APPLICATION OF PASSIVE COOLING COMPONENTS IN THE DESIGN OF A

SHOPPING MALL IN IBADAN, NIGERIA

OYELAMI, BLESSING JOHN (19PCA02006)

SEPTEMBER, 2021

APPLICATION OF PASSIVE COOLING COMPONENTS IN THE DESIGN OF A SHOPPING MALL IN IBADAN, NIGERIA

BY

OYELAMI, BLESSING JOHN

(19PCA02006)

B.Tech. Architecture, Ladoke Akintola Univerity of Technology, Nigeria

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN ARCHITECTURE, IN THE DEPARTMENT OF ARCHITECTURE, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY.

SEPTEMBER, 2021

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of the degree of Master of Sciences in the Department of Architecture, College of Science and Technology, Covenant University, Ota, Nigeria.

Mr. John A. Philip

(Secretary, School of Postgraduate Studies)

Signature & Date

Prof Akan B. Williams

(Secretary, School of Postgraduate Studies)

Signature & Date

DECLARATION

I, **OYELAMI, BLESSING JOHN** (**19PCA2006**) declares that this research was carried out by me under the supervision of Dr. Oladunni O. Izobo-Martins, in the Department of Architecture, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented, either wholly or partially, for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation were duly acknowledged.

Oyelami, Blessing John

Signature & Date

CERTIFICATION

We certify that this dissertation titled "APPLICATION OF PASSIVE COOLING COMPONENTS IN THE DESIGN OF A SHOPPING MALL, IBADAN" is an original research work carried out by Oyelami, Blessing John (19PCA02006) in the Department of Architecture, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Oladunni O. Izobo-Martins. We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Architecture.

Dr. Oladunni O. Izobo-Martins

Supervisor

Prof. Akunnaya P. Opoko

Supervisor

Signature & Date

Signature & Date

DEDICATION

This thesis is dedicated to the Alpha and Omega, the only wise God who has given me the strength to complete the programme. Secondly, to my parents, Mr. and Mrs. Oyelami for their sacrifices and words of encouragements up till this stage. Thanks, Mum and Dad, for always being there. Lastly to my brother his support and motivation, God bless you abundantly.

ACKNOWLEDGEMENTS

Firstly, I would like to express my heartfelt thanks to the Almighty God, the source of all life and wisdom. Additionally, I am grateful for God's favour, protection, and direction during my research, particularly during the fieldwork.

Secondly, my study would not have been successful without the assistance of my supervisor, Dr. Oladunni O. Izobo-Martins. I'd want to convey my heartfelt appreciation for assisting me in maintaining concentration, instilling a drive to accomplish my thesis, and for the words of encouragement and knowledge you've imparted in me. I'd want to express my gratitude for the outpouring of love and support offered to me.

I am grateful to the Head of Department, Architecture, Prof. Akunnaya P. Opoko for her guidiance and support. My sincere gratitude goes to Dr. O.A. Alagbe, Dr. B.A. Adewale and Dr. A.O. Owoseni for their contribution.

I'd also want to thank my parents, Mr. and Mrs. Oyelami, for establishing schooling as a right rather than a privilege. I'm thankful for the love and care you've given me as I've built my life on the foundation of education. To my great brother, Oyelami Favour, I express my gratitude for his support and efforts.

I'd also want to express my gratitude to all my pals, particularly Olugbenga Temitope, for his assistance during this research. My heartfelt appreciation goes out to my colleagues who contributed to the success of this research.

vii

TABLE OF CONTENTS

ACCE	CPTANCE	iii
DECL	ARATION	iv
CERT	TFICATION	v
DEDIC	CATION	vi
ACKN	IOWLEDGEMENTS	vii
TABL	E OF CONTENTS	viii
LIST (OF FIGURES	xiv
LIST (OF PLATES	XV
LIST (OF TABLES	xviii
LIST (OF CHARTS	xxi
LIST (OF APPENDIXES	xxii
ABST	RACT	xxiii
СНАР	TER 1: INTRODUCTION	1
1.1	BACKGROUND TO STUDY	1
1.2	PROBLEM STATEMENT	3
1.3	RESEARCH QUESTIONS	3
1.4	AIM	4
1.5	OBJECTIVES	4
1.6	JUSTIFICATION	4

