LOGISTICS OPERATIONS AND SUSTAINABLE PERFORMANCE OF SELECTED TEXTILE MANUFACTURING FIRMS IN LAGOS STATE, NIGERIA

ADEDUGBA, ADEBAYO TOLULOPE 17PAB01530

NOVEMBER, 2021

LOGISTICS OPERATIONS AND SUSTAINABLE PERFORMANCE OF SELECTED TEXTILE MANUFACTURING FIRMS IN LAGOS STATE, NIGERIA

BY

ADEDUGBA, ADEBAYO TOLULOPE

B.Sc Systems Engineering (Operations Research option), University of Lagos, Akoka

M.Sc Business Administration (Operations Research), University of Lagos, Akoka

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN BUSINESS ADMINISTRATION IN THE DEPARTMENT OF BUSINESS MANAGEMENT, COLLEGE OF MANAGEMENT AND SOCIAL SCIENCES, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

NOVEMBER, 2021

ACCEPTANCE

This is to authenticate that this thesis is acknowledged in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Business Administration in the Department of Business Management, College of Management and Social Sciences, Covenant University, Ota, Ogun State, Nigeria.

Mr. John A. Philip (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ADEDUGBA ADEBAYO TOLULOPE (17PAB01530) declare that this research was carried out by me under the supervision of Dr. Olaleke O. Ogunnaike, of the Department of Business Management and Dr. Kingsley A. Adeyemo of the Department of Accounting, College of Management and Social Science, Covenant University, Ota, Ogun State, Nigeria. I attest that the thesis has not been presented either wholly or partly, for the award of any degree somewhere else. All sources of information and data utilised in this thesis are properly acknowledged.

ADEDUGBA ADEBAYO TOLULOPE

Signature and Date

Ш

CERTIFICATION

We certify that this thesis "LOGISTICS OPERATIONS AND SUSTAINABLE PERFORMANCE OF SELECTED TEXTILE MANUFACTURING FIRMS IN LAGOS STATE, NIGERIA" was fundamentally executed by Adedugba Adebayo Tolulope under our supervision and that it has not been submitted for the honour of any degree in this or any other University.

Dr. Olaleke O. Ogunnaike (Supervisor)

Dr. Kingsley A. Adeyemo (Co-Supervisor)

Prof. Anthonia A. Adeniji (Head of Department)

Prof. Matthew O. Ilori (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

..... **Signature and Date**

Signature and Date

Signature and Date

.....

Signature and Date

DEDICATION

I unreservedly commit the entire thesis to the Jesus Christ. To him be all the glory.

ACKNOWLEDGEMENTS

I will forever be grateful to God Almighty for His mercies that endure forever.

I want to express my appreciation to Dr. David O. Oyedepo for his foresight and for constantly making out time to challenge our potentials. I pray that God will continue to strengthen and grant him more grace. AMEN!

My appreciation goes to the Vice Chancellor of Covenant University, Professor Abiodun H. Adebayo, the Registrar Dr. Oluwasegun P. Omidiora, the Dean, School of Postgraduate Studies, Professor Akan B. Williams, Sub-Dean School of Postgraduate Studies, Dr. Emmanuel O. Amoo, the Dean, College of Management and Social Sciences, Professor Uwalomwa Uwuigbe, the Head of Department, Professor. Anthonia A. Adeniji and the Postgraduate Co-ordinator, Dr. (Barr) Ebeguki E. Igbinoba for their commitment towards the successful completion of my Doctor of Philosophy Degree programme.My acknowledgement also goes to the management of Centre of Learning (CLR), and African Leadership and Development Centre (ALDC) for providing most the resources utilised this study. Also, I appreciate Covenant University Centre for Research, Innovation and Discovery (CURID) for the sponsorship of my publications.

I earnestly thank my mentor, and supervisor, Dr. Olaleke O. Ogunnaike for his understanding, direction, and devotion towards the outcome of the work. I have immensely benefited from his mentorship, including the liberality of his time, important guidance, and suggestions at various phases of the study. I am appreciative of your direction and support sir. To Dr. Kingley A. Adeyemo who co-supervised me, i thank you for your scholarly guide, helpful remarks, and backing all through this programme.

