DEVELOPMENT OF A KNOWLEDGE GRAPH MODEL FOR RESOURCE MANAGEMENT IN E-LIBRARY

AKINWUMI, HANNAH 18PCG02024 B.Sc Information Technology, Jamia Hamdard University, New Delhi

NOVEMBER, 2021

DEVELOPMENT OF A KNOWLEDGE GRAPH MODEL FOR RESOURCE MANAGEMENT IN E-LIBRARY

BY

AKINWUMI, HANNAH 18PCG02024 B.Sc Information Technology, Jamia Hamdard University, New Delhi

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COVENANT UNIVERSITY OTA, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE IN COMPUTER SCIENCE

NOVEMBER, 2021

ACCEPTANCE

This is to attest that this dissertation was accepted in partial fulfillment of the requirements for the award of Master of Science (M.Sc) degree in Computer Science in the Department of Computer and Information Science, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Mr. John A. Philip (Secretary, School of Postgraduate Studies)

Signature & Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature & Date

DECLARATION

I, **AKINWUMI, HANNAH** with matriculation number **18PCG02024**, hereby declare that this dissertation entitled **DEVELOPMENT OF A KNOWLEDGE GRAPH MODEL FOR RESOURCE MANAGEMENT IN E-LIBRARY** was carried out by me under the supervision of Prof. Ambrose A. Azeta. This dissertation is an original study in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere.All scholarly information used in this study is fully acknowledged.

HANNAH AKINWUMI

Signature and Date

v

CERTIFICATION

This is to certify that the dissertation titled "DEVELOPMENT OF A KNOWLEDGE GRAPH MODEL FOR RESOURCE MANAGEMENT IN E-LIBRARY" was carried out by AKINWUMI, HANNAH with matriculation number 18PCG02024 under the supervision of Prof. Ambrose A. Azeta in the Department of Computer and Information Science, College of Science and Technology, Covenant University, Ota, Ogun State.

Prof. Ambrose A. Azeta (Supervisor)

Dr. Olufunke O. Oladipupo (Head of Department)

Prof. Olusegun Folorunso (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated to the Producer of the 'movie' of my life, the Ultimate Deliverer, the Way Maker, the Capable One, the King over all storms, the All Sufficient One, the Father of the fathers and the Father to the fatherless, the Great Provider, the Everloving One, the Never-erring but Forgiver of all sins, and the Timeless One that is always right on time - the Almighty God.

ACKNOWLEDGEMENTS

The Almighty God preserved, strengthened, and blessed me during this research work. He directed people to provide support to me during the course of this study. I give HIM all the glory.

My profound appreciation goes to the Chancellor and Chairman of the Board of Regents, Covenant University, Dr. David O. Oyedepo, for the academic and spiritual platform created. I sincerely thank the Vice-Chancellor, Professor Abiodun H. Adebayo and all the management team for running with the vision. I also appreciate the leadership of the School of Postgraduate Studies led by Professor Akan B. Williams and Dr. Emmanuel O. Amoo.

My heartfelt gratitude goes to my Supervisor, Professor Ambrose A. Azeta for his invaluable contributions, support, kindness, patience, understanding and his fatherly support, time, prayers and advice. Many thanks to Dr. Olufunke O. Oladipupo. (HoD, Computer and Information Science) for her advice and support towards the completion of my Master's degree programme. To my Postgraduate coordinator, Dr. Aderonke Oni, I want to say thank you for your timely words of encouragement and support even when I almost gave up and to all Faculty and Staff of Computer and Information Science Department, Covenant University for their support and encouragement at various times. The scholarly contributions of Professor V.C. Osamor, Dr. Oyelade, Dr. I. Afolabi, Dr. I. Odunayo, Dr. S. Okuboyejo, Dr. Oluranti Jonathan and Dr. Falade to my dissertation are appreciated. May God satisfy all your heart desires, according to His perfect will.

