DEVELOPMENT OF A MULTI-BAND PATH LOSS PREDICTION MODEL FOR CELLULAR NETWORK IN LAGOS ISLAND, NIGERIA

HINGA, SIMON KARANJA (19PCK01989)

OCTOBER, 2021

DEVELOPMENT OF A MULTI-BAND PATH LOSS PREDICTION MODEL FOR CELLULAR NETWORK IN LAGOS ISLAND, NIGERIA

BY

HINGA, SIMON KARANJA (19PCK01989)

BSc. Electrical and Electronic Engineering: Technical University of Mombasa, Kenya Postgraduate Diploma in Satellite Communication: African Regional Centre for Space Science and Technology Education-English (ARCSSTEE), Nigeria

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF ENGINEERING (M.ENG) DEGREE IN INFORMATION COMMUNICATION AND ENGINEERING IN THE DEPARTMENT OF **ELECTRICAL** AND INFORMATION ENGINEERING. COLLEGE OF ENGINEERING, COVENANT UNIVERSITY.

OCTOBER, 2021

ii

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Information and Communication Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Mr. John A. Philip (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, HINGA, SIMON KARANJA (19PCK01989) declares that this research was carried out by me under the supervision of Prof. AAA. ATAYERO of the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

18th Oct 2021 Signature and Date

HINGA, SIMON KARANJA

CERTIFICATION

We certify that this dissertation titled "DEVELOPMENT OF A MULTI-BAND PATH LOSS PREDICTION SYSTEM FOR LAGOS ISLAND, NIGERIA is an original research work carried out by HINGA, SIMON KARANJA (19PCK01989) in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Aderemi A. Atayero. We have examined and found this work acceptable as part of the requirements for the award of Master of Engineering in Information and Communication Engineering.

Prof. Aderemi .A. Atayero (Supervisor)

Prof. Emmanuel Adetiba (Head of Department)

Prof. Adeseko A. Ayeni (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This research work is dedicated to Gianna and Jane.

ACKNOWLEDGEMENTS

I would like to appreciate the Almighty God for his grace and divine power. The power to finish strong can only be God.

To Queen Elizabeth Commonwealth Scholarship Program, thank you for the opportunity. Without the scholarship, perhaps I would still be in Kenya. Special appreciation to our program coordinator Ms. Rachel. Thank you for the care and love.

Special regards to my erudite mentor and supervisor, Prof. Aderemi A. Atayero. Sir, you have been a dad and an incredible mentor to me. I will forever treasure every moment I sat to listen to you. Learning under you has been the best moment I would ever wish for. You have given me every opportunity to learn, err, relearn, and grow. I will truly treasure every word of wisdom you shared with me. Thank you for the countless opportunities you offered me. Sir, Thank you. To my lecturers, the international students' community, and the entire Covenant University Family, thank you.

To REMCOM Corporation State College, PA 16801 USA, thank you for the Wireless Insite software, Caitlyn Harling, Thank you for all the facilitation.

Special appreciation to my Parents: John and Esther Hinga, siblings, and relatives, for the prayers and words of encouragement. You are such a wonderful family.

Jane. You're the boss lady and a phenomenon sweetheart, raising Gianna alone, while Daddy is miles away from home. The late-night calls, words of encouragement, the prayers, and above all, the many sleepless nights while Gianna decides to keep you awake "crying". Two years far but so close, you have given me all the reason to look forward to homecoming!

The CEO, Ms. Judith, you're such a wonderful soul, you are truly awesome, and God sent, reading engineering stuff and proofreading this thesis wasn't a joke. Your contribution is highly appreciated. Ms. Judith the best plant breeder in town. Oscar, Njeru, and the Kenyans in Nigeria, you cannot go unmentioned. Your love and friendship genuinely define the brotherhood. May peace, love, and unity bind you forever.

Lastly my coursemates in the EIE department and the entire fraternity of Covenant University Postgraduate and Undergraduate students, thank you for making my stay in Covenant Epic!

