ETHNOBOTANY, INTRA-SPECIFIC GENETIC DIVERSITY AND EVOLUTIONARY RELATIONSHIP IN GONGRONEMA LATIFOLIUM BENTH., ACROSS SOUTHERN NIGERIA

ONUSELOGU CHINEDU CHARLES (13CO015799)

ETHNOBOTANY, INTRA-SPECIFIC GENETIC DIVERSITY AND EVOLUTIONARY RELATIONSHIP IN GONGRONEMA LATIFOLIUM BENTH., ACROSS SOUTHERN NIGERIA

 \mathbf{BY}

ONUSELOGU CHINEDU CHARLES (13CO015799)

BSc. Applied Biology and Biotechnology,
Covenant University, Nigeria

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE (M.Sc) IN THE DEPARTMENT OF BIOLOGICAL SCIENCE, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA.

OCTOBER, 2021

ACCEPTANCE

This is to attest that this dissertation is accepted in	partial fulfilment of the requirements for the
award of degree of Master of Science in Biology	(Applied Biology and Biotechnology) in the
Department of Biological Science, College of Sci	ence and Technology, Covenant University,
Ota, Nigeria.	
Mr. John A. Philip	
Secretary, School of Postgraduate	Signature and Date
Professor Akan B. Williams	
Dean, School of Postgraduate Studies	Signature and Date

DECLARATION

I, ONUSELOGU, CHINEDU CHARLES with (13CO015799), declare that this dissertation
was carried out by me under the supervision of PROF CONRAD A. OMONHINMIN of the
Department of Biological Science, College of Science and Technology, Covenant University,
Ota, Ogun State, Nigeria. I attest that this dissertation has not been presented either wholly or
partially for the award of any degree elsewhere. All sources of data and scholarly information
used in this thesis are duly acknowledged.
ONUSELOGU, CHINEDU CHARLES

Signature and Date

CERTIFICATION

We certify that this dissertation titled "ETHNOBOTANY, INTRA-SPECIFIC GENETIC DIVERSITY AND EVOLUTIONARY RELATIONSHIP GONGRONEMA LATIFOLIUM BENTH., ACROSS SOUTHERN NIGERIA" is an original work carried out by ONUSELOGU, CHINEDU CHARLES (13CO015799) in the Department of Biological Science, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of PROF. CONRAD A. OMONHINMIN. We have examined and found this research work acceptable as part of the requirement for the award of Master in Biology (Applied Biology and Biotechnology).

Prof. Conrad A. Omonhinmin Supervisor	Signature and date
Prof. Solomon A. Oranusi Head of Department	Signature and date
Prof. Emmanuel A. Ayodele External Examiner	Signature and date
Prof. Akan B. Williams Dean, School of Postgraduate studies	Signature and date

DEDICATION

This research work is dedicated to almighty God, who provided the wisdom, knowledge and finance throughout this program; to my parents Ven. Dr and Engr (Dr) H. Onuselogu and my sincere friend, Keziah Damilola Olaniyi for their sincere love, prayers and unwavering support.

ACKNOWLEDGEMENTS

My profound gratitude goes to the Almighty God for the gift of life, strength, opportunity and grace to complete this project.

I appreciate the Chancellor of Covenant University, Dr. David O. Oyedepo and Pastor Mrs. Faith Oyedepo for the spiritual ambience and vision. I also appreciate the management team of Covenant University ably led by the Vice Chancellor, Professor Abiodun H. Adebayo, the Registrar, Dr. Oluwasegun P. Omidiora, the Dean School of Post Graduate Studies, Professor Akan B. Williams, the Sub-dean, Dr Emmanuel O. Amoo, and the Dean, College of Science and Technology for their support timely approvals.

I deeply appreciate Prof. Conrad A. Omonhinmin, my academic coach and mentor, he has been a sincere and thorough guardian on this journey thus far, my utmost appreciation sir.

