SYNTHESIS AND EVALUATION OF SURFACTANTS FROM SELECTED VEGETABLE OILS FOR ENHANCED HEAVY- OIL RECOVERY

ABRAHAM, DAMILOLA VICTORIA (14PCN01229)

JUNE, 2021

SYNTHESIS AND EVALUATION OF SURFACTANTS FROM SELECTED VEGETABLE OILS FOR ENHANCED HEAVY- OIL RECOVERY

BY

ABRAHAM, DAMILOLA VICTORIA

(14PCN01229)

B.Eng, Chemical Engineering, Ahmadu Bello University, Zaria.

M.Sc, Petroleum Engineering, Africa University of Science and Technology, Abuja.

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT FOR THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN PETROLEUM ENGINEERING IN THE DEPARTMENT OF PETROLEUM ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA

JUNE, 2021

ACCEPTANCE

This is to confirm that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Petroleum Engineering in the Department of Petroleum Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Mr. John A. Philip

••••••

(Secretary, School of Postgraduate Studies)

Signature and Date

Signature and Date

Prof. Akan B. Williams

••••••

(Dean, School of Postgraduate Studies)

DECLARATION

I, **ABRAHAM, DAMILOLA VICTORIA** (**14PCN01229**) declare that this research was carried out by me under the supervision of Prof. Oyinkepreye D. Orodu of the Department of Petroleum Engineering and Prof. Vincent E. Efeovbokhan of the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that this thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged

ABRAHAM, DAMILOLA VICTORIA

.....

Signature and Date

CERTIFICATION

We certify that the thesis titled "Synthesis and Evaluation of Surfactants from Selected Vegetable Oils for Enhanced Heavy- Oil Recovery" is an original work carried out by ABRAHAM, DAMILOLA VICTORIA (14PCN01229) in the Department of Petroleum Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Oyinkepreye D. Orodu and Prof. Vincent E. Efeovbokhan. We have examined and found the work acceptable as part of the requirements for the award of a degree of Doctor of Philosophy (Ph.D) in Petroleum Engineering.

Prof. Oyinkepreye D. Orodu	
(Supervisor)	Signature and Date
Prof. Vincent E. Efeovbokhan	
(Co-Supervisor)	Signature and Date
Prof. Oyinkepreye D. Orodu	
(HOD, Petroleum Engineering)	Signature and Date
(External Examiner)	Signature and Date
Prof. Akan B. Williams	
(Dean, School of Postgraduate Studies)	Signature and Date

DEDICATION

This research is committed to God for His sufficient grace over me. I also dedicate my thesis to my family. A distinct sense of appreciation to my caring husband, Engr. Abiodun Abraham whose words of motivation and perseverance ring in my ears. He has encouraged me when I was discouraged and most significantly, he has been 100% positive in my capability to get this done. I dedicate this work to my daughter Folasore for your peace, patience and calmness in the course of this journey, you made it so swift to combine motherhood with academics.

I also dedicate this research work to my parents, Dr. and Mrs. Aina, who imparted in me a passion for early learning. My parents have always been supporters through every personal and academic effort in my life. I dedicate this work to my siblings; Dolapo, Junior, Jane and Emmanuel. Thanks for all the love and support, and for being there for me.

ACKNOWLEDGEMENTS

I praise and give thanks to God, for giving me grace and strength for the successful completion of this degree. It has been a journey of almost five years. Through the hurdles, distractions, highs and lows, the grace of God saw me through. Despite these challenges, God granted me strength, wisdom, knowledge and understanding required for this work.

I express my deep and sincere gratitude to the Chancellor of Covenant University, Dr. David O. Oyedepo. I also acknowledge the Covenant University Management consisting of the Vice-Chancellor, Prof. Abiodun H. Adebayo; the Registrar, Dr. Olusegun P. Omidiora; the Dean of the Postgraduate Studies, Prof. Akan B. Williams; the Sub-Dean, School of Postgraduate Studies, Dr. Emmanuel O. Amoo and the Dean of the College of Engineering, Prof. David O. Omole. I thank the former Vice-Chancellor, Prof. Charles K. Ayo, for being more like a father to me, for his constant reminder for me to aim higher, for always pushing me to do the best, I am extremely grateful for always being there.