1.7 SI	IGNIFICANCE OF STUDY	5
1.8 SC	COPE OF STUDY	5
1.9 ST	TUDY AREA	6
1.10 D	EFINITION OF TERMS	7
CHAPTEI	R 2: LITERATURE REVIEW	9
2.1. T	HE CONCEPT OF INDOOR THERMAL QUALITY	9
2.1.1.	Indoor Air Temperature For The Human Body	10
2.1.2.	Relative Humidity For Users' Thermal Comfort In An Indoor Space	
		11
2.1.3.	Air Flow Rate For Indoor Thermal Comfort	12
2.2. El	NERGY CONSUMPTION IN SHOPPING MALLS	12
2.3. El	NERGY EFFICIENCY IN BUILDINGS	14
2.3.1.	The Prebuilding Phase	15
2.3.2.	The Building Phase	16
2.3.3.	The Post Building Phase	16
2.4. El	NERGY EFFICIENCY IN SHOPPING MALLS	17
2.5. IN	NDOOR THERMAL QUALITY IN SHOPPING MALLS	20
2.5.1.	Orientation Of The Shopping Mall	21
2.5.2.	Openings On Building Walls	22
2.5.3.	Stack Effect In A Shopping Mall	23

2.5.4. Light Quality In	Shopping Mall Interior Space	28	24
2.6. PASSIVE COOLING	G COMPONENTS		25
2.6.1. Solar Shading			25
2.6.2. Shading By Ove	erhangs, Louvers And Awning	,s Etc.	26
2.6.3. Shading Of Roo	f		27
2.6.4. Shading By Tree	es And Vegetation		29
2.6.5. Shading By Tex	tured Surfaces		29
2.6.6. Insulation			30
2.7. PASSIVE COOLIN	G TECHNIQUES FOR E	NHANCING INDOOR	THERMAL
QUALITY			31
2.7.1. Heat Protection:			32
2.7.2. Heat Modulation	n		32
2.7.3. Heat Dissipation	1		32
2.8. SIMULATION OF	BUILDINGS' INDOOR	THERMAL COMFOR	RT USING
AUTODESK ECOTECT A	NALYSIS		33
2.9. SHOPPING MALL			34
2.9.1. Classification O	f Shopping Malls		34
2.10. ARCHITECTURE I	DESIGN REQUIREMENT OF	F SHOPPING MALLS	36
2.11. GAPS IN LITERAT	URE		36
CHAPTER 3: METHODOI	LOGY		38

х

3.1. INTRODUCTION	38
3.2. RESEARCH PHILOSOPHY	38
3.3. RESEARCH DESIGN	39
3.3.1. Primary Sources	39
3.3.2. Secondary Sources	40
3.4. METHODOLOGY BY OBJECTIVES	41
3.5. STUDY POPULATION	43
3.5.1. Sampling Frame	43
3.5.2. Sample Size	43
3.6. DATA COLLECTION INSTRUMENTS	45
3.6.1. Questionnaire	45
3.7. OPERATIONALIZATION OF VARIABLES	46
3.8. VALIDITY AND RELIABILITY	49
3.9. ETHICAL CONSIDERATIONS	50
CHAPTER 4: DATA PRESENTATION AND ANALYSIS OF RESULTS	51
4.1. INTRODUCTION	51
4.2. ANALYSIS OF RESPONSES FROM THE RESPONDENTS	51
4.2.1. Socio-Economic Characteristics Of Respondents	51
4.2.2. Objective 1: Investigate The Existing Passive Cooling Strategies That Can l	Be Applied
To Achieve Indoor Thermal Comfort In Shopping Malls	53