My sincere gratitude goes to Prof. Chinonye L. Moses, Prof. Rowland E. Worlu, Dr. Joseph O. Kehinde, Dr. Omotayo A. Adegbuyi, Dr. Adewale O. Osibanjo, Dr. Mercy E. Ogbari, Dr. Olabode A. Oyewunmi. My appreciation goes to the faculty for the encouragement and inputs: Dr. Ikechukwu S. Ukenna Dr. Odunayo P. Salau, Dr. Hezekiah O. Falola, Dr. Ayodotun S. Ibidunni, Dr. Amaihian A. Bosede, Dr. Adebukola E. Oyewunmi, Dr. Taiye T. Borishade, Dr. Tolulope O. Atolagbe, Dr. Grace C. Adeniji, Dr. Daniel. E Ufua, Dr. Joy I. Dirisu, Dr. Mosunmola O. Adeyeye, Mrs. Deborah Aka, and Mrs Ebere Azuh.

Special appreciation to my Parents Mr. Bode Adedugba and Mrs. Rabitu Adedugba for always being there for me. To my wife and son Mrs. Yewande Adedugba and John Adedugba and also my siblings Mrs. Adebola Agbhumbe, Mr. Adeyemi Adedugba, Mr. Olademeji Adedugba, thanks for your encouragement. My sincere gratitude goes to Pastor. Opeolu Femi, Mr. Tope Adeniyi, Mrs. Ife Adeniyi, Mr. Mailik Bamjoko, Mr. Lasisi Musibua, Mr. Onibonje Bukola, Miss. Busola Kehinde, Miss Ruth Ilo, Mr. Oke Gbenga and Mr. Udoh Samson for their care and support. Worthy of mentioning are my colleagues on the doctoral programme. I appreciate Dr. Dada Joseph, Dr. Adesanya Adewale, Dr. Abisola Fabunmi, Dr. Olufunke Adebayo, Dr. Oluwatoyin Adesanya, Dr. Oluwakemi Oreagba and Dr. Joel Opeyemi, thanks for always being there. I appreciate.

TABLE OF CONTENTS CONTENTS Page **COVER PAGE TITLE PAGE** ACCEPTANCE i **DECLARATION** ii **CERTIFICATION** iii **DEDICATION** iv **ACKNOWLEDGEMENTS** V **TABLE OF CONTENTS** vii **LIST OF FIGURES** xii **LIST OF TABLES** xiii ABSTRACT xvii

CHAPTER ONE - INTRODUCTION

1.1	Background to the Study	1
1.2	Statement of the Research Problem	5
1.3	Research Questions	8
1.4	Objectives of the Study	8
1.5	Research Hypotheses	9
1.6	Significance of the Study	9
1.7	Scope of the Study	11
1.8	Operationalization of Research Variables	12
1.8.1	Operational Equation of Research Variables	12
1.9	Operational Definition of Terms	14

CHAPTER TWO - LITERATURE REVIEW

2.1	Preamble	18
2.2	Conceptual Review	18
2.2.1	Logistics Operations	18
2.2.2	Transportation Management	19

2.2.3	Fleet Management System	19
2.2.4	Fuel Management System	20
2.2.5	Route Planning	21
2.2.6	Tracking System	22
2.2.7	Disposal Policy	23
2.2.8	Vehicle Scheduling	24
2.2.9	Inventory Management	40
2.2.10	Inventory Shrinkage	40
2.2.11	Inventory Turnover	41
2.2.12	Inventory Record Accuracy	42
2.2.13	Inventory Investment	43
2.2.14	Inventory Control	43
2.2.15	Material Handling	49
2.1.16	Material Handling Equipment	49
2.2.17	Material handling Cost	51
2.2.18	Material Handling Load	53
2.2.19	Information Management	54
2.2.20	Information Flow Channel	54
2.2.21	Electronic Customer Feedback	56
2.2.22	Logistics Information Technology	57
2.2.23	Logistics Philosophy	58
2.2.24	Lean Philosophy	59
2.2.25	Just in Time Philosophy	62
2.2.26	Just in Case Philosophy	66
2.2.27	Agile Philosophy	69
2.2.28	Sustainable Performance	72
2.2.29	Social Performance	72
2.2.30	Economic Performance	75
2.2.31	Environmental Performance	76
2.2.32	Innovative Performance	78
2.3	Theoretical Review	80

2.3.1	Resource Based View (RBV) review	81
2.3.2	Transportation Problem Model	83
2.3.3	Theory of Constraints	85
2.3.4	Determinable Inventory Theory	87
2.4	Empirical Review	89
2.4.1	Transportation Management and Economic performance	89
2.4.2	Inventory Management and Innovative Performance	94
2.4.3	Material Handling and Environmental performance	98
2.4.4	Information Management and Social Performance	103
2.5	Gaps in the Literature	110

