
Journal of Theoretical and Applied Information Technology 
15th March 2020. Vol.98. No 05 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
780 

 

SOLVING PORTFOLIO SELECTION PROBLEM USING 
PARTICLE SWARM OPTIMIZATION WITH CARDINALITY 

AND BOUNDING CONSTRAINTS 
 

1THERESA N. ABIODUN, 1,2AYODELE A. ADEBIYI AND 1,2MARION O. ADEBIYI 

1Department of Computer and Information Sciences, Covenant University, Ota, Nigeria 
 

2Department of Computer Science, Landmark University, Omu-Aran, Nigeria 
 

E-mail: theresa.abiodun@covenantuniversity.edu.ng, ayo.adebiyi@lmu.edu.ng, 
marion.adebiyi@lmu.edu.ng 

 

ABSTRACT 

The portfolio selection of assets for an investment by investors has remain a challenge in building appropriate 
portfolio of assets when investing hard earned money into different assets in order to maximize returns and 
minimize associated risk. Different models have been used to resolve the portfolio selection problem but with 
some limitations due to the complexity and instantaneity of the portfolio optimization model, however, 
particle swarm optimization (PSO) algorithm is a good alternative to meet the challenge. 
This study applied cardinality and bounding constraints to portfolio selection model using a meta-heuristic 
technique of particle swarm optimization. The implementation of the developed model was done with python 
programming language. The results of this study were compared with that of the genetic algorithms technique 
as found in extant literature. The results obtained with the model developed shows that particle swarm 
optimization approach gives a better result than genetic algorithm in solving portfolio selection problem. 
 
Keywords: Portfolio, Genetic Algorithm, Particle Swarm Optimization, Cardinality and Bounding Constraints. 

 
1 INTRODUCTION 

 
Portfolio selection problem is an interesting area in 
Economics and Artificial Intelligence research 
domain. The goal is to find the best approach of 
investing a particular amount of money into different 
assets in order to maximize returns and minimize 
risk. A portfolio consists of assets and investment 
capital. Portfolio selection has been a major 
challenge for both individual investors’ and finance 
management companies. [1]   
To solve this challenge, Markowitz introduced a 
model called the mean-variance model [2]. This 
model assumes that the total returns of a portfolio 
can be determined using the mean return of the assets 
and the risk between these assets. The sets of 
portfolios of assets that yield minimum risk for a 
given level of return form what is known as the 
efficient frontier [3] Markowitz model has gain a 
widespread use in the field of finance and has 

remained a general reference model in portfolio 
selection problem. [1]. 
However, as the size of the assets in portfolio 
increases, the standard Markowitz model becomes 
inefficient to optimize the returns because this model 
did not consider the cardinality and bounding 
constraint. Cardinality constraint has to do with the 
number of assets in the portfolio and ensures that the 
number of assets is not exceeded, while the bounding 
constraint takes care of or set the limit for the amount 
of money to be invested in each asset. These 
constraints are very necessary in the market scenario 
hence the Markowitz model has to be generalized in 
other to take care of these constraints. [3].  
The rest of the paper is organized as follows. Section 
2 presents related work. Section 3 is the research 
methodology while section 4 contained results and 
discussion obtained in this work and the paper is 
concluded in section 5. 
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2 RELATED WORK 
In literature, different models of particle swarm 
optimization (PSO) are identified and used in 
portfolio selection problem. To solve for the 
limitation of Markowitz mean-variance model, some 
other models were also used. These are: Constrained 
optimization (CO), Quadratic programming (QP), 
linear programming (LP), Second-order cone 
programming (SOCP) was developed and used [4]. 
These approaches are based on linear assumption; 
hence they are good for quadratic objective functions 
with a single objective. Meanwhile, these methods 
also have some constrains in portfolio optimization 
because they cannot solve non quadratic objective 
function in the sense that there exists more than one 
objective; maximization of returns and minimization 
of risk at the same time [5] 
[6], in their publication titled constraint handling 
methods for portfolio optimization using particle 
swarm optimization, identified two portfolio 
constraint handling methods such as portfolio repair 
method and preserving feasibility method. Whose 
aim is to investigate which constraint handling 
techniques are better suited to the problem solved by 
applying particle swarm optimization.   
[1] introduced a new constraint known as the expert 
opinion for portfolio selection that can address the 
real market scenarios such as change in the size of 
the portfolio, transaction cost etc. Also, they did a 
comparison between PSO and genetic algorithm, 
they obtained a result that shows that PSO performed 
better. [7] describe particle swarm optimization 
(PSO), as a co-operative population-based meta-
heuristic algorithm for solving the Cardinality 
Constraints Markowitz Portfolio Optimization 
problem (CCMPO). To resolve the CCMPO 
challenge, the improved PSO is said to increase 
exploration in the original search that can improve 
convergence speed in the final search space. [8] 
described the modern portfolio theory (MPT) with 
the main objective of presenting how it enables 
investors to organise, evaluate, and regulate the rate 
of returns as well as the risk involved in portfolio 
optimisation. They also examined application of the 
theory to real time investment decisions relative to 
assumptions of the MPT. 
 [9] employs the Markowitz mean–variance model 
for portfolio selection problem to find a feasible 
portfolio with a minimum risk through the 
application of heuristic algorithm. He used two 
algorithm PSO and GA in his research. [10] describe 
an improved particle swarm optimization (IPSO) 
model for actual portfolio selection problem, which 
comprises of the total costs of the portfolio and a 
measure some constraints.  The proposed method is 