Many thanks to my great parents, Sir and lady Peter D. Tuko (KSM, JP), for their sacrificial contributions to my basic and undergraduate education – which is the foundation on which my postgraduate education stands. My in-laws and my siblings especially Dr. Moses T. Tuko family, deserve commendation for their support to my family.

My sincere and heartfelt gratitude goes to my supportive husband of priceless value, best friend and "rabin rai", Dr. Isaac Ibukun Akinwumi, "Allah ya bar mu tare, ya kuma bamu yawanchi rai chikin kwanchiyar hankali da arziki". Thank you for your immense sacrifice,

prayers and understanding, especially when I was not readily available at home. To my children - Anna, Samuel and Elijah – thank you for sparing me part of the time I should have used to nurse and play with you.

I would also like to say a big thank you to all those, whose names I may have unintentionally omitted. God bless you all.

TABLE OF CONTENTS

ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xii
LIST OF TABLES	xiv
ABSTRACT	XV
CHAPTER ONE : INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Problem	3
1.3 Research Questions	3
1.4 Aim and Objectives	4
1.5 Research Methodology	4
1.6 Significance of the Study	5
1.7 Scope and Limitations of the Study	5
1.8 Organization of the Dissertation	5
CHAPTER TWO : LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Theoretical Framework	6
2.2.1 Knowledge Graph	9
2.2.2 Knowledge Graphs Assumption	11
2.2.3 Knowledge Graph Embedding	13
2.2.4 Anatomy of a Knowledge Graph Embedding Model	14
2.3 Related Works	16
2.4 Knowledge Graph	21
2.4.1 The History and Definition of Knowledge Graph	22

2.4.2	The Architecture of Knowledge Graph	28
2.4.3	The Schema of Academic Knowledge Graph	29
2.5 S	emantic Technology	29
2.5.1	Ontologies in the Semantic Web	30
2.5.2	Data Modelling using RDF Turtle Syntax	31
2.5.3	Data Store (MongoDB JSON like Database)	32
2.5.4	Staple API	32
2.6 O	verview of E-library	33
2.6.1 I	Definition of Electronic Library	34
2.6.2	The Software Architecture for E-library	36
2.7 Syste	m Evaluation with ISO 9241-11	37
CHAPTER	THREE : RESEARCH METHODOLOGY	38
3.1 In	troduction	38
3.2 Requ	irements Specification	44
3.2.1 F	Functional Requirements.	45
3.2.2 N	Non-Functional Requirements	46
3.3 Syste	m Requirement Modelling	53
3.3.1 U	Jse case Diagram	54
3.3.2 A	Activity Diagram	55
3.4 Data	Modelling	58
CHAPTER	R FOUR : RESULTS AND DISCUSSION	61
4.1 Introd	luction	61
4.2 Imple	ementation Tools	61
4.2.1 F	Programming Languages	61
4.2.2 7	The Web Server-Side	62
4.2.3 7	The Database Management	62
4.3 Syste	m Requirement	63
4.3.1 H	Iardware Requirement	63

4.3.2 User Interface	63
4.4 Testing and Deployment	64
4.4.1 Accessing the System	64
4.5 Implementation Screenshots	64
4.6 Usability Evaluation Using System Usability Scale	69
4.7 Discussion	72
CHAPTER FIVE : CONCLUSION AND RECOMMENDATIONS	86
5.1 Summary	86
5.2 Conclusion	86
5.3 Contributions to Knowledge	87
5.4 Recommendations	87
REFERENCES	88
APPENDIX A: PROGRAME CODES	93
Node Module	93
Transform JS	95
Staple Api Index Js	99
Data Model for the Resources	101
The front-end design with HTML, CSS and JS	101