I would like to recognize the leadership of the department ably led by Prof Solomon U. Oranusi. I also appreciate the incumbent post-graduate coordinator of the department Dr. I.O. Ayanda for his administrative support, Dr. Jacob O. Popoola the Biology Unit Co-ordinator and all other great Faculty members of the Biological Science department and all lecturers whom I was privilege to have been taught by as a student thank you all for the support all through.

Finally, I want to thank and appreciate my parents Ven. Dr and Engr (Dr) H. Onuselogu, for their immense support, prayers and encouragement all through my life and through this Master degree, God would forever reward you for the love that you have lavished on me and bless you for life. To my wonderful siblings Dr. Chiagozie, Barr. Chinasa and Favour; thanks for your ceaseless encouragement all through this project.

TABLE OF CONTENTS

COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDG	vii
TABLES OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF PLATES	xiv
ABSTRACT	XV
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background Study	1
1.2 Economic Important of Tropical Leafy Vegetables	3
1.3 Factors militating against <i>G. latifolium</i> production in Nigeria	4
1.4 Statement of Research Problem	4
1.5 Justification of the research work	5
1.6 Research questions	6
CHAPTER TWO	7
LITERATURE REVIEW	7
2.1 Family Apocynaceae	7
2.1.1 Key Characteristics of the family Apocynaceae	7
2.1.2 The Genus: <i>Gongronema</i>	9
2.1.3 Common names of Gongronema latifolium	9
2.1.4 Origin and Geographical distribution	9
2.1.5 Biology of Gongronema latifolium	10
2.2 Phytochemical properties of <i>Gongronema latifolium</i>	10
2.3 Nutritional values of Gongronema latifolium	11

2.4 Pharmacological activities of Gongronema latifolium	12
2.4.1 Hypoglycaemic Activity	13
2.4.2 Hypolipidemic Activity	13
2.4.3 Nephroprotective Activity	14
2.4.4 Hepatoprotective Activity	14
2.4.5 Male Antifertility	14
2.4.6 Antioxidant Activity	15
2.4.7 Anti-inflammatory Activity	15
2.4.8 Haematological Effect	16
2.4.9 Electrolyte Balance	17
2.4.10 Haemostasis	17
2.4.11 Anti-Ulcer Activity	17
2.4.12 Gastric Emptying	17
2.4.13 Anticancer Activity	18
2.4.14 Immunomodulatory Effect	18
2.4.15 Antimicrobial Activity	18
2.4.16 Tissue Regenerative and Restorative potentials	19
2.5 Plant Genetic Diversity	20
2.5.1 Importance of genetic diversity	21
2.5.2 Factors Affecting Genetic Diversity	22
2.5.3 Analysis of Genetic diversity	23
2.5.4 Morphological markers	23
2.5.5 Cytological markers	25
2.5.6 Biochemical markers	25
2.5.7 Molecular markers	25
2.5.8 Threats to genetic diversity	26
2.6 Internal Transcribed Spacer ITS 4 and ITS 5 in Higher Plants	26
2.7 Limitation of Molecular Markers	27
CHAPTER THREE	29
MATERIALS AND METHODS	29
3.1. Study area	29
3.1.1 Ethnobotany	29
3.1.2 Informed Consent	33
3.1.3 Use categories	33

3.2 Genetic Diversity studies	33
3.2.1 DNA Extraction	33
3.2.2 DNA Quantification	34
3.2.3 Polymerase Chain Reaction procedure	35
3.2.4 Agarose Gel Analysis	35
3.4.5 DNA Sequencing	36
3.3 Data Analysis	36
3.3.1 Ethnobotanical Fidelity	36
3.3.2 Genetic diversity	36
3.3.3 Evolutionary relationship analysis	37
CHAPTER FOUR	38
RESULT	38
4.1 Socio-Demographic Description of Respondents	38
4.2 Collection Sites of G. latifolium	41
4.3. Use Categories of G. latifolium	43
4.4. Plant parts of G. latifolium used for different purposes	45
4.5 Utilization of G. latifolium	47
4.6 Genetic Diversity assessment	55
4.6.1 Total DNA extraction	55
4.6.2 PCR amplification	55
4.7 Sequence Characteristics	57
4.8 Genetic diversity	60
4.9 Population genetic differentiation	62
4.10 Cluster Analysis	66
4.11 Principal Component Analysis (PCA)	69
4.12 Molecular evolution	73
CHAPTER FIVE	75
DISCUSSION	75
5.1 Ethnobotany and demography of <i>G. latifolium</i>	75
5.1.1 Sources of samples, cultivation and agronomic practices of G. latifolium	76
5.1.2 G. latifolium availability and market survey	76
5.1.3 Local use and important of <i>G. latifolium</i>	77