an effective way of resolving the limitations in 
portfolio selection problem. IPSO is giving a better 
result when compared to standard PSO method. 
Since it can find better global optimum. Some other 
techniques has also been used, such as Fuzzy 
approach, Artificial Neural Network (ANN), Tabu 
Search (TS), Goal Programming (GP), Simulated 
annealing (SA), Genetic algorithm (GA) etc. 
however, these techniques have some limitations 
hence Particle Swarm optimization (PSO) technique 
was introduced to solve the portfolio section 
problem. Fuzzy approach lacks leaning ability; 
artificial neural network technique has over fitting 
problem and is easily trapped into local minimal. 
[11] 
 
3 METHODOLOGY 
Particle swarm optimization technique was used in 
this study. Considering the mean-variance model 
another sets of constraints were introduced. These 
are cardinality and bounding constraints.  Assume 
that a set portfolio containing different assets, with a 
set budget, and various percentages of expected rate 
of returns, there is the maximum and minimum 
amount of capital that can be invested in each asset. 
This is known as the upper and lower bound. The 
returns and risk of each of the portfolios were 
computed.  From the results obtained, statistical tool 
was engaged to evaluate the output, the minimum 
and maximum results were analyzed. 
Python version 2.7.14 was used for program 
implementation because most of the libraries 
imported is supported by this version of python and 
the newer versions have a slightly different syntax. 
Python is a popularly used high level programming 
language which enables programmers to express 
their codes in fewer lines by eliminating the use of 
curly brackets and a syntax that allows programmers 
write codes in fewer lines. 
The web page interface: The web interface has a 
GUI that enables users enter values such as (assets, 
expected rate of return, lower bound, upper bound 
etc.) and by clicking on the submit button on the 
interface (the route.py is triggered) these values are 
passed into the function (as arguments i.e assets= 
request.args [‘num_assets’] and portfolio = 
request.args[‘budget’])  to be solved.  
The weights, returns and risk is then passed back to 
the index.html for rendering (displaying the result on 
the GUI). 
Libraries: Most of the imported libraries are used to 
handle the complex mathematical calculations 
associated with the Markowitz formula based on 
cardinality and bounding constraint. 
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3.1 Standard Portfolio Selection Model 

(Mean Markowitz Model) 

Markowitz mean-variance model can be express 
thus:    
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Where 
N       it stands for the number of assets in the 
portfolio 
rp      this denotes the expected rate of returns 
from the assets 
ri      this stands for the expected rate of return of 
asset  𝑖 in the portfolio 
𝜎  This stands for the covariance of returns of 
asset  𝑖 𝑎𝑛𝑑 𝑗  

𝑅 This represents the investor’s expected rate 
of return  
σ 2

p stands for the return variance of the 
portfolio 
𝑤 stands for  the decision variable that represents  

the weight of budget to be invested in asset 𝑖 
  i      represents the index of securities. 