2	4.2.3. Objective 2: Investigate The Reasons For High Usage Of Mechani	cal System In
Compa	arison To Passive Approach In Shopping Malls	57
4.2.4.	Objective 3: Investigate Existing Passive Cooling Features As It Exis	ts In Selected
Shoppi	ing Malls	59
4.3. CA	ASE STUDY RESULTS	59
4.3.1.	Case Study 1: Maryland Mall, Lagos State	59
4.3.2.	Case Study 2: The Palms Mall, Ota, Ogun State	67
4.3.3.	Case Study 3: Ikeja City Mall, Lagos State	76
4.3.4.	Case Study 4: Ventura Shopping Mall	81
4.4. SI	TE AND ENVIRONMENTAL ANALYSIS	87
4.4.1.	Background Information Of Ibadan, Oyo State	87
4.4.2.	Site Location	88
4.4.3.	Site Selection Criteria	89
4.4.4.	Climatic Data And Weather Of Ibadan	91
4.4.5.	Site Characteristics	96
CHAPTER	R 5: DESIGN CRITERIA AND APPROACH	99
5.1. O	VERVIEW	99
5.2. PF	ROJECT GOALS AND OBJECTIVES	99
5.3. FU	JNCTIONAL AND SPACE CRITERIA	100
5.4. OT	THER FUNCTIONAL REQUIREMENT	103

5.5. OP	PERATIONAL REQUIREMENT	104
5.5.1.	Circulation	104
5.5.2.	Lighting	104
5.5.3.	Ventilation	104
5.5.4.	Technological And Environmental Criteria	105
5.5.5.	Materials For The Building's Exterior	105
5.5.6.	Services	105
5.5.7.	Other Considerations	107
5.6. LE	GAL AND PLANNING REGULATIONS	108
CHAPTER	6: CONCLUSION AND RECOMMENDATION	109
6.1. CC	NCEPT AND JUSTIFICATION	109
6.2. DE	ESIGN DEVELOPMENT PROCESS	110
6.2.1.	Bubble Diagrams	110
6.2.2.	Flow Chart	112
6.2.3.	Design Proposal	114
6.3. RE	COMMENDATIONS	115
6.4. CC	ONCLUSION	116
REFEREN	CES	117
APPENDIX	KES	128

LIST OF FIGURES

Fig. 2.1: Vegetative integrated façade system	18
Fig. 2.2: Terracotta cladding façade system for extreme weather conditions	19
Fig. 2.3: Ventilated cooling in shopping mall	19
Fig. 2.4: Light tube system in a mall	20
Fig. 2.5: Building Orientation	21
Fig. 2.6: Openings and wind movement	22
Fig. 2.7: Openings and wind movement	23
Fig. 2.8: Stack Effect in a building	24
Fig. 2.9: Light tube system in a shopping mall	24
Fig. 2.10: Various shading device concept	27
Fig. 2.11: Application of overhangs and fins	27
Fig.2.12: Roof shading techniques	28
Fig. 2.13: Shading of a building by different type of trees	29
Fig. 2.14: Shading of a building by different type of trees	30
Fig. 2.15: Insulation of building external wall	31

LIST OF PLATES

Plates 4.1: Maryland Mall, Ikorodu Road, Lagos State	60
Plates 4.2: Building envelope of Maryland Mall	61
Plates 4.3: Perimeter wall colour, Maryland Mall	62
Plates 4.4: Exterior wall of the building with no window openings, Maryland Mall	62
Plates 4.5: View of façade of the building showing the brutalist finishes with no window	
openings, Maryland Mall	63
Plates 4.6: View of the hard landscape, Maryland Mall	64
Plates 4.7: View of the soft landscape, Maryland Mall	64
Plates 4.8: Shading of interior spaces with corridors, Maryland Mall	66
Plates 4.9: Shading of interior spaces with cantilevered slab, Maryland Mall	67
Plates 4.10: The Palms Mall	68
Plates 4.11: Building envelope of the shopping mall, The Palms Mall	70
Plates 4.12: External wall painting of the mall, The Palms mall	70
Plates 4.13: Glazed openings in the shopping mall, The Palms Mall	71
Plates 4.14: View of the soft landscape, The Palms Mall	72
Plates 4.15: View of the hard landscape, The Palms Mall	73
Plates 4.16: Horizontal steel panels used in shading the building interior, The Palms Mall	74
Plates 4.17: Part of the mall shaded with roof overhangs, The Palms Mall	75