TABLE OF CONTENTS

Content	Page
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiv
ABSTRACT	xvi
CHAPTER ONE: INTRODUCTION	1
1.1 Background of the study	1
1.2 Statement of the Problem	3
1.3 Aim and Objectives	5
1.3.1 Aim	5
1.3.2 Objectives	5
1.4 Justification of the Research	6
1.5 Scope and Limitation of the Research	7
1.6 Organization of Dissertation	7

СНАР	TER TWO: LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Fundamentals of Wireless Communications	9
2.3	Principle of Wireless Communication	10
2.4	Large-Scale Propagation Channel Modelling	12
2.4	4.1 Free space Path loss	13
2.4	4.2 Free Space Path Loss with Antenna Patterns	14
2.4	4.3 Free Space Path Loss without Antenna Patterns	15
2.4	4.4 Excess Path Loss with Antenna Patterns	15
2.4	4.5 Excess Path Loss without Antenna Patterns	15
2.5	Empirical Path Loss Propagation Models	15
2.:	5.1 EGLI Models.	16
2.:	5.2 COST 231 Extension-to-HATA Propagation Model	16
2.:	5.3 HATA-OKUMURA Model	17
2.:	5.4 ECC-33 Model	17
2.:	5.5 The Close-In (CI) path loss model	18
2.:	5.6 The Floating Intercept (FI) path loss model	19
2.6	Ray Tracing Path Loss Prediction	19
2.7	Machine Learning-based path loss models.	23
СНАР	TER THREE: RESEARCH METHODOLOY	44
3.1	Introduction	44
3.2	Ray Tracing Simulation Experimental Setup	44
3.3	Simulation Setup: Point-To-Multipoint Simulation	47
3.4	Large Scale Path Loss Model for Lagos Island Analysis	50
СНАР	TER FOUR: RESULTS AND DISCUSSION	55
4.1	Introduction.	55
4.2	Large-Scale 4G LTE at 700 MHz Close-In (CI) path loss model	55
4.3	4G at 700 MHz Close-In (CI) Path Loss model	59

4.4	Modified Average Close-In Path Loss Model	61
4.5	Path Loss Model Performance Evaluation.	64
4.6	Large-Scale 5G mmWave Path Loss prediction Modelling Analysis	72
4.7	Floating Intercept (FI) Path Loss Model and Close-In (CI) Path Loss Models	
Analy	vsis	78
4.8	Modified Average Path Loss Model	81
4.9	Performance Evaluation of the Large-Scale mmWave Path Loss Model.	83
4.10	Discussion	87
CHAPT	TER FIVE: CONCLUSION AND RECOMMENDATIONS	89
5.1	Summary	89
5.2	Conclusion	90
5.3	Contributions to knowledge	91
5.4	Recommendations	91
REFER	RENCES	92
APPEN	DIX	105
APPE	CNDIX I: Scholarly Publication	105
APPE	CNDIX I: TX1 Path loss model for mmWave	106
APPE	ENDIX II: TX2 Path loss model for mmWave	112
APPE	ENDIX III: TX3 Path loss model for mmWave	118
APPE	ENDIX IV: TX4 Path loss model for mmWave	124
APPE	ENDIX V: TX1 Performance evaluation (mmWave)	130
APPE	ENDIX VI: TX2 performance evaluation (mmWave)	135
APPE	ENDIX VII: TX3 performance evaluation (mmWave)	140
APPE	CNDIX VIII: TX4 performance evaluation (mmWave)	145
APPE	CNDIX IX: TX1 path loss model for 4G	150
APPE	ENDIX X: TX1 path loss performance evaluation for 4G	154

LIST OF FIGURES

Figure	Title of Figure P	age
Figure 2.	1: Cellular Network with mmWave communication	10
Figure 2.	2: Basic wireless communication setup	11
Figure 2.	3: Path loss, shadowing, and multipath fading effect	12
Figure 3.	1: The Study area	45
Figure 3.	2: Simulation procedure flow diagram	46
Figure 3.	3: Simulation study area	47
Figure 3.	4: Point-to-multipoint simulation	48
Figure 4.	1: 4G path loss model versus modified path loss models for TX1	56
Figure 4.	2: 4G path loss model versus modified path loss models for TX2	57
Figure 4.	3: 4G path loss model versus modified path loss models for TX3	58
Figure 4.	4: 4G path loss model versus modified path loss models for TX4	59
Figure 4.	5: 4G path loss model Versus Close-In (CI) path loss model for all TX points	61
Figure 4.	6: Path loss model, Close-In (CI), and the Modified Average Close-In (CI) path	loss
	model for all 4G TX points	63
Figure 4.	7: Path loss prediction evaluation for all 4G TX points	66
Figure 4.	8: FSPL without antenna pattern prediction evaluation for all 4G points	67
Figure 4.	9: FSPL with antenna pattern prediction evaluation for all 4G points	69
Figure 4.	10: Excess path loss without antenna pattern prediction evaluation for all point	71
Figure 4.	11: Excess path loss with antenna pattern prediction evaluation for all 4G points	72
Figure 4.	12: 5G path loss model versus modified path loss models for TX1	74
Figure 4.	13: 5G path loss model versus modified path loss models for 4G TX2	75
Figure 4.	14:5 G path loss model versus modified path loss models for TX3	76
Figure 4.	15: 5G path loss model versus modified path loss models for TX4	77
Figure 4.	16: Path loss model, Close-In (CI), and the Floating Intercept (FI) path loss model	odel
	for all 5G TX points	79
Figure 4.	17: Average Close-In and Floating Intercept (FI) path loss model for 5G	83