I acknowledge my supervisor Prof. Oyinkepreye D. Orodu, for his extremely valuable guidance and directions during the course of this work. His idea, tenacity and motivation have greatly inspired me. It has been an awesome privilege and honour to work and study under his guidance. I am tremendously grateful for what he has offered me. I also appreciate and acknowledge my co-supervisor, Prof. Vincent E. Efeovbokhan, he taught me some of the methodology to carry out the research and to present the research works as clearly as possible. In addition, Dr. Emeka E. Okoro, Dr. Fred T. Ogunkunle, Dr. Oluwasanmi A. Olabode, Engr. Damilola E. Babatunde and Dr. Obanla are all appreciated for their various contributions and advice towards the completion of this research work. I also appreciate the Department's Post-Graduate School Representative, Dr. Charles Y. Onuh for helping in filling of forms.

I will also like to appreciate the entire directorate of the Covenant University Centre for Research, Innovation and Discovery (CUCRID) for granting me the needed financial support required for the publication output of this research.

I also appreciate the staff/technologists of the Department of Petroleum Engineering and the Department of Chemical Engineering. I will like to thank Mr. Olakunle Daramola, Mr Eniola Bolujo, Mrs. Elizabeth Okeniyi, Mr. Oluwatosin Adegbite, Mrs. Esther Oyeniyi and Mr. Felix Iyala

for their valuable contributions in terms of instrumentation and consumables needed for the completion of this work. To Mr. Temiloluwa Ojo, may the Almighty God reward and compensate him for the days and sleepless nights we both endured together in the laboratory. I also thank the staff of Petroleum Engineering Department, University of Ibadan for granting me access to me for use of one of their laboratories, I specially thank Mr. Bola who helped me during some of my experiments.

I am grateful to my parents Dr. And Mrs. Aina who have helped in educating and mentoring me up until this stage. Thanks for the constant phone calls you put through just to encourage me, thanks for the prayers, love, care shown towards me. I love you and I pray that you will live long to reap the fruits of your labour. I also thank my siblings Dolapo, Junior, Jane and Emmanuel for their show of love, care and understanding throughout this Ph.D.

Finally, I wish to thank my darling husband, Engr. Abraham, for his support, love and sacrifice, for all the time he would baby-sit our daughter Folasore while I carry out this research. Thanks for always pushing me to do better. Thank you Folasore, my precious daughter for being so peaceful and co-operative in the course of this research work.

TABLE OF CONTENTS

ACC	EPTANCE	iii
DEC	LARATION	iv
CER	TIFICATION	v
DED	ICATION	vi
ACK	NOWLEDGEMENTS	vii
TAB	LE OF CONTENTS	ix
LIST	OF TABLES	xviii
LIST	OF FIGURES	xix
LIST	OF PLATES	xxii
LIST	OF ABBREVIATIONS	XXV
LIST	OF SYMBOLS	xxvii
ABST	ГКАСТ	xxviii
CHA	PTER ONE: INTRODUCTION	1
1.1	Background of The Study	1
1.2	Statement of the Problem	3
1.3	Aim and Objectives of the Study	4
1.4	Significance of the Study	4
1.5	Scope of the Study	5
CHA	PTER TWO: LITERATURE REVIEW	6
2.1	Enhanced Oil Recovery	6
2.1.1	Mobility Control	8