Plates 0.18: Ikeja City Mall	76
Plates 4.19: Building envelope of the shopping mall, Ikeja City Mall	78
Plates 4.20: Glazed openings in the shopping mall, Ikeja City Mall	78
Plates 4.21: View of the hard and soft landscape, Ikeja City Mall	79
Plates 4.22: Roof of the shopping mall, Ikeja CIty Mall	81
Plates 4.23: Ventura Mall	82
Plates 4.24: Building envelope of the shopping mall, Ventura Mall	83
Plates 4.25: Glazed openings in the shopping mall, Ventura Mall	84
Plates 4.26: View of the hard and soft landscape, Ventura Mall.	85
Plates 4.27: Steel coverings and panels, Ventura Mall	86
Plates 4.28: Map of Ibadan	88
Plates 4.29: The Oyo-Ibadan Highway in front of the site	89
Plates 4.30: The road adjacent to the site leading to Emmanuel College of Technology	90
Plates 4.31: Site Topography	96
Plates 4.32: Presence of Shrubs and trees on the site	97
Plates 4.33: Filling station opposite the road along the site	98
Plates 6.1: Conceptual formation of the shopping mall design	109
Plates 6.2: Bubble diagram showing the relationship of spaces on the ground floor	111
Plates 6.3: Bubble diagram showing the relationship of spaces on the first floor	111

LIST OF TABLES

Table 2.1: Building forms to be adopted in different climate conditions	15
Table 3.1: Research methodology by objectives	42
Table 3.2: Study population	43
Table 3.3: Sample size	44
Table 3.4: Operationalization of Variables: questionnaire instrument used	47
Table 4.1: Sex of Respondents	52
Table 4.2: Age group of respondents	52
Table 4.3: Marital Status of respondents	52
Table 4.4: Respondents Academic Qualification	53
Table 4.5: Respondents Occupation	53
Table 4.6: Respondents level of satisfaction with indoor thermal comfort	54
Table 4.7: Respondents level of satisfaction with window location	54
Table 4.8: Respondents level of satisfaction with window sizes	55
Table 4.9: Respondents' level of satisfaction with general landscape provides cooling in	the
shopping mall	55
Table 4.10: Respondents level of satisfaction with the landscape of the mall	55
Table 4.11: Awareness of passive cooling strategies that are relevant to and enhance indoor the	rmal
comfort	56

Table 4.12: Respondents awareness of passive cooling features that can be used to achieve the	ermal
comfort in a shopping mall	57
Table 4.13: Table showing Respondents level of agreement with the use of HVAC to ac	hieve
thermal comfort.	57
Table 4.14: Table showing Respondents level of agreement with the cost of using HVAC s	ystem
is negligible	58
Table 4.15: Adoption of HVAC as the only way to satisfy customers' thermal comfort	58
Table 4.16: Compliance to building envelope, Maryland Mall	61
Table 4.17: Natural Ventilation, Maryland Mall	62
Table 4.18: Landscape Design availability, Maryland Mall	63
Table 4.19: Building Orientation, Maryland Mall	65
Table 4.20: Solar Shading, Maryland Mall	66
Table 4.21: Solar Shading, Maryland Mall	67
Table 4.22: Compliance to building envelope, The Palms Mall	69
Table 4.23: Natural Ventilation, The Palms Mall	71
Table 4.24: Landscape Design compliance, The Palms Mall	72
Table 4.25: Building Orientation, The Palms Mall	73
Table 4.26: Solar Shading, The Palms Mall	74
Table 4.27: Solar Shading, The Palms Mall	75
Table 4.28: Compliance to building envelope, Ikeja City Mall	77

