VOLTAGE PROFILE AND POWER LOSSES ANALYSIS ON COVENANT UNIVERSITY MICROGRID WITH PHOTOVOLTAIC PENETRATION

BY

ATTAH, AMARACHI RITA

(18PCK02052)

B.Eng Electrical and Electronics Engineering, Kwame Nkrumah University of Science and Technology, Kumasi Ghana.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE MASTER OF ENGINEERING (M.Eng.) DEGREE IN ELECTRICAL AND ELECTRONICS ENGINEERING IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY.

SEPTEMBER, 2021

ii

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Electrical and Electronics Engineering in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Mr. Philip J. Ainwokhai

(Secretary, School of Postgraduate Studies)

Signature and Date

Professor Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ATTAH, AMARACHI RITA (18PCK02052) declares that this research was carried out by me under the supervision of Dr. Ayoade F. Agbetuyi of the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

ATTAH, AMARACHI RITA

Signature and Date

CERTIFICATION

We certify that this dissertation titled "VOLTAGE PROFILE AND POWER LOSSES ANALYSIS ON COVENANT UNIVERSITY MICROGRID WITH PV PENETRATION is an original research work carried out by ATTAH, AMARACHI RITA (18PCK02052) in the Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Ayoade F. Agbetuyi. We have examined and found this work acceptable as part of the requirements for the award of Master of Engineering.

Dr. Ayoade F. Agbetuyi

(Supervisor)

Prof. Emmanuel Adetiba

(Head of Department)

Prof. Ogbonnaya I. Okoro

(External Examiner)

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated, first of all, to the Almighty God for His mercies, grace, wisdom and favour throughout the Masters' programme. It is also dedicated to my dear parents Engr and Mrs D. O. Attah, siblings Kelechi Attah and Cheluchi Attah and friends for all their love, guidance, support, and prayers. This research work is also dedicated to Africa my continent, Nigeria my country and to Covenant University.

ACKNOWLEDGEMENTS

My immense gratitude belongs to the FATHER ALMIGHTY who gives mercy, help, strength, insight, knowledge and wisdom. HE has been my faithful source and sustenance through this journey.

My profound gratitude also goes to the chancellor, Covenant University, Dr. David O. Oyedepo in whose vision and light we have found direction and inspiration. Thank you so much sir for showing young hearts that we can and should look to use our knowledge to provide solutions to challenges peculiar to the African Continent. Also, the Vice Chancellor, Prof. Abiodun H. Adebayo, and the Dean School of Post Graduate School, Prof. Akan B. Williams also, the Head of Department Electrical Information Engineering, Prof. E. Adetiba for providing an enabling environment for this study.

I am also sincerely grateful for my supervisor Dr. Ayoade F. Agbetuyi for your understanding, patience and guidance throughout this research and in the thesis writing. I am truly grateful for the liberty to grow and get better at research under your supervision sir. Also grateful to all my lecturers who saw me through my course work and made contributions to this research both directly and indirectly Dr. H. Orovwode, Dr. J. A. Badejo, Prof. A. U. Adoghe, Dr. Isaac Samuel, Dr. A. Awelewa, Prof. C. Awosope, Dr. Abdulkareem to mention a few. May you long enjoy the fruit of your labour over us. Also, to appreciate the non-academic staff and my colleagues I could not have made this far without you all. I specially want to appreciate Mr J. Okpe, Mr Bright O. Appiah, Engr. Remi and Mr S. Mauculey for your assistance in this research.

My deep appreciation and heart felt gratitude goes to my family Engr and Mrs D. O. Attah, siblings Kelechi Attah and Cheluchi Attah you are more than I deserve. The love, support and care during this research has been so overwhelming. I pray we will all long enjoy the fruits of the sacrifices made by you daddy and mummy. I pray that you Kc and Cc will be inspired to do much more than you have encouraged me to do in this programme. I love you all deeply.

I also want to deeply appreciate the Heads of Department Physical Planning Development Unit of the Covenant University and Canaanland; Engr. Roland and Engr. Takpor for your immense help in this work and for providing access to the data used in this research. I also want to appreciate my GOD sent help in the persons of Mr and Engr. Mrs E. Sanni, Ejiobih Ebuka, Chris-Ossai Ekene, Pastor and Pastor Mrs Adebowale Adesina, Pastor and Pastor Mrs Michael Addai for your prayers and support.

