RBCL GENETIC RELATEDNESS AND ANTIMICROBIAL PROPERTIES OF AFRICAN YAM BEAN (Sphenostylis stenocarpa) SEEDS

ERUEMULOR DAVELYNE IFECHUKWUDE

(18PCO02061)

OCTOBER, 2021

RBCL GENETIC RELATEDNESS AND ANTIMICROBIAL PROPERTIES OF AFRICAN YAM BEAN (Sphenostylis stenocarpa) SEEDS

BY

ERUEMULOR DAVELYNE IFECHUWUDE

(18PCO02061)

B.Sc. Microbiology, Wellspring University, Benin

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN APPLIED BIOLOGY AND BIOTECHNOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY.

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science in Applied Biology and Biotechnology in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria

Mr. John A. Phillip

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **ERUEMULOR, DAVELYNE IFECHUKWUDE** (**18PCO02061**) declare that this research was carried out by me under the supervision of Dr. J.O Popoola of the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the research has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this research are duly acknowledged.

ERUEMULOR, DAVELYNE IFECHUKWUDE

Signature and Date

CERTIFICATION

We certify that this research titled "**RBCL GENETIC RELATEDNESS AND ANTIMICROBIAL PROPERTIES OF AFRICAN YAM BEAN** (*Sphenostylis stenocarpa*) **SEEDS**" is an original research work carried out by **ERUEMULOR**, **DAVELYNE IFECHUKWUDE** (**18PCO02061**) in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. J.O. Popoola. We have examined and found this work acceptable as part of the requirements for the award of the Master of Science in Applied Biology and Biotechnology.

Dr. Jacob O. Popoola

(Supervisor)

Dr Isaac O. Ayanda

(Departmental PG Coordinator)

Prof. Solomon Oranusi

(Head of Department)

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

07/10/2021 **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this research work to God Almighty, for confirming his word with manifestations that has led to the completion of this research. He alone is worthy of my praise.

ACKNOWLEDGMENTS

I want to appreciate God almighty for his grace upon my life and my parents Mr & Mrs Ifeanyi Eruemulor for their constant support all through my programme at Covenant University.

I want to appreciate the management of Covenant University under the leadership of the Chancellor, Dr, David O. Oyedepo, Vice Chancellor, Prof. Abiodun H. Adebayo and the Registrar, Dr. Oluwasegun Omidiora. Your leadership has place this institution far beyond the reach of others. This is simply the hand of God.

I want to also appreciate my mentor and supervisor, Dr. Jacob O. Popoola, for his tireless dedication towards the successful completion of this project and my programme at Covenant University. I am grateful sir.

Furthermore, I want to appreciate the Department of Biological Sciences under the leadership of Prof. Solomon Oranusi, Head of Units (Dr. J.O. Popoola – Biology and Dr. P. Akinduti – Microbiology), the PG coordinator (Dr Isaac O. Ayanda) and all Faculty and Staff of the department. Your contribution and guidance are well appreciated.

My sincere regards to my siblings, friends, colleagues and family.

TABLE OF CONTENTS

CONTENT	Page
ACCEPTANCE	i
DECLARATION	ii
CERTIFICATION	iii
DEDICATION	iv
ACKNOWLEDGMENTS	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	х
LIST OF PLATES	xi
LIST OF CHART	xii
ABSTRACT	xiii
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the study	1
1.2 Statement Of Problem	4
1.3 Research Questions	4
1.4 Justification	4
1.5 Aim And Objectives	4
CHAPTER TWO	6
LITERATURE REVIEW	6
2.1 Taxonomy of African Yam Bean	6
2.2 Common Names of African Yam Bean	8
2.3 Origin and Distribution of African Yam Bean	8
2.4 Climate Change And African Yam Bean Conservation	11
2.4.1 Climatic Requirements of African Yam Bean	11
2.5 Morphology, Cytology, And Breeding Of African Yam Bean	12
2.5.1 Morphology of African yam bean	12
2.5.2 Cytology of African Yam Bean	15
2.5.3 Breeding of African Yam Bean	15
2.6 Proximate And Nutritional Composition Of African Yam Bean	21

2.7 Phytochemical And Nutraceutical Properties Of African Yam Bean	25
2.8 Antinutritional Contents of African Yam Bean	28
2.9 Genetic Diversity of African Yam Bean	29
2.9.1 Concept of Diversity	29
2.10 Morphological Diversity Analysis of African Yam Bean	32
2.11 Genetic diversity of African Yam Bean using molecular markers	36
2.11.1 Genetic diversity analysis of African Yam Bean using Random Amplified Polymorphic DNA, (RAPD)	36
2.11.2 Genetic diversity analysis using Amplified Fragment Length Polymorphism (AFL	
	38
2.11.3 Genetic diversity analysis using Micro-satellites/Simple Sequence Repeat (SSR) markers	39
2.11.4 Genetic diversity analysis using Inter Simple Sequence Repeat Markers (ISSR)	40
CHAPTER THREE	42
MATERIALS AND METHODS	42
3.1 Materials	42
3.1.1 Buffers, Reagents and Media	42
3.1.2 Acquisition of AYB Seeds	42
3.1.3 Passport Data and qualitative traits of the AYB seeds	42
3.2 DNA extraction	44
3.2.2 PCR amplification, visualization, and purification	44
3.3 Antimicrobial Assay	46
3.3.1 Antimicrobial activity detection by agar diffusion method	46
3.4 Statistical analysis	46
CHAPTER FOUR	47
RESULTS	47
4.1 Genetic relatedness assessment	47
4.1.2 Nucleotide and Amino-acid composition of AYB accessions.	47
4.1.2 Substitution sites and bases of AYB accessions	51
4.1.3 Pairwise distance among the accessions	54
4.1.4 Phylogenetic tree	56
4.1.5 Clustered analysis	58
CHAPTER FIVE	622
DISCUSSION	622