2.1.2	Chemical Processes	8
2.1.3	Miscible Processes	10
2.1.4	Thermal Processes	11
2.2	Heavy Crude Oil	11
2.2.1	Heavy Crude Oil Reserves in Nigeria	12
2.3	Chemical Flooding	13
2.4	Alkaline Flooding	14
2.5	Surfactants	15
2.5.1	Surfactants Classification	16
2.5.2	Surfactant Selection Criteria	18
2.6	Surfactant Flooding	19
2.7	Surfactant Phase Behaviour	21
2.7.1	Winsor Type I Behaviour	21
2.7.2	Winsor Type II Behaviour	22
2.7.3	Winsor Type III Behaviour	22
2.8	Surfactant Enhanced Oil Recovery Mechanisms	24
2.8.1	Reduction in Interfacial Tension (IFT)	24
2.8.2	Alteration in Wettability	24
2.9	Bio-based Surfactant Blend	25
2.9.1	Jatropha Curcas	26
2.9.1.1	1 Chemical structure and composition of Jatropha seed oil	30
2.9.1.2	2 Oil extraction and content	31
2.9.2	Castor Oil	31

2.9.3	Palm Kernel Oil	35
2.10	Anionic Surfactant Manufacture Technologies	41
2.10.1	Alpha Olefin Sulfonate	41
2.10.2	Fatty Acid Methyl Esters Sulfonates (FAMES)	43
2.10.3	Linear Alkyl Benzene Sulfonate (LABS)	43
2.10.4	Alcohol Ether Sulfates (AES)	44
2.11	Interfacial Tension	44
2.11.1	Past Research Works on Synthesis of Surfactants and IFT Determination	45
2.12	Core Flood Experiments Involving Chemical EOR	49
2.12.1	Historical Background	49
2.12.2	Recent Core Flood Experiments	49
СНАР	TER THREE: METHODOLOGY	55
3.1	Materials and Reagents	55
3.2	Apparatus	58
3.3	Equipment Description	58
3.3.1	Soxhlet Extractor	58
3.3.2	Manual Saturator	59
3.3.3	Pycnometer	59
3.3.4	Desiccator	60
3.3.5	pH Meter	60
3.3.6	Viscometer	60
3.3.7	Fume Cupboard	61
3.3.8	Tensiometer	61

3.4	Determination of Physical Properties of Heavy Crude Oil	62
3.4.1	Physical Properties of Heavy crude	62
3.4.2	Physicochemical Properties of Vegetable Oils	62
3.4.2	Determination of Colour	62
3.4.3	Determination of pH	62
3.4.1.7	Determination of viscosity	62
3.5	Experimental Procedure for Surfactant Preparation and Testing	63
3.5.1	Specific Gravity	63
3.5.2	Acid Value	63
3.5.3	Saponification Value	63
3.5.4	Free Fatty Acid	64
3.5.5	Synthesis of Surfactants from Fatty Acid by Sulphonation Process	65
3.5.5.1	Formation of glycerin Sulphuric acid	67
3.5.5.2	Sulphonation of vegetable oils	68
3.5.5.3	Neutralization	68
3.5.6	Stability Test of Synthesized Surfactants	68
3.5.7	Interfacial Tension Measurement of Synthesized Surfactants	69
3.5.8	Phase Behaviour of Surfactants	69
3.5.8.1	Estimation of solubilization parameters	70
3.6	Experimental Procedure: Core Flooding	71
3.6.1	Core Cleaning	71
3.6.2	Porosity Determination	73
3.6.3	Permeability Determination	73