TABLE OF CONTENTS

CONTENTS	PAGE
COVER PAGE.	ii
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xii
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS AND SYMBOLS	xvii
ABSTRACT	xix
CHAPTER ONE: INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of the Problem	5
1.3 Aim and Objectives of Research	7
1.4 Scope of Study	7
1.5 Justification of the Study	8
1.6 Limitation of Research	9
1.7 Dissertation Organisation	9
CHAPTER TWO: LITERATURE REVIEW	10
2.1 Chapter Introduction	10
2.2 Post Pandemic Electricity Situation in Nigeria	10
2.3 Available Sources of Electricity and Demand in Nigeria	11
2.3.1 Renewable Energy Resources Available in Nigeria	12
2.4 Microgrids	15
2.4.1 Microgrid Components	15

2.4.2 Microgrid Operation	17
2.4.2.1 Utility Grid Connected Microgrid Operation	18
2.4.2.2 Islanded Microgrid Operation	18
2.4.2.3 Transitioning Between On-grid and Off-grid Operation	20
2.4.3 Microgrid Challenges	20
2.4.3.1 Power Imbalance and Stability Issues	22
2.4.3.2 Frequency Fluctuations and Poor Active Power Control	23
2.4.3.3 Poor Voltage Profile and Reactive Power Control	23
2.4.3.4 Harmonics in DC Microgrids	24
2.4.3.5 Auxiliary Devices Interference	24
2.5 Design of Campus Microgrid	24
2.5.1 Categories of Microgrid Projects	25
2.5.2 Design Guidelines for Campus Microgrids	26
2.5.2.1 Project Information Assessment	28
2.5.2.2 Present Electricity Demand Assessment	28
2.5.2.3 Load Profiling and Clusters	30
2.5.2.4 Energy Demand Forecasting	31
2.5.2.5 Network Configuration Choice	32
2.6 Microgrid Control System	32
2.6.1 Load Flow Studies	33
2.6.2 Load Flow Studies with Distributed Generation	35
2.7 Review of Related Works	36
2.8 Chapter Summary	42
CHAPTER THREE: MATERIALS AND METHODS	43
3.1 Introduction	43
3.2 Renewable Energy Resource Data Assessment	44
3.3 Load Profiling of Covenant University Network	46
3.3.1 Total Energy Demand in Covenant University	54
3.4 The University Network	59

3.5 Covenant University Microgrid Modelling and Design	62
3.5.1 Solar Photovoltaic (Solar Panel) Choice and Size	62
3.5.2 Inverter Choice and Size	64
3.5.3 Charge Controller Choice and Size	65
3.5.4 Battery Choice and Size	65
3.5.5 Diesel Generator Model	65
3.6 HOMER Design Simulations Inputs	66
3.6.1 HOMER Load Modelling	67
3.6.2 HOMER Solar PV Modelling	68
3.6.3 HOMER Inverter Modelling	69
3.6.4 HOMER Battery Modelling	70
3.6.5 HOMER Diesel Generator Modelling	70
3.6.6 HOMER Controller Modelling	71
3.7 Load Flow Analysis of Covenant University Network Using Neplan Software	73
3.7.1 Load Flow Analysis of Covenant University with Different Network Topologies	77
3.8 Chapter Summary	80
CHAPTER FOUR: RESULTS AND DISCUSSION	81
CHAPTER FOUR: RESULTS AND DISCUSSION 4.1 Chapter Introduction	81 81
-	81
4.1 Chapter Introduction	81
4.1 Chapter Introduction4.2 Analytical Computation Results of Distributed Generating Units for the Campus from	81 Section
4.1 Chapter Introduction4.2 Analytical Computation Results of Distributed Generating Units for the Campus from3.5.1	81 Section 81 84
 4.1 Chapter Introduction 4.2 Analytical Computation Results of Distributed Generating Units for the Campus from 3.5.1 4.3 Optimization Results Using HOMER 	81 Section 81 84
 4.1 Chapter Introduction 4.2 Analytical Computation Results of Distributed Generating Units for the Campus from 3.5.1 4.3 Optimization Results Using HOMER 4.4.1 Covenant University Network Load Flow Results Without Distributed Energy Reso 	81 Section 81 84 urces 85
 4.1 Chapter Introduction 4.2 Analytical Computation Results of Distributed Generating Units for the Campus from 3.5.1 4.3 Optimization Results Using HOMER 4.4.1 Covenant University Network Load Flow Results Without Distributed Energy Reso 4.4.2 The Grid Connected Network Analysis without Diesel Generators 	81 Section 81 84 urces 85 89
 4.1 Chapter Introduction 4.2 Analytical Computation Results of Distributed Generating Units for the Campus from 3.5.1 4.3 Optimization Results Using HOMER 4.4.1 Covenant University Network Load Flow Results Without Distributed Energy Reso 4.4.2 The Grid Connected Network Analysis without Diesel Generators 4.4.4 The Islanded Network Analysis 	81 Section 81 84 urces 85 89 101
 4.1 Chapter Introduction 4.2 Analytical Computation Results of Distributed Generating Units for the Campus from 3.5.1 4.3 Optimization Results Using HOMER 4.4.1 Covenant University Network Load Flow Results Without Distributed Energy Reso 4.4.2 The Grid Connected Network Analysis without Diesel Generators 4.4.4 The Islanded Network Analysis 4.4.5 The Islanded Network Analysis with Diesel Generators 	81 Section 81 84 urces 85 89 101 106
 4.1 Chapter Introduction 4.2 Analytical Computation Results of Distributed Generating Units for the Campus from 3.5.1 4.3 Optimization Results Using HOMER 4.4.1 Covenant University Network Load Flow Results Without Distributed Energy Reso 4.4.2 The Grid Connected Network Analysis without Diesel Generators 4.4.4 The Islanded Network Analysis 4.4.5 The Islanded Network Analysis with Diesel Generators 4.4.6 The Islanded Network Analysis with Diesel Generators and STATCOM 	81 Section 81 84 urces 85 89 101 106 111