CHAPTER	THREE -	· METHODOLOGY	

3.1	Preamble	111
3.2	Research Philosophy	111
3.3	Research Design	111
3.3.1	Research Method	112
3.4	Population of the Study	112
3.5	Sample Size Determination	112
3.6	Sampling Frame	114
3.7	Sample Techniques	114
3.8	Sources of Data / Measurement of Variables	114
3.9	Research Instrument	114
3.10	Validity of Quantitative Research Instrument	116
3.11	Reliability of Research Instrument	117
3.12	Method of Data Analysis	118
3.12.1	Multivariate Analysis (Structural Equation Model)	118
3.12.2	Prescriptive Analysis	119
3.12.3	Linear Regression Analysis (Partial Least Square)	120
3.13	Ethical Consideration	120

CHAPTER FOUR - RESULTS

4.1	Preamble	121
4.2	Data Analysis and Presentation	121
4.2.1	Demographic Profiles of Respondents	121
4.2.2	Descriptive Analysis	124
4.3	Test of Hypotheses	144
4.3.1	Hypothesis One: Transportation management has no significant effect on economic performance of selected textile manufacturing firms in Lagos State, Nigeria	144
4.3.2	Hypothesis Two: Inventory management has no significant effect on the innovative performance of selected textile manufacturing firms in Lagos State, Nigeria.	149
4.3.3	Hypothesis Three: Information management does not significantly influence the social performance of selected textile manufacturing firms in Lagos State, Nigeria.	154
4.3.4	Hypothesis Four: Material handling has no significant impact on the environmental performance of selected textile manufacturing firms in Lagos State, Nigeria.	159
4.3.5	Hypothesis Five: The logistics philosophy adopted does not moderate the relationship between logistics operations and sustainable performance of selected textile manufacturing firms in Lagos State. Nigeria.	164
4.4	Discussion of Results	167
4.4.1	Transportation Management and Economic Performance of Selected Textile Manufacturing Firms in Lagos State, Nigeria	167
4.4.2	Inventory Management and Innovative Performance of Selected Textile Manufacturing Firms in Lagos State, Nigeria	179
4.4.3	Information Management and Social Performance of Selected Textile Manufacturing Firms in Lagos State, Nigeria	191
4.4.4	Material Handling and Environmental Performance of Selected Textile Manufacturing Firms in Lagos State, Nigeria.	191
4.4.5	Logistics operations, Logistics philosophies and Sustainable Performance of Selected Textile Manufacturing Firms in Lagos State, Nigeria	192
4.5	Implication of Findings (theoretical findings and empirical findings)	193
4.5.1	Theoretical Findings	193
4.5.2	Transportation Management and Economic Performance of Selected Textile Manufacturing Firms in Lagos State, Nigeria	195
4.5.3	Operations Research (Transportation problem model) findings	196
4.5.4	Inventory Management and Innovative Performance of Selected Textile Manufacturing Firms in Lagos State, Nigeria	197
4.5.5	Operations Research (Economic order quantity) findings	198
4.5.6	Information Management and Social Performance of Selected Textile	199

	Manufacturing Firms in Lagos State, Nigeria	
4.5.7	Material Handling and Environmental Performance of Selected Textile	200
	Manufacturing Firms in Lagos State, Nigeria.	
4.5.8	Logistics operations, Logistics philosophies and Sustainable Performance of	201
	Selected Textile Manufacturing Firms in Lagos State, Nigeria	

CHAPTER FIVE - CONCLUSION AND RECOMMENDATION

5.1	Preamble	203
5.2	Summary of the Study	203
5.3	Conclusion	204
5.4	Recommendations	205
5.5	Contributions to Knowledge	207
5.6	Limitations of the Study	209
5.7	Suggestions for Further study	209