3.6.4	Core- Flood Setup	74
3.6.4.1	Secondary recovery: Waterflooding	75
3.6.4.2	2 Surfactant flooding	75
CHAI	PTER FOUR: RESULTS	78
4.1	Physicochemical Analysis of Vegetable Oils (Jatropha, Castor and Palm	
	Kernel oils)	78
4.2	Interfacial Tension Between Reservoir Fluids	78
4.2.1	Physical Properties of Heavy Crude Oil	78
4.2.2:	Effect of Surfactant Concentration on IFT	79
4.2.3:	Effect of Temperature on IFT	81
4.3	Effect of Brine Concentration on IFT	85
4.4	Stability Test of Surfactants in Brine	87
4.5	Effect of pH on Surfactant Concentration	88
4.6	Phase Behaviour of Surfactants in Reservoir Fluids	90
4.6.1	Solubilization Parameters and Optimal Salinity	92
4.7	Core Flooding by Water and Surfactant	98
4.7.1	Core – 13: AOS 10,000 ppm Flooding	98
4.7.2	Core – 4: MES 10,000 ppm Flooding	110
4.7.3	Core – A: PKO 10,000 ppm Flooding	112
4.7.4	Core - D2: CO 10,000 ppm Flooding	114
4.7.5	Core – E: JO 10,000 ppm Flooding	116
4.7.6	Core – T: AOS 20,000 ppm Flooding	118
4.7.7	Core – 8: MES 20,000 ppm Flooding	120

4.7.8	Core – J: PKO 20,000 ppm Flooding	122
4.7.9	Core – B: CO 20,000 ppm Flooding	124
4.7.10	Core – 6: JO 20,000 ppm Flooding	126
4.8:	Comparison of Coreflooding Performance Between Surfactants	128
4.9:	Evaluation of Permeability Impairment Due to Surfactant Flooding	131
СНАР	TER FIVE: DISCUSSION	136
5.1	Effect of Surfactant Concentration on IFT	136
5.1.1	Effect of Surfactant Concentration on IFT at 27°C	136
5.1.2	Effect of Surfactant Concentration on IFT at 60°C	138
5.2	Effect of Temperature on IFT	139
5.2.1	Effect of Temperature on IFT Between Crude Oil, Brine and Palm Kernel Oil	
	surfactant	139
5.2.2	Effect of Temperature on IFT Between Crude Oil, Brine and Castor Oil	
	surfactant	139
5.2.3	Effect of Temperature on IFT Between Crude Oil, Brine and Jatropha Oil	
	surfactant	140
5.2.4	Effect of Temperature on IFT Between Crude Oil, Brine Alpha Olefin Sulfonate surfactant	140
5.2.5	Effect of Temperature on IFT Between Crude Oil, Brine Methyl Ester Sulfonate surfactant	140
5.3	Effect of Brine Concentration on IFT	141
5.3.1	Effect of Brine Concentration on IFT Between Crude Oil, Brine and Surfactants	
	at 27°C	141

5.3.2	Effect of Brine Concentration on IFT Between Crude Oil, Brine and Surfactants	
	at 60°C	142
5.4	Stability Test of Surfactants in Brine	143
5.4.1	Stability Test of Alpha Olefin Sulfonate (AOS) in Brine	143
5.4.2	Stability Test of Jatropha Oil (JO) in Brine	143
5.4.3	Stability Test of Palm Kernel Oil (PKO) in Brine	143
5.4.4	Stability Test of Methyl Ester Sulfonate (MES) in Brine	143
5.4.5	Stability Test of Palm Castor Oil (CO) in Brine	144
5.5	Effect of pH on Surfactant Concentration	144
5.6	Phase Behaviour of Surfactants in Reservoir Fluids	145
5.6.1	Phase Behaviour of Surfactants in Reservoir Fluids at the Start of the Experiment	145
5.6.2	Phase Behaviour of Surfactants in Reservoir Fluids after One Week	145
5.6.3	Phase Behaviour of Surfactants in Reservoir Fluids after Two Weeks	146
5.7	Solubilization Parameters and Optimal Salinity	146
5.7.1	Solubilization Parameters vs. Salinity for AOS, MES, CO, PKO and JO Surfactan	t
	After One Day	146
5.7.2	Solubilization Parameters vs. Salinity for AOS, MES, CO, PKO and JO Surfactan	t
	After 7 Days	149
5.7.3	Solubilization Parameters vs. Salinity for AOS, MES, CO, PKO and JO Surfactan	t
	After 14 Days	150
5.8	Core Flooding by Water and Surfactant	152
5.8.1	Core – 13: AOS 10,000 ppm Flooding	152
5.8.2	Core – 4: MES 10,000 ppm Flooding	153