5.1.3.1 Food uses of <i>G. latifolium</i>	77
5.1.3.2 Medicinal uses of G. latifolium	78
5.1.3.3 G. latifolium use as fence	79
5.1.3.4 Linguistic interactions associated with G. latifolium	79
5.1.4 Constraints to G. latifolium Production	79
5.2 Genetic relationship among accessions of G. latifolium across Southern Nigeria	80
5.3 Phylogenetic relationship of G. latifolium accessions	80
5.4 Intra-specific diversity of G. latifolium	81
5.5 Evolutionary relationship of G. latifolium	81
CHAPTER SIX	83
CONCLUSION AND RECOMMENDATIONS	83
6.1 Summary of findings	83
6.2 Conclusion	83
6.3 Contribution to knowledge	84
6.4 Recommendations	84
REFERENCES	86
APPENDIX	101

LIST OF TABLES

Table 2.1: Phytochemical constitutes of different part of <i>G. latifolium</i>	11
Table 2.2. Mean distribution of constrains to <i>G. latifolium</i> production	20
Table 2.3 Morphological traits used as markers for different group of plants	24
Table 3.1 Survey sites for ethnobotanical and accession collection for <i>Gongronema</i>	
latifolium	29
Table 4.1 Occupation and Gender of respondents	39
Table 4.2 Preparation and utilization of parts of G. latifolium for Medicine	48
Table 4.3 Utilization of <i>G. latifolium</i> for food and Linguistic interaction	52
Table 4.4 Sequence length and percentage nucleotide content	58
Table 4.5 Sample size, polymorphic site, haplotype and nucleotide diversity of the 7	
populations of G. latifolium	61
Table 4.6 Genetic Differentiation among population	64
Table 4.7 AMOVA analysis showing among and within population variance	65

LIST OF FIGURES

Figure 3.1: Field study area on Ethnobotany of <i>G. latifolium</i> among Igbo-speaking	
communities of Southeast Nigeria.	31
Figure 3.2: Sampling sites for G. latifolium across the Eastern South Nigeria.	32
Figure 4.1: Age group of respondents	40
Figure 4.2: Collection sites of G. latifolium	42
Figure 4.3: Use categories of G. latifolium in the study area	44
Figure 4.4 Percentage use of plant part	46
Figure 4.5: Mode of preparation of <i>G. latifolium</i> for treatments.	53
Figure 4.6: Route of administration of G. latifolium for treatment	54
Figure 4.7: AMOVA analysis showing among and within population variance	65
Figure 4.8: Maximum likelihood phylogenetic tree of 50 accessions obtained in this study	68
Figure 4.9: Plot of first two principal components of accessions from each state	71
Figure 4.10: Principal component Analysis of the accessions	72
Figure 4.11: Phylogenetic tree of ITS region of G. latifolium with the closely related	
species	74

LIST OF PLATES

Plate 2.1: The leaves and stem of <i>G. latifolium</i>	8
Plate 4.4: Agarose gel (2%) showing amplicons of the ITS regions in 50	
G. latifolium accessions	56