REFERENCES210**APPENDICES**241241241

Questionnaire	242
Letter of Introduction	

LIST OF FIGURES

FIGURE		Page
1.1	Schematic Model of the Study	12
2.1	Transportation Scheduling	37
4.1	PLS Algorithm Model of Transportation Management and Economic Performance	145
4.2	PLS Bootstrapping Model with β and P values of Transportation Management and Economic Performance	146
4.3	PLS Bootstrapping Model with β and T values of Transportation Management and Economic Performance	147
4.4	PLS Algorithm Model of Inventory Management and Innovative Performance	150
4.5	PLS Bootstrapping Model with β and P values of Inventory Management and Innovative Performance.	151
4.6	PLS Bootstrapping Model with β and T values of Inventory Management and Innovative Performance	152
4.7	PLS Algorithm Model of Information Management and Social Performance	155
4.8	PLS Bootstrapping Model with β and P values of Information Management and Social Performance	156
4.9	PLS Bootstrapping Model with β and T values of Information Management and Social Performance	157
4.10	PLS Algorithm Model of Material Handling and Environmental Performance	160
4.11	PLS Bootstrapping Model with β and P values of Material Handling and Environmental Performance	161
4.12	PLS Bootstrapping Model with β and T values of Material Handling and Environmental Performance.	162
4.13	PLS Model for Logistics Operations, Logistics Philosophies and Sustainable Performance	165
5.1	Logistics Operations, Logistic Philosophies and Sustainable Performance of Textile Manufacturing Firms	207

LIST OF TABLES

TABLES		Page
2.1	Initial Mathematics Table	85
2.2	Summary of empirical review on Transportation Management and Economic Performance	92
2.3	Summary of empirical review on inventory management and innovative performance	97
2.4	Summary of empirical review on material handling and environmental performance	102
2.5	Summary of empirical review on information management and social performance	107
3.1	Sampling Size	113
3.2	Measurement of Research Constructs	115
3.3	Convergent Validity Results	116
3.4	Reliability test result	117
3.5	Method of Data Analysis	118
4.1	Respondents' Response Rate	121
4.2	Respondents Demographic profile	122
4.3	Effect of transportation management on economic performance analysis	124
4.4	Descriptive Analysis of Transportation Management Practices and Economic Performance	125
4.5	Descriptive Analysis of Inventory Management	130
4.6	Descriptive Analysis of Inventory Management systems and Innovative Performance	131
4.7	Descriptive Analysis of Information Management	136
4.8	Descriptive Analysis of Information Management and Social Performance	137
4.9	Descriptive Analysis of Material Handling	140
4.10	Descriptive Analysis of Material Handling and Environmental Performance	141
4.11	Descriptive Analysis of Logistics Philosophy	144
4.12	Construct Validity and Reliability for Hypothesis One	148
4.13	Construct Validity and Reliability for Hypothesis Two	153
4.14	Construct Validity and Reliability for Hypothesis Three	158
4.15	Construct Validity and Reliability for Hypothesis Four	163
4.16	Hypotheses Summary	166
4.17	Path coefficients for Transportation Management and Economic Performance	167

4.18	Transportation Linear Model for Firm 1	168
4.19	Balanced Model for Firm 1	168
4.20	Optimal Output for Firm 1 via QM Software	168
4.21	Transportation Linear Model for Firm 2	169
4.22	Balanced Model for Firm 2	169
4.23	Optimal Output for Firm 2 via QM Software	169
4.24	Transportation Linear Model for Firm 3	169
4.25	Balanced Model for Firm 3	170
4.26	Optimal Output for Firm 3 via QM Software	170
4.27	Transportation Linear Model for Firm 4	170
4.28	Balanced Model for Firm 4	171
4.29	Optimal Output for Firm 4 via QM Software	170
4.30	Transportation Linear Model for Firm 5	171
4.31	Balanced Model for Firm 5	171
4.32	Optimal Output for Firm 5 via QM Software	172
4.33	Transportation Linear Model for Firm 6	172
4.34	Balanced Model for Firm 6	172
4.35	Optimal Output for Firm 6 via QM Software	173
4.36	Transportation Linear Model for Firm 7	173
4.37	Balanced Model for Firm 7	173
4.38	Optimal Output for Firm 7 via QM Software	173
4.39	Transportation Linear Model for Firm 8	174
4.40	Balanced Model for Firm 8	174
4.41	Optimal Output for Firm 8 via QM Software	174
4.42	Transportation Linear Model for Firm 9	175
4.43	Balanced Model for Firm 9	175
4.44	Optimal Output for Firm 9 via QM Software	175
4.45	Transportation Linear Model for Firm 10	175
4.46	Balanced Model for Firm 10	176
4.47	Optimal Output for Firm 10 via QM Software	176
4.48	Transportation Linear Model for Firm 11	176