4.6.2 Covenant University Connected to Canaanland Grid Network Analysis	118
4.6.3 Covenant University Disconnected from the Canaanland Grid (Islanded) Netwo	ork Analysis
	119
4.7 Voltage Profile Analysis	120
4.7.1 Voltage Profile Results Analysis of the Grid Connected Network	120
4.7.2 PV Penetration Levels	122
4.7.3 Voltage Profile Results Analysis of the Islanded Network	123
4.8 Reactive Power Analysis	125
4.9 Chapter Summary	126
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	128
5.1 Summary	128
5.2 Conclusion	128
5.2 Research Contribution	129
5.3 Recommendations	129
REFERENCES	130
APPENDIX	137
Appendix I	137
Appendix II	139
Appendix III	140
Appendix VI	163
Appendix IV	159

LIST OF FIGURES

Figures	List of Figures	Page
2.1	The classifications of various energy storage methods	17
2.2	An example of a Hybrid Energy Source Islanded/Autonomous Microgrid	19
2.3	The procedure of designing a campus microgrid	27
2.4	A Weekday Sample of Load Patterns of Different Customer Types in the Same Location	29
	(Covenant University).	
2.5	An example of a circular microgrid configuration	32
2.6	A Schematic Diagram of a Radial Distribution with Distributed Generation.	36
3.1	Aerial View of Covenant University (Google Earth).	43
3.2	Process Flowchart for Methodology Adopted	44
3.3	The Load Profile for the same House on a Monday and on a Saturday	48
3.4	A Plot of the Residential Energy Consumed Daily Through the Months of the Year 2019 in	56
	Covenant University	
3.5	A Plot of the Average Commercial and operational Energy Consumed Daily Through the	56
	Months of the Year 2019 in Covenant University	
3.6	A Plot of the Peak Total Commercial and operational Energy Profile for 1 day in Covenant	57
	University	
3.7	A Plot of the Total Residential Energy Profile for 1 day in Covenant University.	57
3.8	The energy consumption percentages of residential loads from the end users as at 2021	58
3.9	The energy consumption percentages of operational loads from the end users as at 2021	59
3.10	The Seasonal Load Profile of the university as computed using HOMER Software.	61
3.11	A screenshot of the Design Simulation Using the HOMER Software	66
3.12	The inputs for the Solar Panel	69
3.13	The inputs for the Converter	69
3.14	The inputs for the Battery	70
3.15	The inputs for the Generator with its fuel consumption and efficiency curve	71
3.16	The inputs for the Simulation Controller	72
3.17	The Components of the Microgrid as Optimized by HOMER	72
3.18	The modelling of the supply to the University network using Neplan	73
3.19	CST, Library and Hostel Power Houses as modelled using Neplan	74
3.20	PG and Chapel powerhouses as modelled using Neplan	74