5.0 Genetic Relatedness/Variation	62
5.2 Antimicrobial activity of AYB accessions	64
CHAPTER SIX	66
CONCLUSION AND RECOMMEDATION	66
6.1 Conclusion	66
6.2 Recommedation	66
6.3 Contributions To Knowledge	67
REFERENCES	68

LIST OF FIGURES

Figure	Title of Figure	Page
Figure 2. 1	Centre of diversity and distribution of African yam bean	10
Figure 4. 1	: Phylogenetic relationships among the 24 accessions of AYB studied.	57
Figure 4. 2	2: UPGMA hierarchical clustering of the 24 accessions of AYB studied.	59
Figure 4.	3: Mean zones of inhibition for antibacterial activity of methanolic extract	s of AYB
seeds.		60
Figure 4. 4	4: Mean zones of inhintion for antifungal activity of methanolic extracts of A	YB seeds
		61

LIST OF TABLES

Table	Title of TablePa	age
Table 2. 1	Taxonomy of African yam bean	7
Table 2. 2	Qualitative morphological characters of 25 Accessions of African yam bean	14
Table 2.3	Percentage (%) proximate composition of African yam bean from different authors	24
Table 2. 4	Phytochemical and Antioxidant activity of treated and untreated AYB by different	rent
authors.		27
Table 3. 1	Passport Data and qualitative traits of the AYB seeds	43
Table 3. 2	Primer name and sequence used for this study.	45
Table 4. 1	Nucleotide Composition of AYB accessions in this study	48
Table 4. 2	Amino acid composition of AYB accessions in this study	49
Table 4. 3	Substitution sites and bases of 10 AYB accessions	52
Table 4.4	Maximum Composite Likelihood Estimate of the Pattern of Nucleotide Substitution	53
Table 4. 5	: pairwise distance among AYB accessions	55

LIST OF PLATES

PlateTitle of platePagePlate 2. 1: Pollination mechanism (a) African yam bean plants left to open pollination, (b) Crossed
and selfed accessions of African yam bean and (c) a whole plant isolated with fine mesh
transparent net.17Plate 2. 2:The visit of (a.) honey bee and (b.) bumblebee (pollinators) to the flowers of African
yam bean left to open pollination20

Plate 2. 3: Diversit	y in seed coat c	colors and patterns	s of African yan	n bean	34
		· · · · · · · · · · · · · · · · · · ·			

Flow Chart	Title of chart	Page
Flow chart 2. 1:	Hierarchy of diversity	30

30

ABSTRACT

African yam bean (AYB) (Sphenostylis stenocarpa) is an underexploited leguminous crop belonging to the Fabaceae family. AYB has the potential to significantly boost food security due to its considerable nutritional and medicinal qualities. To efficiently utilize AYB genetic resources for its improvement, it is necessary to understand the crop's sequence information and other ways it can be utilized not just for food but also for therapeutic purposes. A total of 24 accessions of AYB seeds were collected from the Genetic Resources Centre of the International Institute of Tropical Agriculture (IITA) via the Standard Material Transfer Agreement (SMTA) of the International Treaty on Plant Genetic Resources. Genomic DNA was extracted from two-weeks old leaf samples of the accessions and subjected to PCR amplification and sequencing using chloroplast Ribulose-1,5-bisphosphate carboxylase large subunit (rbcL). The generated sequences were cleaned, assembled, and aligned in BioEdit and Geneious Prime. The sequences were also submitted to the Genbank and accession numbers were assigned to the submitted nucleotide sequences (GenBank OK254173- OK254196). The genetic relatedness among the accessions was determined using nucleotide and amino-acid composition, pairwise distances between the accessions, and hierarchical clustering method of unweighted pair group method with arithmetic mean (UPGMA). The antimicrobial assay was determined using average zones of inhibition with standard error values. The aligned sequence of 534 bp revealed high genetic similarities in their nucleotide and amino acid compositions. The pairwise genetic distance between the 24 accessions ranged from 0.00 (TSs 4) to 0.026 (TSs 303) indicating proximity except for TSs 303. The cluster analysis segregated the 24 accessions into three major clusters of high genetic similarities (65 % to 95 %). Two accessions (TSs 333 and TSs 357) are the most closely related in their nucleotide sequences while only one accession (TSs 303) stands alone as a cluster. There were substitutions in nucleotide bases of some accessions. At nucleotide position 132, three accessions (TSs 311, TSs 303, and TSs 331) had T (thiamine) instead of G (guanine) common to all other accessions. However, only accession TSs 303 showed consistency in the base substitutions at different nucleotide positions. For instance, at 34, 66, 123, 132, 183, 210, 216, 309, 372, 373, 510 and 528 postions, TSs 303 had different bases from other accessions. These substitutions might have accounted for the separation of TSs 303 into a unique cluster. The average zones of inhibition among the tested microorganisms; Aspergillus niger (19.06 \pm 4.50), Bacillus subtilis (19.26 \pm 5.84), Candida sp (21.17 \pm 1.25), Escherichia coli (22.67 \pm 4.52) amongst others showed considerable antimicrobial properties. The results of the antimicrobial assay indicate that AYB seeds can be used as antifungal and antibacterial agents in the food and health sectors.

Keywords: African yam bean, antimicrobial activity, RbCl, genetic relatedness, substitution