4.49	Balanced Model for Firm 11	177
4.50	Optimal Output for Firm 11 via QM Software	177
4.51	Transportation Linear Model for Firm 12	177
4.52	Balanced Model for Firm 12	177
4.53	Optimal Output for Firm 12 via QM Software	178
4.54	Summary of Optimal Transportation Cost Obtained	178
4.55	Path coefficients for Inventory Management and Innovative Performance	179
4.56	Economic Order Quantity (EOQ) Model Firm1	179
4.57	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 1	179
4.58	Economic Order Quantity (EOQ) Model Firm2	180
4.59	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 2	180
4.60	Economic Order Quantity (EOQ) Model Firm3	181
4.61	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 3	181
4.62	Economic Order Quantity (EOQ) Model Firm4	182
4.63	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 4	182
4.64	Economic Order Quantity (EOQ) Model Firm 5	183
4.65	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 5	183
4.66	Economic Order Quantity (EOQ) Model Firm 6	184
4.67	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 6	184
4.68	Economic Order Quantity (EOQ) Model Firm 7	184
4.69	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 7	185
4.70	Economic Order Quantity (EOQ) Model Firm 8	185
4.71	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 8	186
4.72	Economic Order Quantity (EOQ) Model Firm 9	186
4.73	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 9	187
4.74	Economic Order Quantity (EOQ) Model Firm 10	187
4.75	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 10	188
4.76	Economic Order Quantity (EOQ) Model Firm 11	188
4.77	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 11	189
4.78	Economic Order Quantity (EOQ) Model Firm 12	189
4.79	Economic Order Quantity (EOQ) final solution utilising QM Software Firm 12	190

4.80	Summary of Optimal Inventory	190
4.81	Path coefficients for Information Management and Social Performance	191
4.82	Path coefficients for Material Handling and Environmental Performance	191
4.83	Path Coefficients for Logistics Operations, Logistics Philosophy, and Sustainable Performance	192

ABSTRACT

The textile industry in Nigeria has seen a sharp decline in the manufacturing sector, with many textile manufacturing firms closing their doors due to internal and external factors. The absence of sustainable mechanisms such as logistics operations is a contributing variable to the plummet of the textile manufacturing firms in Lagos State, Nigeria. This implies the absence of sustainability in the textile manufacturing industry. Primarily the study objectively examined the relationship between logistics operations, and sustainable performance and the moderating effect of logistics philosophy. Multi method was adopted by the study and a structured questionnaire, inventory records and observations were utilised as primary and secondary sources of data respectively. Furthermore, 659 questionnaire were apportioned to staff of the production, transportation, warehousing, inventory, accounting and operations */administration department in the twelve (12) textile manufacturing firms in Lagos State,* Nigeria. The participant were converged utilising purposive sampling techniques and complete enumeration method. Data analysis was carried out using statistical and operational research tools such as partial least square(PLS), and QM software. The findings show that logistics philosophy significantly moderates the relationship between logistics operations and sustainable performance. The findings likewise show that transportation management has a considerable effect on economic performance; inventory management considerably affects innovative performance; information management impacts social performance while material handling noticeably does not impact environmental performance. The findings further revealed that logistic philosophies (just in time, just in case, lean and agile philosophy) moderates the relationship between logistic operations (transportation management, inventory management, information management and material handling) and sustainable performance(economic performance, innovative performance, social performance, and environmental performance). The results of the operational research findings revealed an optimal output to meet the goal of minimising the cost of delivery for the textile manufacturing firms at an optimal course via transportation linear model such as minimum cost technique and modified distribution method(MODI). The study also utilised economic order quantity (EOO) to obtain an optimal inventory in order to minimise holding cost and reduce value depreciation of resources. The study recommends a continuous improvement in transportation management practices via transportation linear models in other to enhance and sustain economic performance. An efficient utilisation of inventory linear models will lead to innovative performance and the utilisation of logistics information technology and electronic customer feedback will improve customer retention. Material handling should also be reconfigured to meet environmental regulations and promote sustainable environmental performance. Furthermore logistics philosophies, i.e. just in time, just in case, lean and agile, should be leveraged upon to achieve an optimal logistics operations, i.e. transportation management, inventory management, information management and material handling, as well as sustainable performance. The study added to knowledge by initiating the economic order quantity (EOQ) model and transportation problem model for each selected textile manufacturing firm. The study also formulated a model that explained how logistics operations, logistics philosophies, and textile manufacturing firm sustainability are intertwined and interrelated.

Keywords: Logistics Operations; Optimisation; Philosophies; Sustainable Performance; *Textile Industry*