3.21	EIE, CDS, New Estate and Borehole Power Houses	75
3.22	The flow chart for Newton Raphson Method Used by Neplan Software	76
4.1	The optimization results for architecture and cost of the Project in HOMER Software	84
4.2	The voltage profile at the different busses	86
4.3	The Schematic Diagram of the Network with only Solar Energy Integrated	91
4.4	The Schematic Diagram of the Grid Connected Network Analysis with Diesel Generators and	96
	Voltage Control Devices	
4.5	The Schematic Diagram of the Islanded Network Analysis	103
4.6	The Schematic Diagram of the Islanded Network Analysis with Diesel Generators	108
4.7	The Schematic Diagram of the Islanded Network Analysis with Diesel Generators and	113
	STATCOM	
4.8	The Voltage Profile of the Network; Existing, Grid connected, islanded with the voltage control	124
	Devices.	

LIST OF TABLES

Tables	List of Tables	Page
1.1	The Categorized Representation of the Challenges of Renewable Energy Integration into the	3
	Grid	
2.1	Power Plants in Nigeria as at 2018	12
2.2	Available Renewable Energy Resources in Nigeria	14
2.3	Some Challenges of Microgrid with Photovoltaic Integration	21
2.4	Some Selected Similar Works	36
3.1	Average Solar Radiation and Wind Speed at Covenant University	45
3.2	Physical Waste Generation in Ado-Odo Ota according to Sampled Locations	46
3.3	Derived Load Profile for a Residential Building in the Senior Staff Quarters in Covenant	47
	University on a weekday (Borehole).	
3.4	Total Load on a Saturday of the same house in 3.3	48
3.5	The Derived Load Profile for an Office (pool Office) in CUCRID Building in Covenant	49
	University on a weekday (CDS)	
3.6	The Load Profile of a Room in the Female Post Graduate Hall (Post Graduate)	49
3.7	The Load Profile of a Room in the Female Undergraduate Hostel (Hostel)	50
3.8	The Load Profile of an office in the Library (Library)	50
3.9	The Load Profile of an office in the Chapel (Chapel)	51
3.10	The Load Profile of a house in the New Estate (New Estate).	51
3.11	Total Load on a Saturday of the same house in 3.10	52
3.12	The Load Profile of an office in the EIE Building (EIE)	52
3.13	The Load Profile of an office in the CST Building (CST)	53
3.14	The List of Load Clusters	60
3.15	Technical Specification of LONGI LR6-72PH 370M (Longi Panel Specs.pdf)	62
3.16	Technical Specification of 500kW FRONIUS PRIMO Solar Inverter	64
3.17	Technical Input Specification of XTRA POWER MPPT XT12/96V60A	65
3.18	The Hourly Representation of the Total Energy Demand in CU as Imputed into	67
	HOMER	
3.19	System Load Parameters as Inputted in Neplan Software	75
3.20	System Line Parameters as Inputted in Neplan Software	76
3.21	The Load Flow Analysis Parameters for the Existing Network	78

3.22	The Load Flow Analysis Parameters for the Network with Only solar and Energy	78
3.23	Storage The Load Flow Analysis Parameters for the Network with Solar, Energy Storage,	79
	Diesel Generator and STATCOM	
4.1	Load Flow Analysis Result Without Distributed Energy Resources	85
4.2	The Reactive and Active Power Delivered and Losses of Various Major Elements in the	86
	Network.	
4.3	Load Flow Analysis of the Network with only Solar Energy Integrated	89
4.4	The Reactive and Active Power Delivered and Losses of Various Elements in the Grid Connected Network	92
4.5	Load Flow Analysis of the Grid Connected Network Analysis with Diesel Generators and	97
	Voltage Control Devices.	
4.6	The Reactive and Active Power Delivered and Losses in Various Elements of the Grid	98
	Connected Network Analysis with Diesel Generators and Voltage Control Devices.	
4.7	Load Flow Analysis of the Islanded Network Analysis with Solar and Energy Storage.	101
4.8	The Reactive and Active Power Delivered and Losses in Various Elements of the Islanded	104
	Network Analysis with Energy Storage.	
4.9	Load Flow Analysis of the Islanded Network Analysis with Energy Storage and Diesel	107
	Generators.	
4.10	The Reactive and Active Power Delivered and Losses in Various Elements of the Islanded	109
	Network Analysis with Energy Storage and Diesel Generators.	
4.11	Load Flow Analysis of the Islanded Network Analysis with Energy Storage and Diesel	112
	Generators and STATCOM.	
4.12	The Reactive and Active Power Delivered and Losses in Various Elements of the Islanded	114
	Network Analysis with Energy Storage and Diesel Generators and STATCOM.	
4.13	Results Analysis Using HOMER and an Analytical Approach	117
4.14	Summary of Voltage Profile Results in Per Unit for the Grid Connected Network	121
4.15	Different PV Penetration Levels of Solar Energy at the Different Low Voltage	122
4.13	Different i v i eneration Levels of Solar Energy at the Different Low Voltage	122

