			June	Error	36	2.82046E-29	7.83462E-31		
	Model	2	4940	2470	3.15267E33	0		Total	38	4940			
March	Error	36	2.82046E-29	7.83462E-31			Tempt.	Model	2	4.20753	2.10376	2.26842	0.11807
	Total	38	4940					Error	36	33.38687	0.92741		
	Model	2	0.04462	0.02231	0.02155	0.9787		I Otal	38	37.5944	044 45066	0.55066	0.57600
Tempt.	Error	36	37.27827	1.03551			SWR	Model	2	428.91932	214.45966	0.55966	0.57629
	Total	38	37.32289					Total	20	14000 00007	303.19392		
	Model	2	3885.311	1942.6555	7.83056	0.0015	July	Model	2	14223.90037	2470	3 15267E33	0
SWR	Error	36	8931 1112	248 08642				Error	36	2 82046E-29	7.83462E-31	3.13207E33	v
- Onit	Total	38	12816 4222	210.00012				Total	38	4940	1.004022-01		
	Model	20	4040	2470	2 15267522	0		Model	2	5 04164	2.52082	3 55218	0.03909
April	Free	2	0.000465.00	7.034605.34	3.13207E33		Tempt.	Error	36	25.54759	0.70966		
	Error	30	2.82040E-29	7.83402E-31			<u> </u>		-		,		-
	l otal Model	38	30.58924	527 55661	1 13802	0 33171	November	Model	2	4940	2470	3.15267E33	0
SWR	Error	36	16688.65694	463.5738				Error	36	2.82046E-29	7.83462E-31		
	Total	38	17743.77016	0.170	0.45007500			Total	38	4940			
August	Error	36	2.82046E-29	7.83462E-31	3.15207E33	0	Tempt.	Hadal		4 4 4 6 0 4	0.07046	0 70050	0.07540
	Total	38	4940					Model	2	4.14031	2.07310	2.78352	0.07510
Tempt.	Model	2	7.26574	3.63287	2.72074	0.07936		Error	36	26.81266	0.7448		
	Total	38	55.33487	1.55525				Total	38	30,95897			
	Model	2	1127.46194	563.73097	1.33431	0.27605		Model	2	768/ 37602	38/2 18801	11 03757	1 82651E
SWR E T Septembe	Error	36	15209.60502	422.48903			SWR	WOUCI		1004.01002	3042.10001	11.00101	1.02031L
	Model	2	4940	2470	3.15267E33	0		Error	30	12531.63538	348.10098		
	Error	36	2.82046E-29	7.83462E-31				Total	38	20216.0114			
Tempt.	Model	38	4940	5 26387	4 45661	0.01865	Decembe r	Model	2	4940	2470	3.15267E33	0
	Error	36	42.52094	1.18114		0.01000		Error	26	2 02046E 20	7 02/60E 24		-
	Total	38	53.04868	0000 00070	0.00745	0.00000		EIIVI	30	2.02040E-29	1.0340ZE-31		
	Error	2	4066.47956	2033.23978	3.92715	0.02866		l otal	38	4940			
- Child	Total	38	22705.11657	01110002				Model	2	9.61094	4.80547	4.2848	0.02142
October	Model	2	4940	2470	3.15267E33	0	Tempt	Error	36	40 37455	1 12152		
	Total	36	2.82046E-29 4940	7.83462E-31			rempt.	Takat	20	40.00540	1.12132		
	Model	2	2.17934	1.08967	0.65798	0.52401		Total	38	49.98549			
Tempt.	Error	36	59.61856	1.65607				Model	2	5413.46504	2706.73252	8.05156	0.00129
	Model	38	4492.81346	2246.40673	7.90988	0.00142	SWR	Error	36	12102.30312	336.17509		
SWR	Error	36	10223.99793	283.99994				Total	20	17515 76016			
	Total	38	14716.81139					TUId	20	17010.70610			

Table 2: ANOVA of Ikogosi Temperature-SWR data

Conclusion and Recommendation

The high albedo observed means Ikogosi land surface reflects a major percentage of the radiation that falls on it and absorbs the rest. Forests have a low albedo, this condition affirms that the area is rich in vegetation. This type of increase in albedo will ultimately result in supplementary drop in Ikogosi temperature. This condition if promoted, in turn will cause a further increase in the albedo and substantial reduction in the greenhouse gas concentrations in Ikogosi atmosphere. In view of this result, our model prescription is:

- 1. Demarcation of new forest cultivation for foliage, economic and health impact.
- 2. Proper inventory of forest reserves and evaluation by Federal and State Government, to certify their present condition.

International Conference on Energy and Sustainable Environment

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 665 (2021) 012058 doi:10.1088/1755-1315/665/1/012058

- 3. Illegal felling of forest trees should be a punishable offence.
- 4. A new constitutional change incorporating Ministry of Forest and Revenue, ranking equally with Minister of Petroleum resources, to curtail the debilitating effect of climate change globally.

Acknowledgement

The authors wish to express their profound gratitude to Covenant University for providing the right environment for the successful completion of this research.

Author Credit

Abodunrin T.J – Formal Analysis and writing, Emetere M.E.- Resources and software

References

[1] World Health Organization. Ultraviolet radiation and human health. (2009).

[2] Portier CJ, *et al.* (2010). A human health perspective on climate change: a report outlining the research needs on the human health effects of climate change. Research Triangle Park, NC: *Environmental Health Perspectives/National Institute of Environmental Health Sciences.* doi:10.1289/ehp.1002272.

[3] Caldeira K, Myhrvold N. (2013). Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. *Environ. Res. Lett.* 8(3):34039–34040.

[4] Loeb NG, *et al.* (2012). Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. *Nat. Geosci.* 5(2):110–113.

[5] Solomon S, *et al.* (2011). The persistently variable "background" stratospheric aerosol layer and global climate change. *Science* 333(6044):866–870.

[6] Donohoe A, Battisti D. (2013) The seasonal cycle of atmospheric heating and temperature. J. Clim. 26(14): 4962–4980.

[7] Aaron Donohoe, Kyle C. Armour, Angeline G. Pendergrass, and David S. Battisti. (2014). Shortwave and longwave radiative contributions to global warming under increasing CO_2 *PNAS*, 111 (47), 16700-16705.

[8] Wild M. (2010). Introduction to special section on global dimming and brightening. J. Geophys. Res. Atmos. 115: D00d00. doi:10.1029/2009jd012841.

[9] Wild M. (2012). Solar Radiation Versus Climate Change. In: Meyers R.A. (eds) Encyclopedia of Sustainability Science and Technology. *Springer*.

[10] Emetere M.E., Emetere J.M, Osunlola T. (2018). Dataset on aerosol loading, size and statistics over Sanpedro. *Data in Brief* 20, 706–714.

[11] Emetere M.E. Sanni S. Okoro S. E. (2019). Analysis of aerosol optical depth and aerosol loading Over Voinjama: A projected estimation of atmospheric corrosion. *IOP Conference Series Earth and Environmental Science* 331:012009.