SOLVABILITY OF SOME THIRD-ORDER BOUNDARY VALUE PROBLEMS AT RESONANCE WITH TWO DIMENSIONAL KERNELS ON THE HALF-LINE

IMAGA, OGBU FAMOUS (16PCD01473)

OCTOBER, 2021

SOLVABILITY OF SOME THIRD-ORDER BOUNDARY VALUE PROBLEMS AT RESONANCE WITH TWO DIMENSIONAL KERNELS ON THE HALF-LINE

BY

IMAGA, OGBU FAMOUS (16PCD01473)

M.Sc. Mathematics, University of Lagos, Lagos B.Tech. Mathematics, Federal University of Technology Owerri, Owerri

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (PH.D) IN INDUSTRIAL MATH-EMATICS IN THE DEPARTMENT OF MATHEMATICS, COLLEGE OF SCI-ENCE AND TECHNOLOGY, COVENANT UNIVERSITY, NIGERIA

OCTOBER, 2021

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Industrial Mathematics in the Department of Mathematics, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Mr. John A. Philip (Secretary, School of Postgraduate Studies)

.....

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **IMAGA, OGBU FAMOUS (16PCD01473)** declare that this research work was carried out by me under the supervision of Prof. Samuel A. Iyase of the Department of Mathematics, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria and Dr. Sheila A. Bishop of the Department of Mathematics, Faculty of Science, University of Lagos, Akoka, Lagos State, Nigeria. I attest that this thesis has not been presented either wholly or partially for the award of any degree elsewhere. All the scholarly information used in this thesis are duly cited and acknowledged.

IMAGA, OGBU FAMOUS

Signature and Date

CERTIFICATION

We certify that this thesis titled "SOLVABILITY OF SOME THIRD-ORDER BOUND-ARY VALUE PROBLEMS AT RESONANCE WITH A TWO DIMENSIONAL KER-NELS ON THE HALF-LINE" is an original work carried out by IMAGA, OGBU FAMOUS (16PCD01473), in the Department of Mathematics, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Samuel A. Iyase and Dr. Sheila A. Bishop. We have examined and found the work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Industrial Mathematics.

Prof. Samuel A. Iyase	Signature and Date		
(Supervisor)			
Dr. Sheila A. Bishop			
(Co-Supervisor)	Signature and Date		
Prof. Samuel A. Iyase			
(Head of Department)	Signature and Date		
Prof. Olufemi A. Adesina			
(External Examiner)	Signature and Date		
Prof. Akan B. Williams			
(Dean, School of Postgraduate Studies)	Signature and Date		

DEDICATION

This work is dedicated first to my Heavenly father, creator of heaven and earth for the grace that He gave me to finish this research work. I also dedicate this work to my family for all their support and unconditional love.

ACKNOWLEDGMENTS

I express my gratitude to the Chancellor and Chair, Board of Reagent of Covenant University, Dr. David O. Oyedepo for providing the platform that made it possible for me to undertake this Ph.D research.

I appreciate the Vice-Chancellor, Covenant University, Prof. Abiodun H. Adebayo and the Registrar, Dr. Promise O. Omidiora. I am also grateful to Prof. Akan B. Williams, the Dean, School of Postgraduate Studies, Dr. Emmanuel O. Amoo, the Sub-Dean, School of Postgraduate Studies, Prof. Temidayo V. Omotosho, the Dean College of Science and Technology, Dr. Adedapo A. Olwuatayo, the College of Science and Technology Postgraduate Coordinator and the entire management team of Covenant University for their support throughout the course of this research.

I am grateful to my main Supervisor, Prof. Samuel A. Iyase and my Co-supervisor, Dr. Sheila A. Bishop for their support, guidance and immense contributions towards the completion of this research.

My profound appreciation goes to the faculty and staff of the Department of Mathematics, College of Science and Technology, Covenant University for all their support and immense contribution towards the success of this research work.

Finally, I appreciate my wife, Mrs. Theresa, C. Imaga and my children, Great and Grace for their love and support. May God continue to bless you all.