APPENDIX B: SYSTEM USABILITY EVALUATION QUESTIONNAIRE 103

LIST OF FIGURES

Figures	Title of Figures	Page
2.1	Knowledge graph	10
2.2	Data sources of knowledge graph curation	22
2.3	A simple instance of a knowledge graph	23
2.4	Process of Building Concept Knowledge Graph	23
2.5	The Architecture of knowledge Graph	28
2.6	Software Architecture of E-library	36
3.1	Flowchart of the adapted research process	38
3.2	A Schematic Diagram of Implementation Flow Strategy	39
3.3	The Proposed Knowledge Graph Model	40
3.4	Algorithm for Staple knowledge graph generation from academic data	47
3.5	The Star Match $(T, N(v))$ algorithm	48
3.6	Pseudocode for the Resource Search Sequence	48
3.7	Search Terms Algorithm	49
3.8	Architecture of the proposed knowledge graph system	50
3.9	Use case diagram for library users	54
3.10	An Activity Diagram Showing the System Work Flow	55
3.11	Partioning Algorithm	56
4.1	Screenshot of homepage	62
4.2	Screenshot of the login page	62
4.3	Screenshot of the knowledge graph Enquiry page	63
4.4	Screenshot of the Enquiry page	63
4.5	Screenshot of the Database	64
4.6	Root node data according to Year	64
4.7	Root and parent node and relationships	65
4.8	Parent and child node relationships	65
4.9	Screen shoot of the cleaned data output	69
4.10	Proof of data cleaning process	72
4.11	Screen shoot of JSON output	74

4.12	Generating schema screen shoot	77
4.13	Prof of data stored in MongoDB	78
4.14	Screen shoot of server query	79
4.15	Query Output visualized graph	79
4.16	Result gotten after deploying search functionality at the front end	80
4.17	Knowledge graph usability rating radar chart	82

Tables	Title of Tables	Page
1.1	Objective and Methodology Mapping	4
2.1	Symbols and Description	11
2.2	Model properties	14
2.3	Summary of Literature review	23
2.4	Academic Knowledge Graph Relations	28
3.1	Administrators Table (administrator_table)	57
3.2	Preference Table (preference_table)	57
3.3	Users Table (User_table)	57
3.4	EJournals Table (ejournal_table)	58
3.5	EBooks Table (ebooks_table)	58
4.1	The Minimum Hardware Requirements for System Deployment	60
4.2	Descriptive Statistics of Respondents	66
4.3	Evaluation Report	66
4.4	Measurement Evaluation	67

LIST OF TABLES

ABSTRACT

Electronic libraries grant communities access to electronic resources, aiding information seekers to acquire knowledge and utilize them for various purposes. The ambiguity of the natural language that makes it difficult to get a perfect match between a user's query and resources or document is an inherent challenge to any information retrieval system that deals with text. Techniques from information visualization like knowledge graph will be valuable to describe collections can optimize information retrieval services in several aspects such as recommendation and reference services. Some library users do not know how to search for the resources and materials they need. Some other categories of users come with only ideas to the library looking for resources. There are also case where librarians have to sources for materials to archive at the reference section of the library. This study provided a knowledge graph model of resources in E-library, boosted the information search and facilitated information retrieval more efficiently. This study collected dataset from an academic database and preprocessed after which the dataset was Transformed to Java Script Object Notation (JSON). The Resource Description Framework (RDF) modeled the data using turtle syntax to generate the schema. Entity and relationship was extracted with RDF Turtle syntax then the data was stored in MongoDB. The knowledge graph constructed by Coding Staple API GraphQL. The knowledge graph queried the graphQL and rendered knowledge graph via Vis.js. HTML, CSS and JS deployed for the front-end user access. The study utilized various technologies, such as MongoDB Atlas, Staple API and Repl.it IDE. A prototype knowledge graph was developed. A five-point Likert scale was used for the system's evaluation. The attributes evaluated were user satisfaction, efficiency and learnability. The average scores obtained for the user satisfaction, efficiency and learnability were 4.70, 4.21 and 3.71, respectively. The scores show that the users rated the system high.

Keywords: Electronic library, Electronic resources, Graphql, Knowledge graph, Ontology, Semantics.