XV

5.8.3	Core – A: PK	O 10,000 ppm Flooding	153
5.8.4	Core - D2: CC	0 10,000 ppm Flooding	154
5.8.5	Core – E: JO	10,000 ppm Flooding	155
5.8.6	Core – T: AO	S 20,000 ppm Flooding	156
5.8.7	Core – 8: MES	S 20,000 ppm Flooding	156
5.8.8	Core – J: PKC	0 20,000 ppm Flooding	157
5.8.9	Core – B: CO	20,000 ppm Flooding	157
5.8.10	Core – 6: JO 2	20,000 ppm Flooding	158
5.9	Comparison o	f Coreflooding Performance between Surfactants	159
5.10	Evaluation of	Permeability Impairment Due to Surfactant Flooding	160
СНАР	TER SIX: SU	MMARY, CONCLUSION AND RECOMMENDATIONS	162
6.1	Summary		162
6.2	Conclusion		162
6.3	Contributions	to Knowledge	164
6.4	Recommendat	tions	165
REFE	RENCES		166
APPE	NDIX A:	Physicochemical Properties	186
APPE	NDIX B:	Physical Properties of Heavy Crude Oil	194
APPE	NDIX C:	Estimation of Brine and Surfactant Concentration	197
APPE	NDIX D:	Effect of Surfactant Concentration on IFT	201
APPE	NDIX E:	Effect of Brine Concentration on IFT	205
APPE	NDIX F:	Effect of pH on Phase behavior	209
APPE	NDIX G:	Coreflooding Results	212
APPE	NDIX H:	Estimation of core permeability	233

APPENDIX I:	Oil and Water Solubilization Parameters	243
APPENDIX J:	Equipment Used for This Research	248
APPENDIX K:	Stability and Phase Behaviour Tests	256
APPENDIX L:	Publications from the Research	266

LIST OF TABLES

Table	Title of Tables	Page
2.1	Five Niger Delta Heavy Oil Reservoir Data(s) From the Same Oilfield,	13
	45miles/72km East of Port-Harcourt, Nigeria	
2.2	Types of Surfactant Flooding	21
2.3	Fatty Acid component of Jatropha Curcas	31
2.4	Fatty Acid Component of Castor Oil	35
2.5	Fatty Acid Component of Palm Kernel Oil	40
3.1	List of Apparatus	58
4.1	Physicochemical Properties of Vegetable oils	78
4.2	Physical Properties of Heavy Crude Oil	79
4.3	Compositions of Surfactants utilized in Surfactant Flooding	89
4.4	Brine Concentrations Used for Analysis	89
4.5	Petro-physical Properties of Core Sample "13"	108
4.6	Petro-physical Properties of Core Sample "4"	110
4.7	Petro-physical Properties of Core Sample "A"	112
4.8	Petro-physical Properties of Core Sample "D2"	114
4.9	Petro-physical Properties of Core Sample "E"	116
4.10	Petro-physical Properties of Core Sample "T"	118
4.11	Petro-physical Properties of Core Sample "8"	120
4.12	Petro-physical Properties of Core Sample "J"	122
4.13	Petro-physical Properties of Core Sample "B"	124
4.14	Petro-physical Properties of Core Sample "6"	126
4.15	Pore Throat Radius of Core Samples	129
4.16	Oil Recovery after Waterflooding and Surfactant Flooding for	131
	Different Cores	
4.17	Initial Properties of Core Samples	133
4.18	Permeability of Cores After Surfactant Flooding	134