TABLE OF CONTENTS

CONTE	ENTS P:	age
COVER	R PAGE	i
TITLE	PAGE	i
ACCEP	TANCE	ii
DECLA	ARATION	iii
CERTI	FICATION	iv
DEDIC	ATION	v
ACKNO	OWLEDGMENTS	vi
TABLE	C OF CONTENTS	ix
NOME	NCLATURE	X
ABSTR	ACT	xi
СНАРТ	TER ONE	1
INTRO	DUCTION	1
1.1	Background of Study	1
1.2	Statement of the Problem	2
1.3	Aim and Objectives	5
1.4	Justification for the Research	5
1.5	Significance of the Research	6
1.6	Scope of the Study	6
1.7	Limitation of the Study	6
1.8	Definition of Key Terms	7
СНАРТ	TER TWO	11
LITER	ATURE REVIEW	11
2.1	Boundary Value Problems at Resonance on a Bounded Domain	11
	2.1.1 BVPs with One Dimensional Kernel	11
	2.1.2 BVPs with Two Dimensional Kernel	14
2.2	Boundary Value Problems at Resonance on an Unbounded Domain	15
	2.2.1 BVPs with One Dimensional Kernel on the Half-line	15
	2.2.2 BVPs with Two Dimensional Kernel on the Half-line	17
2.3	p-Laplacian Boundary Value Problems at Resonance on a Bounded Domain	18
	2.3.1 BVPs with One Dimensional Kernel	18
	2.3.2 BVPs with Two Dimensional Kernel on a Bounded Domain	20
2.4	p-Laplacian Boundary Value Problems at Resonance on an Unbounded	
	Domain	20
	2.4.1 BVPs with One Dimensional Kernel on the Half-line	20
	2.4.2 BVPs with Two Dimensional Kernel on the Half-line	21

CHAPTER THREE			23
METHODOLOGY			23
3.1	Topol	ogical Degree	23
	3.1.1	Brouwer Degree	23
	3.1.2	Leray-Schauder Degree	24
	3.1.3	Coincidence Degree	25
	3.1.4	Ge and Ren Extension of the Coincidence Degree Theorem	27
CHAP	FER FO	DUR	29
RESUL	Л		29
4.1	Soluti	on to BVP (1.2) - (1.3)	29
	4.1.1	Preliminary Results for BVP (1.2) - (1.3)	29
	4.1.2	Existence Results for BVP (1.2) - (1.3)	46
	4.1.3	Example of BVP (1.2) - (1.3)	51
4.2	Soluti	on to BVP (1.4) - (1.5)	55
	4.2.1	Preliminary Results for BVP (1.4) - (1.5)	55
	4.2.2	Existence Results for BVP (1.4) - (1.5)	70
	4.2.3	Example of BVP (1.4) - (1.5)	75
4.3 Solution to BVP (1.6) - (1.7)		on to BVP (1.6) - (1.7)	79
	4.3.1	Preliminary Results for BVP (1.6) - (1.7)	79
	4.3.2	Existence Results for BVP (1.6) - (1.7)	93
	4.3.3	Example of BVP (1.6) - (1.7)	100
4.4	4.4 Solution to BVP (1.8) - (1.9)		104
	4.4.1	Preliminary Results for BVP (1.8) - (1.9)	105
	4.4.2	Existence Results for BVP (1.8) - (1.9)	120
	4.4.3	Example of BVP (1.8) - (1.9)	126
4.5	Soluti	on to BVP (1.10) - (1.11)	130
	4.5.1	Preliminary Results for BVP (1.10) - (1.11)	130
	4.5.2	Existence Results for BVP (1.10) - (1.11)	148
	4.5.3	Example of BVP (1.10) - (1.11)	155
4.6	Soluti	on to BVP (1.12) - (1.13)	158
	4.6.1	Preliminary Results for BVP (1.12) - (1.13)	158
	4.6.2	Existence Results for BVP (1.12) - (1.13)	174
	4.6.3	Example of BVP (1.12) - (1.13)	180
CHAP	FER FI	VE	186
DISCU	DISCUSSION		
CHAP	FER SI	X	190

CONCLUSIONS AND RECOMMENDATIONS			
6.1	Summary		
6.2	Conclusion	190	
6.3	Contributions to Knowledge	190	
6.4	Recommendations for Further Study	191	
REFERENCES		192	

NOMENCLATURE

List of Symbols

- Subset \subset
- Intersection \cap
- U Union
- $\overline{\Omega}$ Closure of Ω
- $\partial \Omega$ Boundary of Ω
- Member of a set \in
- Ξ There exists
- $\|\cdot\|$ Norm
- $L^1[0,\infty)$ L^1 function space

.

Epsilon ε

Abbreviations

dim	Dimension
ker	Kernel
lim	Limit
Im	Image
deg	Degree
dom	Domain
ind	Index
coker	Co kernel
a.e	Almost every
BVP	Boundary value problem

ABSTRACT

This research work considered the solvability for some resonant third order boundary value problems (BVPs) with integral and multi-point boundary conditions on the halfline when the differential operators have two-dimensional kernels. Problems where the differential operator is linear and problems where the differential operator is nonlinear as a result of the presence of the p-Laplacian operator were considered. For problems where the differential operator is linear, the coincidence degree theory of Mawhin was applied while for the nonlinear p-Laplacian operator, the Ge and Ren extension of the coincidence degree theory was applied. Conditions for the existence of solutions for the problems were proved using suitable operators like semi-projectors and algebraic methods. Examples were used to demonstrate the obtained results.

Keywords: Coincidence degree, half-line, integral boundary conditions, multi-point boundary conditions, p-Laplacian, resonance.