Table 4.29: Natural Ventilation, Ikeja City Mall	79
Table 4.30: Landscape Design compliance, Ikeja City Mall	79
Table 4.31: Building Orientation, Ikeja City Mall	80
Table 4.32: Solar Shading, Ikeja City Mall	80
Table 4.33: Insulation, Ikeja City Mall	81
Table 4.34: Compliance to building envelope, Ventura Mall	83
Table 4.35: Natural Ventilation, Ventura Mall	84
Table 4.36: Landscape Design compliance, Ventura Mall	85
Table 4.37: Building Orientation, Ventura Mall	85
Table 4.38: Solar Shading, Ventura Mall	86
Table 4.39: Solar Shading, Ventura Mall	87
Table 5.1: Service Zone	101
Table 5.2: Commercial Zone	101
Table 5.3: Recreational Zone	102
Table 5.4: Administrative Zone	102
Table 5.5: Sanitary Instalments ratio	108

LIST OF CHARTS

Chart 4.1: Average monthly Rainfall in Ibadan	91
Chart 4.2: Average Wind Speed in Ibadan	92
Chart 4.3: Average Monthly High and Low temperature in Ibadan	93
Chart 4.4: Average Monthly Sunrise and Sunset with Twilight in Ibadan	94
Chart 4.5: Monthly Humidity Comfort levels of Ibadan	95
Chart 0.1: Flow Chart showing the sequential connection of spaces on the ground floor	113
Chart 6.2: Flow Chart showing the sequential connection of spaces on the first floor	113
Chart 6.3: Flow Chart showing the sequential connection of spaces on the second floor	114

LIST OF APPENDIXES

Appendix 1: Questionnaire on the Application of Passive Cooling Components in the De	esign of
a Shopping Mall, Oyo State, Nigeria	128
Appendix 2: Observation Guide	133
Appendix 3: Site Location	135
Appendix 4: Site Analysis	136
Appendix 5: Drawings	137

ABSTRACT

It is important that buildings, especially public buildings are designed in ways that are energy efficient and provide thermal comfort for users. This study aims to design a shopping mall in Ibadan by adopting passive cooling design features towards achieving optimum indoor thermal comfort for users. The objectives of the study were to; investigate the existing passive cooling strategies that can be applied to achieve indoor thermal comfort in shopping malls; investigate the reasons for more usage of mechanical system in comparison with passive approach in shopping malls; investigate existing passive cooling features as it exists in selected shopping malls and design an energy efficient shopping mall that would optimize indoor thermal comfort by incorporating passive cooling components. The research was conducted by both quantitative and qualitative methods. The data collection instruments include questionnaires and observation schedules. Data was collected across four selected Shopping malls in Lagos, Ogun and Oyo State, Nigeria. A total of 79 questionnaires were distributed while 78 were retrieved. Two of the retrieved questionnaires were invalid and 76 were subsequently used in the analyses. Data was analyzed using the descriptive statistical tools of frequency and percentages of the Statistical Product for Services and Solutions (SPSS) and presented using tables and pictures. Data collected includes primary and secondary data. This study identifies the best practices through which passive cooling features can be used to improve the indoor thermal comfort of users in a shopping mall. The findings from this study also shows that poor air flow can be mitigated by incorporating passive cooling features like natural ventilation and green landscape in a shopping mall design. Furthermore, it was found out generally that some Shopping malls did not adopt passive cooling features in their design. It was also discovered that the benefit of passive cooling features translates into more cost-efficient ways of operating a shopping mall and reduces its life cycle cost, which leads to energy efficiency.

Keywords: Passive Cooling, Sustainable Design, Energy Efficiency, Shopping Mall & Ibadan