LIST OF FIGURES

Figure	Title of Figures	Page
2.1	Categories of Enhanced Oil Recovery Method	7
2.2	Chemical Flooding Process	10
2.3	Surfactant Molecule and Surfactant Arrangement in Water	16
2.4	Principle of flooding, where residual oil is trapped in the reservoir	18
2.5	Micelle formation	19
2.6	Winsor Type I Behaviour	22
2.7	Winsor Type II Behaviour	22
2.8	Winsor Type III Behaviour	23
2.9	Winsor Classification and Phase Sequence of Microemulsions	23
	Encountered as Temperature or Salinity is Scanned for Non-Ionic and	
	Ionic Surfactant Respectively.	
2.10	Schematic Alteration of Wettability and Reduction of Contact Angle	25
	during Surfactant Flooding	
2.11	Chemical Structure of Jatropha Oil	30
2.12	Composition of Castor Oil Fatty Acids	34
2.13	Chemical Structure of Castor Oil	35
2.14	Chemical Structure of the Main Palm Kernel Oil Esters	38
2.15	Molecular Structure of an Alpha-Olefin Sulfonate_(AOS)	42
2.16	Sulphonation of Alkylbenzene	44
3.1	Framework of Methodology	57
3.2	Surfactant Production by Sulphonation	66
3.3	Production of Acrolein	67
3.4	Sulphonation of Vegetable Oils	68
3.5	Schematic of the Core Flooding Apparatus (OFITE reservoir permeability	78
	tester)	
4.1	Interfacial Tension between Crude oil/Brine/Different Surfactants at	80
	10,000ppm Brine Concentration at 27°C	

4.2	Interfacial Tension between Crude Oil/Brine/Different Surfactants at	81
	10,000ppm Brine Concentration at 60°C	
4.3	Interfacial Tension versus Concentration of Palm Kernel Oil surfactant in	82
	10000ppm Brine Concentration	
4.4	Interfacial Tension versus Concentration of Castor Oil surfactant in	83
	10000ppm Brine Concentration	
4.5	Interfacial Tension versus Concentration of Jatropha Oil surfactant in	84
	10000ppm Brine Concentration	
4.6	Interfacial Tension versus Concentration of Alpha Olefin Sulphonate	85
	Surfactant in 10000ppm Brine Concentration	
4.7	Interfacial Tension versus Concentration of Methyl Ester Sulfonate	86
	Surfactant in 10000ppm Brine Concentration	
4.8	Interfacial Tension between Crude Oil, Surfactants in 20,000 ppm Brine	87
	Concentration at 27°C	
4.9	Interfacial Tension between Crude Oil, Surfactants in 20,000 ppm Brine	88
	Concentration at 60°C	
4.10	Plot of pH vs Concentration of (a) Alpha Olefin Sulfonate (AOS),	92
	(b) Jatropha Oil (JO), (c) Palm Kernel Oil (PKO), (d) Methyl	
	Ester Sulfonate (MES) and Castor Oil (CO) Surfactants.	
4.11	Solubilization Parameter vs. Salinity, %NaCl for AOS Surfactant	94
	using A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% AOS Surfactant	
	Concentration After One Day	
4.12	Solubilization Parameter vs. Salinity, %NaCl for MES Surfactant	95
	using A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% MES Surfactant Concentration	
	After One Day	
4.13	Solubilization Parameter vs. Salinity, %NaCl for CO Surfactant using	96
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% CO Surfactant Concentration After	
	One Day	
4.14	Solubilization Parameter vs. Salinity, %NaCl for JO Surfactant using A)	97
	1.0 wt% B) 1.5 wt% C) 2.0 wt% JO Surfactant Concentration After	
	One Day	