LIST OF TABLES

Table	List of Tables	Page
Table 2. 1: Sur	nmary of Empirical Path loss model specifications.	30
Table 2. 2: Tax	conomy of related research on path loss modeling parameters at mmWave	band
		31
Table 2. 3: Tax	xonomy of related Empirical and Deterministic path loss models at mm-	Wave
band		33
Table 2. 4: Lite	erature review of Machine-Learning based path loss prediction model	37
Table 2. 5: A li	iterature review of mmWave band path loss model	38
Table 2. 6: A la	iterature review of related work conducted in Nigeria	41
Table 3. 1: Sur	nmary of simulation key parameters	48
Table 3. 2: Star	tistical analysis of 5G simulated path loss data at transmitter points.	53
Table 3. 3: Star	tistical analysis of 4G simulated path loss data at transmitter points	54
Table 4. 1: 4G	transmitter point one (TX1) key parameter	55
Table 4. 2: 4G	transmitter point two (TX2) key parameters	56
Table 4. 3: 4G	transmitter point two (TX3) key parameters	57
Table 4. 4: 4G	transmitter point two (TX4) key parameters	58
Table 4. 5: 4G	Close-In model for all the transmitters.	60
Table 4. 6: Mo	dified average path loss model for 4G	61
Table 4. 7: 4G	path loss prediction performance evaluation measure	65
Table 4. 8: 4G	FSPL without antenna pattern prediction performance evaluation measure	e 68
Table 4. 9: 4G	FSPL with antenna pattern prediction performance evaluation measure	68
Table 4. 10: 4	G Excess path loss without antenna pattern prediction performance evalu	ation
	measure	70
Table 4. 11: 4	G Excess path loss without antenna pattern prediction performance evalu	ation
	measure	70
Table 4. 12: 50	G transmitter point TX1 key parameters	74
Table 4. 13: 50	G transmitter point TX2 key path loss parameters	75
Table 4. 14: 50	G Transmitter point TX3 key parameters	76
Table 4. 15: 50	G Transmitter point TX4 key path loss parameters	77
Table 4. 16: Su	ummary of 5G CI model and FI model key parameters	80
Table 4. 17: M	odified average path loss model for 5G	81

- Table 4. 18: TX1 Path loss performance evaluation for 5G84Table 4. 19: TX2 Path loss performance evaluation for 5G84Table 4. 20: TX3 Path loss performance evaluation for 5G85
- Table 4. 21: TX4 Path loss performance evaluation for 5G86

LIST OF ABBREVIATIONS

2D	Two Dimension	
3D	Three Dimension	
3GPP	3rd Generation Partnership Project	
4G	Fourth Generation	
5G NR	5G New Radio	
5G	Fifth Generation	
5GCM	5G channel model	
ABG	Alpha-Beta-Gamma	
ANN	Artificial Neural Network	
CI	Close-In	
CNN	Convolutional Neural Network	
DDTV	Digital Terrestrial Television	
EDGE	Enhanced Data for GSM Evolution	
EML	Extreme Machine Learning	
FFNN	Feed-forward neural network	
FI	Floating Intercept	
GHz	Giga Hertz	
GSM	Global System of Mobile Communication	
HSPA	High Speed Packet Access	
ITU	International Telecommunication Union	
LoS	Line of Sight	
LTE	Long Term Evolution	
MAE	Mean Absolute Error	
MATLAB	MATrix LABolatory	
METIS	Mobile and wireless communications Enablers for Twenty-twenty (2020)	
	Information Society-II	
MHz	Mega Hertz	
MiWEBA	The Millimeter-Wave Evolution for Backhaul and Access	
ML	Machine Learning	
MLP	Multi-layer Perceptron	
mmWave	Millimetre Wave	