 
3.2 Modified Constrained Portfolio 

Selection Model (Cardinality And Bounding) 

To improve on the mean-variance model, 
cardinality and bounding constraints was added to 
the mean-variance model that was proposed by 
Markowitz. Hence the question below: 
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where 
 
ci stands for the minimum transaction lots 
for asset I in the portfolio. 
zi ranges between {0,1}and it represents a 
binary variable, if Z is 1, then it means that 
asset i is in the portfolio but if Z is 0, then 
it not available in the portfolio. 
M stands for the quantity of assets to be 
selected from the total number of assets 
available in the portfolio. 
xi ci represents the number of units of asset      
i in the selected portfolio.  
B stands for the total budget from the 
investor. 
R represents the investor’s expected rate of 
return. 
B loweri stands for the least amount of money 
an investor can budget in asset i. 
B upperi represents the height amount of 
money an investor might want to budget in 
asset i. 
xi represents the quantity of ci’s that is 
purchased. 

Equation (6) represents cardinality constraint, while 
Equation (9) stands for the budget constraint 
meaning that the upper bound must not be above the 
total budget and Equation (10) represents the 
bounding constraint. 

4 RESULTS AND DISCUSSION 
A set of experimental results obtained from literature 
[12] containing 9, 30 and 50 stocks using genetic 
algorithm were used to compare the results from the 
modified constrained portfolio model using particle 
swarm optimization. Also, the upper and lower 
bound for the budget were included. The number of 
assets in the portfolio are 31 and 85. An assumed 
budget of 5000 was set and the expected rate of 
return was set at 5 and 10 percent respectively. 
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Table 1: Results of applying Genetic Algorithm to 9 stocks data set in Soleimani et al., (2009) 

Size of 
portfolio 

Expected rate of 
returns 

5 6 7 8 9 10 11 

2 Best (lowest) variance 2.89E_08    5.57E_09    7.55E_09   1.11E_07   4.59E_09 2.05E_09 1.67E_08 

Mean variance 9.343E_05   3.9055E_05   7.7596E_05   0.00023364 0.00103681 0.00033924 0.00076369 

Standard deviation of 
variances 

0.0001992   9.3783E_05 0.00012749   0.0008117   0.00284854   0.00103222 0.00255865 

3 Best (lowest) variance 0.0050611  
 

0.00505221 0.00514064 0.00505827 0.00507855 0.00507083 0.00505425 

Mean variance 0.0067909  0.00667328 0.00717176 0.00735858 0.00636324 0.00632523 0.00648158 

Standard deviation of 
variances 

0.0016848  0.00169722 0.00178479 0.00177102 0.00162639 0.00176300 0.00191291 

4 Best (lowest) variance 3.135E_05  9.0203E_05 7.3351 E_05 2.1175E_05 9.42964E_05 6.42387E_05 0.00048999 

Mean variance 0.0007768  0.00082257 0.00099305 0.00140161 0.00088428 0.00096978 0.00287112 

Standard deviation of 
variances 

0.0007250  0.00063435 0.00070735 0.00158779 0.00071776 0.00086213 0.00218174 

 
Table 2: Results of applying PSO to 9 stocks data set obtained adding cardinality and bounding constraints. 

Size of 
portfolio 

Expected rate of 
returns 

5 6 7 8 9 10 11 

2 Best (lowest) 
variance 

0.718447923 0.0333566 0.0333563 0.033356444 0.033356787 0.0333563 0.03335699 

Mean variance 0.033443762 
0.0334564 

0.0334553 0.033448806 0.033442825 0.0334458 0.03344861 

Standard 
deviation of 
variances 

0.000133786 0.0001602 0.00015486 0.000149127 0.000136146 0.00013147 0.00014238 

3 Best (lowest) 
variance 

0.01338031 0.0133803 0.01338031 0.013389766 0.01338031 0.01338031 0.01338031 

Mean variance 0.015939147 0.0159391 0.01573788 0.016299228 0.016159836 0.01620666 0.0165096 