4.15	Solubilization Parameter vs. Salinity, %NaCl for PKO Surfactant using	98
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% PKO Surfactant Concentration	
	After One Day	
4.16	Solubilization Parameter vs. Salinity, %NaCl for AOS Surfactant using	99
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% AOS Surfactant Concentration After	
	7 Days	
4.17	Solubilization Parameter vs. Salinity, %NaCl for MES Surfactant using	100
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% MES Surfactant Concentration After	
	7 Days	
4.18	Solubilization Parameter vs. Salinity, %NaCl for CO Surfactant using	101
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% CO Surfactant Concentration After	
	7 Days	
4.19	Solubilization Parameter vs. Salinity, %NaCl for JO Surfactant using	102
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% JO Surfactant Concentration After	
	7 Days	
4.20	Solubilization Parameter vs. Salinity, %NaCl for PKO Surfactant using	103
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% PKO Surfactant Concentration After	
	7 Days	
4.21	Solubilization Parameter vs. Salinity, %NaCl for AOS Surfactant using	104
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% AOS Surfactant Concentration After	
	14 Days	
4.22	Solubilization Parameter vs. Salinity, %NaCl for MES Surfactant using	105
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% MES Surfactant Concentration After	
	14 Days	
4.23	Solubilization Parameter vs. Salinity, %NaCl for CO Surfactant using	106
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% CO Surfactant Concentration After	
	14 Days	
4.24	Solubilization Parameter vs. Salinity, %NaCl for JO Surfactant using	107
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% JO Surfactant Concentration After	
	14 Days	

4.25	Solubilization Parameter vs. Salinity, %NaCl for PKO Surfactant using	108
	A) 1.0 wt% B) 1.5 wt% C) 2.0 wt% PKO Surfactant Concentration After	
	14 Days	
4.26	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	110
	in Core Floods of Core - 13 with 10000 ppm AOS Surfactant Concentration	
4.27	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	112
	in Core Floods of Core - 4 with 10000 ppm MES Surfactant Concentration	
4.28	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	114
	in Core Floods of Core - A with 10000 ppm Palm Kernel Oil (PKO)	
	Surfactant Concentration	
4.29	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	116
	in Core Floods of Core - D2 with 10000 ppm Castor Oil (CO) Surfactant	
	Concentration	
4.30	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	118
	in Core Floods of cores E with 10000 ppm Jatropha Oil (JO) Surfactant	
	Concentration	
4.31	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	120
	in Core Floods of Core - T with 20000 ppm AOS Surfactant Concentration	
4.32	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	122
	in Core Floods of core 8 with 20000 ppm MES Surfactant Concentration	
4.33	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	124
	in Core Floods of cores J with 20000 ppm PKO Surfactant Concentration	
4.34	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	126
	in Core Floods of cores B with 20000 ppm CO Surfactant Concentration	
4.35	Total Crude Oil Production and Pressure Drop versus Pore Volume Injected	128
	in Core Floods of cores T with 20000 ppm JO Surfactant Concentration	
4.36	Percentage Reduction in Permeability of Core Samples	135

LIST OF PLATES

Plate	Title of Plates	Page
2.1	Mature Jatropha Curcas Plant	27
2.2	Dried Seeds of Jatropha Curcas L	28
2.3	Fresh seeds of Jatropha Curcas L	29
2.4	Castor Bean	32
2.5	Palm Kernel Seed	37

3.1 Core Samples Used

72

LIST OF ABBREVIATIONS

AOCS	American Oil Chemists' Society
AOS	Alpha Olefin Sulfonate
AS	Alkaline/Surfactant
ASP	Alkaline/Surfactant/Polymer
ASTM	American Society for Testing and Materials
API	American Petroleum Institute
cc/min	cubic centimetre/minute
CEOR	Chemical Enhanced Oil Recovery
CMC	critical micelle concentration
СО	Castor Oil
CSS	Cyclic steam stimulation
EOR	Enhanced Oil Recovery
FAMES	Fatty Acid Methyl Esters Sulfonates
FFA	Free Fatty Acid
FU	Flow Unit
HCL	Hydrochloric acid
HPLC	High Performance Liquid Chromatography
IFT	Interfacial Tension
JO	Jatropha Oil
КОН	Potassium Hydroxide
ME	Microemulsion
Na ₂ CO ₃	Sodium Carbonate
MES	Methyl Ester Sulfonate
NaCl	Sodium Chloride
NARICT	National Research Institute for Chemical Technology
OFITE	OFI Testing Equipment