MSE	Mean Square Error
NLoS	Non LoS
NN	Neural Networks
NPCA	Non-linear PCA
PCA	Principal Component Analysis
PL	Path Loss
PLE	Path Loss Exponent
QoS	Quality of Service
RMSE	Root Mean Square Error
SDGs	Sustainable Development Goals
SVM	Support Vector Machine
TX1	Transmitter point one
TX2	Transmitter point two
TX3	Transmitter point three
TX4	Transmitter point four
TX-RX	Transmitter-Receiver
Wi-Fi	Wireless Fidelity
WINNER	Wireless World Initiative New Radio

ABSTRACT

Mobile cellular communication offers an efficient means to connect the world as a global village. Despite mobile and personal communication advancements, the existing wireless infrastructures suffer from signal attenuation in both uplink and downlink communication. 5G millimeter-wave application in mobile connectivity to realize high-speed and reliable communication is attributed with high path loss and absorption losses than existing cellular network operating in the 2G, 3G, and 4G technology infrastructure. This research project presents a detailed 3D ray-tracing technique at 28 GHz and 700 MHz for Lagos Island, Nigeria to investigate five unique path loss scenarios: path loss, free space path loss with antenna pattern, free space path loss without antenna pattern, excess path loss with antenna pattern, and the excess path loss without antenna pattern for an urban environment. To achieve an accurate path loss model the Close-In (CI) model, Floating Intercept (FI) path loss model, Hata model, ECC-33, COST-231, Okumura-Hata path loss models were developed. Root mean square error (RMSE) analysis was used to evaluate the prediction performances of the developed optimal path loss model for Lagos Island. For the case of 28 GHz, the average achieved FI (α , β , σ) parameters were 189.92352, 0.1654 dB, and 0.66948 dB, While the average CI (η , X σ) parameters were 2.309355 dB and 56.236425. From all the scenarios evaluated, the lowest path loss exponent achieved was 0.45 dB, while the highest path loss exponent was 3.8. We have established that the FI path loss model accurately characterizes path loss for the Lagos Island environment with the lowest RMSE of 0.0359 dB and the highest RSME of 0.0997 dB. In contrast, the CI model over-predict the path loss at 28 GHz with the lowest RMSE of 0.0495 dB and the highest RMSE of 2.2547 dB. For the 4G LTE at 700 MHz, The CI model had a better prediction accuracy for transmitter point two. The ECC-33 path loss model had an optimal path loss prediction with the least RMSE of 0.6743 dB. The EGLI path loss prediction model showed a pessimistic performance with the highest RMSE of 2.2496 dB, followed by HATA-Okumura with 1.9606 dB and COST-231 extension-to-Hata path loss model with 1.9399 dB. This work opens a new area of research on mm-Wave at 28 GHz in Lagos Island, and the results obtained from this work can be used to benchmark future studies on mmWave in a similar environment.

Keywords: Millimeter Wave, Path Loss modelling, Close-In model, Floating Intercept model

CHAPTER ONE

INTRODUCTION

1.1 Background of the study

The exponential growth in data demand, communication infrastructure, mobile subscription, and high mobile and IoT devices penetration has significantly stretched the cellular bandwidth requirements. Future communication technology needs to improve spectral efficiency, increase bandwidth, and improve spectrum reuse technology to overcome the current limitations of cellular technologies. Machine learning application has a vast potential to solve socio-economic challenges and transform business models towards realizing the 17 Sustainable Development Goals (SDGs) and the associated 169 targets (Asadikia, Rajabifard, & Kalantari, 2021). Governments and public administrators can exploit the sizeable coherent 5G mm-Wave communication infrastructure and mobile connectivity ubiquity to realize IoT-enabled Smart Cities and Connected Communities (Andreev et al., 2015; Djahel, Doolan, Muntean, & Murphy, 2015). In this way, city managers can effectively handle economic, social, and environmental challenges for citizens' well-being (Atzori, Iera, & Morabito, 2010; Francisco, 2020). Electronic and mobile health applications can bridge the social and economic gaps between developing and developed countries for better health care delivery in marginalized areas (Barjis, Kolfschoten, & Maritz, 2013; Gurstein, 2005). Access to high-definition video content has significantly contributed to the rapid growth of mobile data traffic. The resulting unprecedented mobile data traffic add some stress to the current telecommunication infrastructure in both rural, suburban, and urban areas.

Meanwhile, network operators are faced with the challenges of improving the network coverage and capacity to meet up with the upsurge in mobile data traffic demand, particularly in high-density traffic areas. Therefore, mobile network operators are expected to optimize their network capacity to meet user Quality of Service (QoS) requirements. Deployment of additional base stations is the most feasible approach to address this