Buses

4.16	Summary of Voltage Profile Results in Per Unit for the Islanded Network	123
4.17	A Summary of the Power Losses for the Canaanland Grid Connected Network	125
4.18	A Summary of the Power Losses for the Canaanland Grid Connected Network	126

LIST OF ABBREVIATIONS AND SYMBOLS

DISCO	Distribution Companies
FACTS	Flexible AC Transmission System.
GENCO	Generation Companies
HOMER	Hybrid Optimization Model for Electrical Renewables
IEA	International Energy Agency
IEEE	Institute of Electrical and Electronics Engineers
IRENA	International Renewable Energy Agency
KV	KiloVolts
MVA	MegaVolts-ampere
MVAr	MegaVolts-ampere of reactive power
MW	MegaWatts
NASA	National Aeronautics and Space Administration
NASENI	National Agency for Science and Engineering Infrastructure
NEPA	National Electrical Power Authority
NESI	Nigerian Electricity Supply Industry
NNG	Nigerian National Grid
PCC	Point of Common Coupling
PHCN	Power Holding Company of Nigeria
P _s , Pr	Real power at sending bus s and receiving bus r
Pu	Per unit
Р	Active Power
Qs, Qr	Reactive power at sending bus s and receiving bus r
Q	Reactive power
R	Line resistance
SERC	Sokoto Energy Research Centre
STATCOM	Static Synchronous Compensators
S _S , Sr	Apparent power at sending bus s and receiving bus r
TCN	Transmission Company of Nigeria
Tmax	Highest ambient temperature for the installation site
$ \mathbf{V} $	Voltage magnitude
Vmp_{min}	Minimum module voltage expected at site high temperature
V _S , V _r	Voltage at sending bus s and receiving bus r

VSI	Voltage Stability Index
Х	Line reactance
Z	Line impedance
δ	Angle difference between sending and receiving end voltages

ABSTRACT

The impact of integrating distributed generation (DG) into a microgrid network in terms of voltage profile and reactive power losses can be assessed by two methods; dynamic and steady states through a power flow studies of the network busses. The impact has some positive aspects such as improved voltage profile and reactive power supply and control but can also lead to severe low or over voltages at different busses in the network and reverse power flows depending on the size, number, type and placement of the DG. This research investigated voltage profiles and reactive power losses on the Covenant University microgrid with and without hybrid energy sources to ascertain the impact of the hybrid energy sources on the voltage profile and reactive losses in the network. It looks into the supply of a portion of the daytime peak load using solar energy and energy storage and the impact of this on the existing network in terms of voltage profile and losses. In achieving this first, measurements of the existing network parameters using a Fluke 1730 Power Analyzer and an energy demand analysis from existing records of the campus was carried out. Secondly, the design of the microgrid was done using mathematical calculations and HOMER software which was used to optimize the microgrid design. Thirdly, a single line diagram of the existing network with and without DG was developed and steady analysis was carried out on the existing network with and without the DG using NEPLAN Software. A single line diagram of the campus disconnected from Canaanland supply was also developed with only DG supply and steady state analysis (load flow studies) was carried out using NEPLAN Software. The Load flow studies reveal that the integration of the DG and STATCOM used in the microgrid improve the voltage profile from 0.841, 0.8859 and 0.8895 to 0.9063, 0.8894 and 0.9444 with the inclusion of the diesel generators available on campus and solar and energy storage as obtained in calculations with further increase to 0.9065, 0.9414 and 0.9446 for undergraduate, post graduate and new estate LV BUSES respectively with STATCOM included in the grid connected analysis. Similar system behaviour was obtained for the islanded but overall profile performance was best in the grid connected. To achieve reactive power losses reduction STATCOM was required for the reactive power losses reduction by 47.64% for the grid connected and 52.36% for the islanded network.

Keywords: Campus Microgrids, Fluke 1730 Power Analyzer, HOMER, NEPLAN, Photovoltaic Penetration levels, Reactive Power Losses, Renewable Energy, Voltage.