Standard 
deviation of 
variances 

0.003727171 0.0037272 0.00308365 0.004718026 0.00433212 0.00405807 0.0049953 

4 Best (lowest) 
variance 

0.011083124 0.0110873 0.50489843 0.011087265 0.011087265 0.01108726 0.01108312 

Mean variance 0.013680518 0.0137993 0.01402056 0.014074622 0.014147731 0.01429344 0.01404251 

Standard 
deviation of 
variances 

0.003598778 0.0038331 0.0045259 0.004571174 0.004675406 0.00484591 0.00501054 

 
In table 2, the PSO algorithm were compared using 
three data sets 9, 30 and 50 stocks that was originally 
used in [12]. This is done in order to make the 
problem more accurate and complex. Also, upper 
and lower bound were included. The results obtained 
in tables 1 and 2 confirm that when the size of the 
asset is increased, the best risk value obtained using 
PSO are better. For each of the parameters 
considered, particle swarm optimization gives a 

better result than the results obtained from the 
genetic algorithm by [12]. This will off course 
inform an investor’s decision-making ability. Since 
particle swarm optimization gives a better solution 
to the problem been solved.   
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Table 3: Comparison of Constrained PSO and GA for data set of 9 stocks. 
Size of 
portfolio 

Expected rate  
of returns 

5 6 7 8 9 10 11 

2 Best (lowest) 
variance 

-2.49E+09   -6.E+08    -4.42E+08  -3.01E+07 -7.27E+08 -1.63E+09 -2.00E+08 

Mean variance -3.57E+04   -8.56E+04  -4.30E+4  -1.42E+04 -3.13E+03 -9.76E+03 -4.28E+03 

Standard deviation 
of variances 

32.8384   -7.08E+01 -2.15E+01  8.16E+01  9.52E+01  8.73E+01 9.44E+01 

3 Best (lowest) 
variance 

-164.37553 
 

-164.841 -160.285 -164.71 -163.467 -163.868 
 

-164.734 
 

Mean variance -134.713 -138.85 -119.442 -121.5 -153.956 -156.222 -154.716 

Standard deviation 
of variances 

-121.2233 
 

-119.6062 
 

-72.7738 
 

-166.402 
 

-166.364 
 

-130.18 
 

-161.136 
 

4 Best (lowest) 
variance 

-3.53E+04 
 

-1.22E+04 
 

9.31E+01 
 

-5.23E+04 
 

-1.17E+04 
 

-1.72E+04 
 

-2.16E+03 
 

Mean variance -1.66E+03 -1.58E+03 -1.31E+03 -9.04E+02 -1.50E+03 -1.37E+03 -3.89E+02 

Standard deviation 
of variances 

-3.96E+02 
 

-5.04E+02 
 

-5.40E+02 
 

-1.88E+02 
 

-5.51E+02 
 

-4.62E+02 
 

-1.30E+02 
 

 
The comparisons of the results are performed based 
on four criteria. These criteria are: best (lowest) 
variance (risk) among the risks obtained from the 
algorithm runs, showing the best solution found, 
mean variance, the average of the value of the 
objective function found by the algorithm, standard 
deviation of variances, showing how solutions found 
by the algorithm are close to each other. 

  
From the result obtained in the above table 3, it 
depicts the solutions are not very satisfactory 
although investors will always want to invest in 
assets with minimum risk and maximum returns. 
Positive values depict the improvement obtained in 
percentage while using PSO compared to genetic 
algorithm (GA). 

 
Table 4: Shows the Returns and risk when the size of the 

portfolio is 31 and expected rate of return is 5%. 
S/N Returns  Risk 

1 0.391789384 0.042736372 

2 0.391789384 0.042736372 
3 0.537598601 0.052669575 

4 0.504007668 0.050593809 
5 0.339446155 0.03822803 

6 0.442786693 0.046507105 
7 0.310166116 0.03522052 
8 0.297297884 0.033749235 

9 0.285089391 0.032243203 
10 0.271855609 0.030495983 

11 0.33978219 0.038260238 

12 0.324567058 0.036753378 

13 0.242677216 0.0260707 
14 0.23542542 0.024769068 

15 0.228337454 0.023382794 
16 0.221875625 0.022005896 
17 0.216193826 0.020686661 