ABSTRACT

Gongronema latifolium Benth., is an important medicinal and leafy vegetable endemic in the southern part of Nigeria. The ethnobotany on the species is incomplete and information on the genetic diversity and phylogenetic relationship within the species is lacking. This study exhaustively documented indigenous knowledge about the species among Igbo-speaking people in the region; as well as investigated the intra-specific diversity and the evolutionary status of the species using the nuclear ribosomal DNA - internal transcribed spacer (ITS 4 and 5) region. A total of 130 respondents; of 80.8% female and 19.2% male were interviewed for the ethnobotanical survey, using a semi-structured questionnaire with interview. A total of 50 accessions of G. latifolium were collected across Anambra, Abia, Enugu, Imo, Ebonyi, Akwa Ibom and Cross River sates for the molecular analysis. Standard molecular protocols and bioinformatic tools were employed to generate Genomic DNA and Consensus sequences that were submitted on NBCI's GenBank with accredited accession numbers. Four use categories; medicine, food, fencing and linguistic interactions were recorded for the species. The species was recorded to be used for the treatment of diabetes, ulcer, high blood pressure, whooping cough, amongst several other ailments. Linguistic interactive uses were generally negative in connotation, as its bitter taste was of primary expression. A relatively high level of genetic diversity and a low level of nucleotide diversity were detected among the 50 accessions. AMOVA indicated that genetic variations within populations (93%) was higher than between populations (6%). The accessions MZ853412.1 (Akwa Ibom), MZ964896.1, MZ853424.1 and MZ964895.1 (Ebonyi) recorded high levels of nucleotide variability and were genetically distant from the other accessions, asserting to a possible sub-speciation within the population. The phylogenetic relatedness of G. latifolium to the Southeast Asian species Marsdenia tenacissima (Apocynaceae) following the ITS evidence, shows that the species share a linkage with other members of the sub-family Asclepiadoideae and might be more closely related to its Asia cousins than other African species.

Keywords: G. latifolium, Ethnobotany; Genetic diversity, Evolutionary status, ITS

CHAPTER ONE INTRODUCTION

1.1 Background Study

Tropical leafy vegetables are vegetables (TLV) that can grow in tropical soils and are native to Sub-Saharan Africa (Kelechi and Dorothy, 2015). Leafy vegetables are considered such an important part of the Nigerian diet that they are assumed to be missing from a traditional dinner (Badmus, 2010). According to (Fasuyi, Dairo and Adeniji, 2008), green leafy tropical vegetables are important components of human nutritional regimes because they provide the vitamins and minerals that the body requires. In tropical Africa, leafy greens are commonly ingested to deal with vitamin shortages and malnutrition (Ingbian and Akpapunam, 2005). Anti-nutrients are also present, which reduce the bioavailability of some nutrients (Akindahunsi and Salawu, 2005). Green vegetables, on the other hand, are a popular food and culinary herb in Southern and Eastern Nigeria (Agbugba and Thompson, 2013). Cooked, boiled, and consumed in a number of ways, leafy vegetable leaves and young shoots contribute to a varied diet rich in proteins, vitamins, and minerals, and so improve nutritional quality (Agbugba and Thompson, 2013).

Certain tropical leafy vegetables (TLV) cultivars that are commonly grown and marketed in Nigeria, notably in the south-eastern region, must be mentioned (Chubike, Okaka and Okoli, 2013). *Gnetum africanum* (Okazi), *Pterocarpus soyauxii* (Camwood leaf or Oha), *Pterocarpus santalinoides* (Nturukpa), *Vernonia amygdalina* (Bitter leaf or Onugbu), *Talinum triangulare* (Water leaf or Mgborodi), *Telfairia occidentalis* (fluted pumpkin leaf or Ugu), *Amaranthus esculentus* (Green or African spinach) (Bush buck or Utazi). They provide the nutrients that the human body requires for good health and development. In other words, the nutritional security of a society or country can only be achieved if adequate vegetable elements are consumed (Pasquini and young, 2009). They have significant potential to mitigate against poverty and nutritional security because they are easy to cultivate, highly inexpensive, easily available, and require minimal production inputs (Nwauwa and Omonona, 2010).

These tropical green vegetables are primarily gathered from the wild, and they are constantly threatened by deforestation, overexploitation, and the urbanization of rural areas (Emodi *et al.*, 2017). Despite the benefits afforded by these veggies, academics, policymakers, and funding