OOIP	Original Oil in Place
O/W	Oil/Water
RPT	Reservoir Permeability Tester
pН	potential of Hydrogen
РКО	Palm Kernel Oil
РО	Palm Oil
ppm	parts per million
PV	Pore Volume
PVT	Pressure, Volume, and Temperature
RPT	Reservoir Permeability Tester
SAGD	Steam-assisted gravity drainage
SP	Surfactant/Polymer
TAN	Total Acid Number

LIST OF SYMBOLS

Symbols

Permeability,	mD
	Permeability,

Porosity

Units

сP	Viscosity
Psi	Pressure
S	Seconds
ppm	Concentration
mN/m	Interfacial Tension
mD	Permeability
g	Mass
ml	Volume
°C (or °F)	Temperature

ABSTRACT

Due to the high cost of production of surfactants from petrochemical feedstock, vegetable oils are given considerable attention as another source of feedstock. In this work, the synthesis of surfactants from jatropha oil, castor oil, and palm kernel oil for application in chemical enhanced oil recovery was carried out. The vegetable oils were synthesized by Sulphonation reaction to produce surfactants. The synthesized surfactants were evaluated for recovery of heavy crude from heavy crude oil reservoirs and their performance was compared to those of commercial surfactants. This was achieved by studying the effect of the synthesized surfactants in interfacial tension (IFT) reduction, phase behaviour experiments, and core flooding experiments. The physicochemical properties of the vegetable oils evaluated include viscosity, specific gravity, acid value, and saponification value based on the American Oil Chemists' Society (AOCS) methods. The interfacial tension between the crude oil, brine, and surfactants were measured using the Du-Nouy tensiometer. This was achieved by varying brine and surfactant concentrations done at ambient temperature (27°C) and at reservoir temperature (60°C). The results from the IFT experiments showed that at 10000 ppm, the IFT reduced from 19.8 mN/m to 13.5 mN/m, 13.1 mN/m, 13.4 mN/m, 13.6 mN/m, and 13.3 mN/m with the application of Jatropha, Castor, Palm Kernel, Alpha Olefin Sulfonate (AOS) and Methyl Ester Sulfonate (MES) surfactants respectively. Phase behavior analyses were conducted at a fixed ratio of surfactants to oil in the presence of brine. The surfactant/water/oil system formed a middle phase microemulsion in the presence of Sodium Chloride (NaCl). The result showed that the microemulsion (ME) decreased with a decrease in surfactant concentration values. The microemulsion phase changes from Winsor Type I to Winsor Type II via Winsor Type III. The anionic surfactant, AOS showed the ability to form a three-phase microemulsion. The performance of the synthesized surfactants was then evaluated in core flooding experiments. This was done by investigating the effect of various surfactant concentrations on the recovery of the original oil in place. The cores were first flooded with water when no oil was produced, surfactant flooding was initiated. The range of the oil recovery from the waterflooding process was 24 - 39.29 %. Using 10,000 ppm concentration of Jatropha, Castor, Palm Kernel, Alpha Olefin Sulfonate, and Methyl Ester Sulfonate surfactants gave incremental recovery of 19.3, 41.83, 40.40, 7.40, and 34.79 % respectively. With an increase in surfactant concentration to 20,000 ppm, the percentage of the oil recovered increased to 30.77, 46.41, 44.17, 25.68, and 37.93 % respectively. The Castor based surfactant showed the best results in the reduction of interfacial tension and the percentage of original oil in place recovered.

Keywords: Core flooding, Enhanced Oil Recovery, Interfacial Tension, Sulphonation, and Synthesized Surfactants.