18 0.210973663 0.019358696 
19 0.242840703 0.02609883 

20 0.235571751 0.024796479 
21 0.19842522 0.015497482 

22 0.222004785 0.022034597 
23 0.192031215 0.013017167 

24 0.18952613 0.011880632 
25 0.206675365 0.01816216 
26 0.185652871 0.009841476 
27 0.184271305 0.008984901 

28 0.183166461 0.008221478 
29 0.192084382 0.013040062 

30 0.181580125 0.006934667 
Min 0.181019 0.006394205 

Max 0.537599 0.052669575 
STDV 0.094524 0.012983705 
Average 0.266491 0.025287847 

Table 4 shows the results obtained when the of 
returns was set to 5 percent on 31 stocks the budget 
was set to 5000, the upper bound and lower bound 
was set to 1000 and 5000 respectively. 

 
. 
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Table 5: Shows the Returns and risk when the size of the 
portfolio is 85 and expected rate of return is 5%. 

S/N Returns  Risk 

1 0.523527858 
 

0.067161759 
 

2 0.355771645 
 

0.056486328 
 

3 0.338327616 0.055047448 
 

4 0.439840459 0.062414242 
 

5 0.417733726 0.060994122 
 

6 0.28676608 0.05026034 

7 0.271629004 0.048668946 
 

8 0.257577345 0.04709747 

9 0.338678448 0.05507732 

10 0.23007236 0.04373096 

11 0.217579981 0.042061725 
 

12 0.287079777 0.050292316 
 

13 0.195405478 0.03883027 

14 0.186332635 0.03737108 

15 0.243972892 0.04548097 

16 0.170730778 0.034580887 

17 0.217833862 0.042096647 

18 0.158081972 0.031970146 

19 0.195604128 
 

0.038861159 

20 0.186507349 
 

0.037400144 

21 0.178594335 
 

0.036037351 

22 0.138115765 0.026722951 

23 0.16402948 0.033247932 

24 0.129808164 0.023926314 

25 0.126403769 0.022623155 
 

26 0.14768101 0.029450571 

27 0.121000322 
 

0.020253319 

28 0.118085628 0.018780786 

29 0.115545277 0.017375288 

30 0.113346196 0.016036304 

Min 0.113346 0.016036 

Max 0.523528 0.067162 

Standard 
deviation 

0.103796 0.01383 

Average  0.229055 0.039678 

Table 5 presents the results obtained when the of 
returns was set to 5 percent on 85 stocks the budget 
was set to 5000, the upper bound and lower bound 
was set to 1000 and 500 respectively. 

 
Table 6: Shows the Returns and risk when the size of the 

portfolio is 31 and expected rate of return is 10%. 
S/N Returns Risk 

1 0.575920446 0.054928729 

2 0.371868943 0.041127655 

3 0.355206403 0.039689865 

4 0.47253525 0.048543393 

5 0.324274975 
 

0.036723365 

6 0.310166116 
 

0.03522052 

7 0.392237921 0.042771497 

8 0.285089391 
 

0.032243203 

9 0.355524882 0.03971834 

10 0.33978219 0.038260238 

11 0.250849287 0.027421534 

12 0.242677216 0.0260707 

13 0.297545059 0.033778537 

14 0.228337454 0.023382794 

15 0.27211552 0.030531455 

16 0.260576789 0.028902566 

17 0.251027767 0.027449835 

18 0.242840703 0.02609883 

19 0.235571751 
 

0.024796479 

20 0.19842522 0.015497482 

21 0.222004785 0.022034597 

22 0.216299645 
 

0.020712368 

23 0.18952613 0.011880632 

24 0.187377666 0.010802564 

25 0.202883193 0.016998503 
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26 0.184271305 
 

0.008984901 

27 0.194954621 0.014212155 

28 0.192084382 0.013040062 

29 0.189575426 
 

0.011904132 

30 0.187417351 0.010823548 

Min 0.184271 0.0089849 

Max 0.57592 
0.0549287 

Standard  
deviation  

0.091295 0.0120734 

Average     0.274299 0.0271517 

 

Table 6 shows the results obtained when the of 
expected rate of returns was set to 10 percent on 31 
stocks the budget was set to 5000, the upper bound 
and lower bound was set to 1000 and 500 
respectively.  
 
Table 7: Shows the Return and risk when the size of the 
 portfolio is 85 and expected rate of return is 10%   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
Table 7 shows the results obtained when the of 
returns was  
set to 10 percent on 85 stocks the budget was set 
to 5000, 
 the upper bound and lower bound was set to 1000 
and 500 respectively  

  
Table 8: Summary of results obtained when the size of the 

portfolio is 31 and 85 
Portfo
lio 
i

Expect
ed rate 

f

5 
 Returns                   
Ri k

10   
Returns                     
Ri k31 Min 0.1810

19 
0.0063
942 

0.1842
71 

0.0089
849 

max 0.5375
9 

0.0526
695 

0.5759
2 

0.0549
287 

Standa
rd 
deviati
on

0.0945
24 

0.0129
837 

0.0912
95 

0.0120
734 

Avera
ge 

0.2664
91 

0.0252
878 

0.2742
99 

0.0271
517 

Min 0.1133
46 

0.0016
036 

0.1133
46 

0.0160
36 

85 Max 0.5235
28 

0.0671
62 

0.5235
28 

0.0671
62 

Standa
rd 
deviati
on 

0.1037
96 

0.0138
3 

0.1130
77 

0.0141
44 

Avera
ge 

0.2290
55 

0.0396
78 

0.2335
705 

0.0403
29 

The above table shows the summary of the results 
obtained when the size of the portfolio is 31 and 85 
at 5 and 10 percent rate of returns. From the results 
obtained, when the value of the risk tending towards 
zero (0) the investors sensitivity is increased as this 
will motivate the investor to invest in the portfolio 
where the risk is minimum. Then on the other way 
around, when the returns is tending to one (1) or 
unity, the investor is attracted to invest in such 
portfolio since the aim of an investor is to make 
maximum returns. 
From the above analysis, it therefore means that 
when the expected rate of returns is high, the risk on 
investment is increased while the return remains 
constant. It also revealed that this model preforms 
better when the size of the portfolio is small as seen 
in table 4.8 when the size of the stock is 31, the 
minimum returns is high, and the risk is low when 
compared with 85 stocks same for all the other 
parameters considered in this study. 
 
5.  CONCLUSION 
Portfolio selection is a trivial issue in today's 
banking system. Portfolio selection models has been 

S/N Returns Risk 

1 0.523527858 0.067161759 

2 0.49294367 0.065511796
3 0.338327616 0.055047448
4 0.439840459 0.062414242
5 0.417733726 0.060994122
6 0.28676608 0.05026034
7 0.271629004 0.048668946
8 0.05651609 0.356144643
9 0.243685454 0.045445794
10 0.23007236 0.04373096
11 0.217579981 0.042061725
12 0.287079777 0.050292316
13 0.271926931 0.048701219
14 0.257862322 0.047130319
15 0.243972892 0.04548097
16 0.170730778 0.034580887
17 0.163900414 0.033221255
18 0.158081972 0.031970146
19 0.152660789 0.030707264
20 0.147578805 0.029423697
21 0.178594335 0.036037351 

22 0.138115765 0.026722951
23 0.16402948 0.033247932
25 0.129808164 0.023926314
26 0.15276997 0.030733723
27 0.14768101 0.029450571
28 0.121000322 0.020253319
29 0.138206599 0.026751088
30 0.115545277 0.017375288
Min 0.113346 0.016036 
Max 0.523528 0.067162 
Standard 
deviation  

0.113077 0.014144 

Average 0.235705 0.040329 
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helpful in many areas like credit portfolio 
management, decision making, financial institutions 
management etc. This technique has been helpful in 
taking critical decisions, enhancing profitability, risk 
management etc. Although several algorithms have 
been used for portfolio selection problem, but these 
algorithms are not enough to solve the portfolio 
selection problem and there are some constraints 
associated with portfolio optimization. 
In this study cardinality and bounding constraints 
were used to build portfolio selection model using a 
meta-heuristic technique of particle swarm 
optimization. The results of the study were 
compared with that of the genetic algorithms  
obtained with the model developed shows that 
particle swarm optimization approach gives a better 
result than genetic algorithm in solving portfolio 
selection problem. 
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